Электричество в живой природе. Презентация на тему "электричество в живой природе"

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Вряд ли Луиджи Гальвани, в конце XVIII века открывший «животное» электричество, и Нильс Бор, в начале XX веке предположивший планетарную модель атома, предполагали, что их открытия не только положат начало широкому, нарастающему применению электричества, но и послужат основой научных исследований по разгадке величайшей тайны природы - где начинается жизнь? Где проходит грань между живой и неживой природой?

Электричество вошло в жизнь человека, изменило условия его труда и быта. Многообразны примеры применения электричества в промышленности, на транспