Электрический ток и его действие на организм человека. Действие электрического тока на организм человека: особенности и интересные факты

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Чем опасен электрический ток? Как электрический ток действует на человека

Факт действия электрического тока на человека был установлен в последней четверти XVIII века. Опасность этого действия впервые установил изобретатель электрохимического высоковольтного источника напряжения В. В. Петров. Описание первых промышленных электротравм появилось значительно позже: в 1863 г. - от постоянного тока и в 1882 г. - от переменного.

Электрический ток, электротравмы и электротравматизм

Под электротравмой понимают травму, вызванную действием электрического тока или электрической дуги .

Электротравматизм характеризуют такие особенности: защитная реакция организма появляется только после попадания человека под напряжение, т. е. когда электрический ток уже протекает через его организм; электрический ток действует не только в местах контактов с телом человека и на пути прохождения через организм, но и вызывает рефлекторное действие, проявляющееся в нарушении нормальной деятельности сердечно-сосудистой и нервной системы, дыхания и т. д. Электротравму человек может получить как при непосредственном контакте с токоведущими частями, так и при поражении напряжением прикосновения или шага, через электрическую дугу.

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, однако по числу травм с тяжелым, и особенно летальным, исходом занимает одно из первых мест. Наибольшее число электротравм (60-70 %) происходит при работе на электроустановках напряжением до 1000 В. Это объясняется широким распространением таких электроустановок и сравнительно низким уровнем электротехнической подготовки лиц, эксплуатирующих их. Электроустановок напряжением свыше 1000 В в эксплуатации значительно меньше, и обслуживает их , что и обусловливает меньшее количество электротравм.

Причины поражения человека электрическим током следующие: прикосновение к неизолированным токоведущим частям; к металлическим частям оборудования, оказавшимся под напряжением вследствие повреждения изоляции; к неметаллическим предметам, оказавшимся под напряжением; поражение током напряжения шага и через дугу.

Виды поражений человека электрическим током

Электрический ток , протекающий через организм человека, воздействует на него термически, электролитически и биологически. Термическое действие характеризуется нагревом тканей, вплоть до ожогов; электролитическое - разложением органических жидкостей, в том числе и крови; биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением и возбуждением живых тканей и сокращением мышц.

Различают два вида поражения организма электрическим током: электрические травмы и электрические удары.

Электрические травмы - это местные поражения тканей и органов: электрические ожоги, электрические знаки и электрометаллизация кожи.

Электрические ожоги возникают в результате нагрева тканей человека протекающим через него электрическим током силой более 1 А. Ожоги могут быть поверхностные, когда поражаются кожные покровы, и внутренние - при поражении глубоколежащих тканей тела. По условиям возникновения различают контактные, дуговые и смешанные ожоги.

Электрические знаки представляют собой пятна серого или бледно-желтого цвета в виде мозоли на поверхности кожи в месте контакта с токоведущими частями. Электрические знаки, как правило, безболезненны и с течением времени сходят.

Электрометаллизация кожи - это пропитывание поверхности кожи частицами металла при его разбрызгивании или испарении под действием электрического тока. Пораженный участок кожи имеет шероховатую поверхность, окраска которой определяется цветом соединений металла, попавшего на кожу. Электрометаллизация кожи не представляет собой опасности и с течением времени исчезает, как и электрические знаки. Большую опасность представляет металлизация глаз.

К электрическим травмам, кроме того, относятся механические повреждения в результате непроизвольных судорожных сокращений мышц при протекании тока (разрывы кожи, кровеносных сосудов и нервов, вывихи суставов, переломы костей), а также электроофтальмия - воспаление глаз в результате действия ультрафиолетовых лучей электрической дуги.

Электрический удар представляет собой возбуждение живых тканей электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц. По исходу электрические удары условно разделяют на пять групп: без потери сознания; с потерей сознания, но без нарушения сердечной деятельности и дыхания; с потерей сознания и нарушением сердечной деятельности или дыхания; клиническая смерть и электрический шок.

Клиническая, или «мнимая», смерть - это переходное состояние от жизни к смерти. В состоянии клинической смерти сердечная деятельность прекращается и дыхание останавливается. Длительность клинической смерти 6...8 мин. По истечении этого времени происходит гибель клеток коры головного мозга, жизнь угасает и наступает необратимая биологическая смерть. Признаки клинической смерти: остановка или фибрилляция сердца (и, как следствие, отсутствие пульса), отсутствие дыхания, кожный покров синеватый, зрачки глаз резко расширены из-за кислородного голодания коры головного мозга и не реагируют на свет.

Электрический шок - это тяжелая нервнорефлекторная реакция организма на раздражение электрическим током. При шоке возникают глубокие расстройства дыхания, кровообращения, нервной системы и других систем организма. Сразу после действия тока наступает фаза возбуждения организма: появляется реакция на боль, повышается артериальное давление и др. Затем наступает фаза торможения: истощается нервная система, снижается артериальное давление, ослабевает дыхание, падает и учащается пульс, возникает состояние депрессии. Шоковое состояние может длиться от нескольких десятков минут до суток, а затем может наступить выздоровление или биологическая смерть.

Пороговые значения электрического тока

Электрический ток различной силы оказывает различное действие на человека. Выделены пороговые значения электрического тока: пороговый ощутимый ток - 0,6...1,5 мА при переменном токе частотой 50 Гц и 5... 7 мА при постоянном токе; пороговый неотпускающий ток (ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник) - 10...15 мА при 50 Гц и 50...80 мА при постоянном токе; пороговый фибрилляционный ток (ток, вызывающий при прохождении через организм фибрилляцию сердца) - 100 мА при 50 Гц и 300 мА при постоянном электрическом токе.

От чего зависит степень действия электрического тока на организм человека

Исход поражения также зависит от длительности протекания тока через человека. С увеличением длительности нахождения человека под напряжением эта опасность увеличивается.

Индивидуальные особенности организма человека значительно влияют на исход поражения при электротравмах. Например, неотпускающий ток для одних людей может быть пороговым ощутимым для других. Характер действия тока одной и той же силы зависит от массы человека и его физического развития. Установлено, что для женщин пороговые значения тока примерно в 1,5 раза ниже, чем для мужчин.

Степень действия тока зависит от состояния нервной системы и всего организма. Так, в состоянии возбуждения нервной системы, депрессии, болезни (особенно болезней кожи, сердечно-сосудистой системы, нервной системы и др.) и опьянения люди более чувствительны к протекающему через них току.

Значительную роль играет и «фактор внимания». Если человек подготовлен к электрическому удару, то степень опасности резко снижается, в то время как неожиданный удар приводит к более тяжелым последствиям.

Существенно влияет на исход поражения путь тока через тело человека. Опасность поражения особенно велика, если ток, проходя через жизненно важные органы - сердце, легкие, головной мозг, - действует непосредственно на эти органы. Если ток не проходит через эти органы, то его действие на них только рефлекторное и вероятность поражения меньше. Установлены наиболее часто встречающиеся пути тока через человека, так называемые «петли тока». В большинстве случаев цепь тока через человека возникает по пути правая рука - ноги. Однако утрату трудоспособности более чем на три рабочих дня вызывает протекание тока по пути рука - рука - 40 %, путь тока правая рука - ноги - 20 %, левая рука - ноги - 17 %, остальные пути встречаются реже.

Что опаснее - переменный или постоянный электрический ток?

Опасность переменного тока зависит от частоты этого тока. Исследованиями установлено, что токи в диапазоне от 10 до 500 Гц практически одинаково опасны. С дальнейшим увеличением частоты значения пороговых токов повышаются. Заметное снижение опасности поражения человека электрическим током наблюдается при частотах более 1000 Гц.

Постоянный ток менее опасен и пороговые значения его в 3 - 4 раза выше, чем переменного тока частотой 50 Гц. Однако при разрыве цепи постоянного тока ниже порогового ощутимого возникают резкие болевые ощущения, вызываемые током переходного процесса. Положение о меньшей опасности постоянного тока по сравнению с переменным справедливо при напряжениях до 400 В. В диапазоне 400...600 В опасности постоянного и переменного тока частотой 50 Гц практически одинаковы, а с дальнейшим увеличением напряжения относительная опасность постоянного тока увеличивается. Это объясняется физиологическими процессами действия на живую клетку.

Следовательно, действие электрического тока на организм человека многообразно и зависит от многих факторов.

Влияние электрического тока на организм человека. Факторы, влияющие на опасность поражения электрическим током.

Проходя через организм, электрический ток производит 3 вида воздействия: термическое, электролитическое и биологическое.

Термическое действие проявляется в ожогах наружных и внутренних участков тела, нагреве кровеносных сосудов и крови и т.п., что вызывает в них серьёзные функциональные расстройства.

Электролитическое — в разложении крови и другой органической жидкости, вызывая тем самым значительные нарушения их физико-химических составов и ткани в целом.

Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и лёгких. При этом могут возникнуть различные нарушения в организме, включая механическое повреждение тканей, а также нарушение и даже полное прекращение деятельности органов дыхания и кровообращения.

Различают два основных вида поражения организма: электрические травмы и электрические удары.

Электрические травмы — это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей. Электрический ожог — самая распространённая электрическая травма: ожоги возникают у большей части пострадавших от электрического тока 3 вида ожогов: токовый, или контактный, возникающий при прохождении тока непосредственно через тело человека; дуговой, обусловленный воздействием на тело человека электрической дуги, но без прохождения тока через тело человека; смешанный, являющийся результатом действия одновременно обоих указанных факторов, то есть действия электрической дуги и прохождения тока через тело человека.

Электрический удар — это возбуждение живых тканей электрическим током, проходящим через организм, сопровождающееся непроизвольными судорожными сокращениями мышц. В зависимости от исхода отрицательного воздействия тока на организм электрические удары могут быть условно разделены на следующие четыре степени:

1) судорожное сокращение мышц без потери сознания;

2) судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

3) потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

4) клиническая смерть, то есть отсутствие дыхания и кровообращения.

Профилактика электротравм заключается в соблюдении установленных правил и мер техники безопасности при эксплуатации, монтаже и ремонте

электроустановок. В целях профилактики хронической электротравмы, могущей возникнуть вследствие длительного пребывания в электрических полях, образующихся вблизи достаточно мощных генераторов высокой и ультравысокой частоты, применяются экранирование генераторов, специальные защитные костюмы и систематическое медицинское наблюдение за работающими в этих условиях.

Факторы опасности для организма: судороги мышц, чел не может разжать руки; фибрилляция (мышцы сердца хаотично сокращ. При 50 Гц - остановка сердца), влияние на гол.мозг. Факторы риска: пониж. атмосферного давления, замкнутые помещения из-за пониж.парциального давления кислорода.

Факторы, влияющие на тяжесть поражения электрическим током:

Воздействие электрического тока может вызывать чрезвычайно опасные нарушения сердечного ритма, фибрилляцию желудочков, прекращение дыхания, ожоги и смерть. Тяжесть поражения зависит от:

силы тока; сопротивления тканей прохождению электрического тока; вида тока (переменный, постоянный); частоты тока и длительности воздействия.

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Воздействие электрического тока на организм человека носит своеобразный и разносторонний характер. Проходя через организм человека, электрический ток производит термическое, электролитическое, механическое и биологическое действие.

Как известно, организм человека состоит из большого количества солей и жидкости, что является хорошим проводником электричества, поэтому действие электрического тока на организм человека может быть летальным.

Убивает не напряжение, а ток

Это, пожалуй, самая основная проблема подавляющего большинства обычных людей. Все считают, что опасно напряжение, но правы они лишь частично. Само по себе напряжение (разность потенциалов между двумя точками цепи) на организм человека никак не воздействует. Все процессы, имеющие отношение к поражению, проходят под действием электротока той или иной величины.

Выше ток - больше опасность. Частичная правота относительно напряжения заключается в том, что от его значения зависит сила тока. Именно так - ни больше, ни меньше. Все, кто учился в школе, без труда вспомнят закон Ома:

Ток = напряжение / сопротивление (I=U/R)

Если считать сопротивление тела человека величиной постоянной (это не совсем так, но об этом позже), то ток, а значит, и поражающее действие электричества, будут напрямую зависеть от напряжения. Выше напряжение - выше ток. Вот откуда убеждение в том, что чем выше напряжение, тем оно опаснее.

Связь тока с сопротивлением

Согласно закону Ома ток зависит и от сопротивления. Чем ниже сопротивление, тем выше и, значит, опаснее ток. Не будет условий для прохождения тока (сопротивление цепи бесконечно велико) - не будет опасности при любом напряжении

Предположим (только теоретически), вы сунули палец в розетку, стоя на сырой земле и получите мощный удар. Поскольку ваше тело имеет невысокое сопротивление, ток из розетки устремится по цепи человек - земля.

А теперь прежде чем сунуть палец в розетку, вы встали на диэлектрический коврик или надели диэлектрические боты. Сопротивление диэлектрического коврика или бот настолько велико, что ток через них и, соответственно, вас, будет пренебрежимо мал - микроамперы. И хотя вы будете находиться под напряжением в 220 В, ток через вас течь практически не будет, а значит, и электрического удара вы не получите. Вы вообще не почувствуете никакого дискомфорта.

Именно по этой причине птица, сидящая на высоковольтном проводе (он оголен, не сомневайтесь), спокойно чистит перышки. Более того - если чрезмерно прыгучий человек, этакий Бэтмен, подскочит и вцепится в фазный провод ЛЭП, с ним тоже ничего не случится, хотя он и окажется под напряжением в киловольты. Повисит и спрыгнет. У электриков даже есть такой тип работ - под напряжением (не путайте с работой на электроустановках, находящихся под напряжением).

Но вернемся к варианту с розеткой, в котором вы стояли на сырой земле. Ударит - это факт. Но насколько сильно?

Определение степени поражения

Сопротивление человеческого тела в обычных условиях составляет 500-800 Ом. Сопротивление сырой земли можно в учет не брать - оно может оказаться крайне низким и на результат расчетов не повлиять, но справедливости ради добавим к сопротивлению тела еще 200 Ом. Быстренько считаем по приведенной выше формуле:

220 / 1000 = 0.22 А или 220 мА

Степень действия тока на организм человека вкратце можно выразить вот через такой список:

  • 1-5 мА - ощущение покалывания, легкие судороги.
  • 10-15 мА - сильная боль в мышцах, судорожное их сокращение. Самостоятельно освободиться от действия тока возможно.
  • 20-25 мА - сильная боль, паралич мышц. Самостоятельно освободиться от действия тока практически нереально.
  • 50-80 мА - паралич дыхания.
  • 90-100 мА - остановка сердца (фибрилляция), смерть.

Очевидно, что ток в 220 мА намного превосходит смертельное значение. Многие скажут, что сопротивление тела человека много больше килоома. Верно. Сопротивление верхнего слоя кожи (эпидермиса) может достигать мегаома и даже более, но слой этот настолько тонок, что тут же пробивается напряжением выше 50 В. Поэтому в случае с электророзетками на свой эпидермис можете не рассчитывать.

Опасность зависит от частоты

При значениях напряжения до 400 В переменный ток частотой 50 Гц намного опаснее постоянного, поскольку, во-первых, сопротивление тела человека переменному току ниже, чем постоянному. Во-вторых, биологическое действие электрического тока переменного типа намного выше, чем постоянного.

При высоких же напряжениях, и, как следствие, высоких постоянных токах в список поражающих факторов добавляется процесс электролиза, происходящего в клеточных жидкостях. В этом случае постоянный ток становится более опасным, чем переменный. Он просто меняет химический состав жидкостей организма. С увеличением частоты картина несколько меняется: ток начинает носить поверхностный характер.

Иными словами, он проходит по поверхности тела, не проникая вглубь организма. Чем выше частота, тем меньший «слой» человеческого организма страдает. К примеру, при частоте в 20-40 кГц фибрилляции сердца не наступает, поскольку ток через него не течет. Взамен этой беды появляется другая - при высокой частоте происходит сильное поражение (ожог) верхних слоев тела, которое с не меньшим успехом приводит к смерти.

Пути прохождения электротока через организм

Влияние тока на организм человека зависит не только от его величины, но и от пути прохождения. Если человек просто залез пальцами в розетку, то ток потечет только через кисть. Стоит на сыром полу и коснулся оголенного провода - через руку, торс и ноги.

Вполне очевидно, что в первом случае пострадает лишь кисть, а освободиться от действия электротока не составит труда, поскольку мышцы руки выше кисти сохранят управляемость. Второй случай намного серьезней, особенно если рука левая. Здесь ток сковывает мышцы, не давая человеку самостоятельно освободиться от действия электричества. Но хуже всего, что в этом случае страдают легкие, сердце и другие жизненно важные органы. Те же проблемы ожидают при пути рука-рука, голова - рука, голова - ноги.

Влияние электрического тока на человека

Проходя через тело человека, электроэнергия оказывает на организм сразу несколько видов воздействия. Всего их существует четыре:

  1. Термическое (нагрев).
  2. Электролитическое (диссоциация, приводящая нарушению химических свойств жидкостей).
  3. Механическое (разрыв тканей как следствие гидродинамического удара и судорожного сокращения мышц).
  4. Биологическое (нарушение биологических процессов в клетках).

В зависимости от величины, пути прохождения, частоты и длительности воздействия электроток может вызывать абсолютно разные как по характеру, так и по тяжести повреждения организма. Самыми распространенными из них можно считать:

  1. Судорожное сокращение мышц.
  2. Судорожное сокращение мышц, дыхание и сердцебиение сохраняются.
  3. Остановка дыхания, возможно нарушение сердечного ритма.
  4. Клиническая смерть, дыхания и сердцебиения нет.

Безопасное напряжение

Для выяснения этого вопроса не нужно использовать никаких формул - все уже рассчитано, запротоколировано и завизировано специально обученными людьми. В зависимости от рода тока согласно ПЭУ безопасным напряжением рекомендуется считать:

Переменное до 25 В или постоянное до 60 В - в помещениях без повышенной опасности;

Переменное до 6 В или постоянное до 14 В - в помещениях повышенной опасности (сыро, металлические полы, токопроводящая пыль и пр.).

Определение шагового напряжения

Этот вопрос, представляющий чисто академический интерес, требует ответа хотя бы потому, что попасть под напряжение шага может практически каждый, выходящий из дома. Итак, предположим, что на линии электропередач оборвался провод и упал на землю. При этом короткого замыкания не произошло (земля относительно сухая и устройство аварийной защиты не сработало). Но даже сухая земля имеет довольно низкое сопротивление и по ней потек ток. Причем потек во все стороны как вглубь, так и по поверхности.

Благодаря сопротивлению почвы при удалении от провода напряжение постепенно падает и на некотором расстоянии исчезает. Но фактически оно не исчезает бесследно, а равномерно распределяется, «размазывается» по земле. Если воткнуть щупы вольтметра в грунт на некотором расстоянии друг от друга, то прибор покажет напряжение, которое будет тем выше, чем ближе упавший провод и больше расстояние между щупами.

Если вместо щупов окажутся ноги человека, бодро идущего на работу, то он попадет под напряжение, которое и называется шаговым. Чем ближе упавший провод и шире шаг, тем выше напряжение.

Грозит такой вид напряжения тем же, чем и обычный - поражением той или иной степени. Даже если ток, протекающий по петле нога-нога, окажется и не особо опасен, он вполне может вызвать судорожное сокращение мышц. Пострадавший падает и попадает под более высокое напряжение (расстояние руки - ноги больше), которое к тому же начинает течь через жизненно важные органы. Вот теперь о безопасности и речи быть не может - человек попал под опасное для жизни напряжение.

Если вы почувствовали, что попали под напряжение шага (ощущение можно сравнить с теми, которые возникают от прикосновения к «дерущейся током» стиралки). Поставьте ноги вместе, минимально сократив расстояние между ними, и осмотритесь. Если вы видите в радиусе 10-20 м электрическую опору (столб) или трансформаторную подстанцию, то, скорее всего, оттуда и растут уши у проблемы. Начинайте двигаться в противоположную от них сторону шажками по несколько сантиметров. Вы ведь помните, что чем меньше шаг, тем ниже шаговое напряжение. Если понять откуда появилось напряжение невозможно, выберите произвольное направление.

Техника безопасности (ТБ) – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия опасных и вредных факторов.

Электробезопасность – защита от электрического тока, электрической дуги, статического и атмосферного электричества.

3.1 Воздействие электрического тока на организм человека

Проходя через тело человека, электрический ток оказывает на него биологические (сокращение мышц, паралич дыхания и сердца, раздражение и возбуждение нервных окончаний), электролитические (разложение крови и плазмы), термические (ожоги, нагрев тканей и биологических сред) и механические (разрыв и расслоение тканей) воздействия.

При воздействии электрических тока или дуги могут возникнуть электрические удары – внутренние, общие поражения организма человека, связанные: с едва ощутимым сокращением мышц; судорожными сокращениями мышц, сопровождающимися сильными болями без потери сознания; потерей сознания и нарушением сердечной деятельности и (или) дыхания; потерей сознания, но с сохранившимся дыханием и работой сердца; состоянием клинической смерти в результате фибрилляции сердца или асфиксии. При местном воздействии электрического тока возникают электротравмы : контактные, дуговые или смешанные электроожоги (четыре степени); металлизация кожи частицами расплавившегося металла; электрические знаки (метки различной формы и цвета, безболезненные, исчезающие со временем); электроофтальмия (воспаление наружной оболочки глаз); механические травмы, вызванные непроизвольным сокращением мышц. Тяжесть поражения электрическим током зависит от силы тока, сопротивления тела человека, пути и времени протекания тока через организм, рода (переменный или постоянный) и частоты тока, условий среды и индивидуальных особенностей человека.

Эквивалентную схему при протекании тока через тело человека можно представить в виде последовательно включенных сопротивлений внутренних органов и кожи (эпидермы) в месте контакта (на входе и выходе) с источником тока (рисунок 3.1). Емкость человеческого тела незначительна, и ее не учитывают в практических расчетах. Сопротивление тела человека при различных расчетах, связанных с обеспечением безопасности, принимают активным и равным 1000 Ом , хотя оно и изменяется в широких пределах. Наибольшим сопротивлением обладает наружный слой кожи толщиной порядка 0,2 мм, состоящий из мертвых ороговевших клеток, наименьшим – спинно-мозговая жидкость. Сухая, чистая, неповрежденная кожа имеет сопротивление значительно больше, чем влажная, с большим pH, потная кожа. С увеличением силы тока и временем его протекания сопротивление тела человека уменьшается. Наибольшая опасность возникает при прохождении тока через головной мозг, легкие, сердце . Наиболее опасным является ток промышленных частот (20 – 1000 Гц) . Постоянный ток напряжений 250 – 300 В менее опасен, чем переменный. Некоторые заболевания человека (сердечно сосудистые, кожные) делают его восприимчивым к электрическому току. Поэтому к обслуживанию электроустановок допускаются лица, прошедшие медицинское освидетельствование.

Рисунок 3.1 – Схема замещения тела человека

По степени физиологического воздействия можно выделить следующие токи промышленной частоты воздействием более 1 секунды:

0,5 – 1,5 мА – пороговый ощутимый ток (т.е. наименьшее значение тока, которое человек начинает ощущать);

10 – 20 мА – пороговый не отпускающий ток (когда из-за судорожного сокращения рук человек самостоятельно не может освободится от токоведущих частей);

80 – 100 мА – пороговый фибрилляционный ток (расчетный поражающий ток), вызывающий неритмичные судорожные сокращения сердца, называемые фибрилляцией.

Поражение электрическим током возможно лишь в состоянии полного покоя сердца человека. При продолжительности воздействия не более 10 минут в сутки в неаварийном режиме при нормальных метеорологических условиях предельно допустимые значения тока : частотой 50 Гц равно 0,3 мА, частотой 400 Гц – 0,4 мА, постоянного тока – 1 мА.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»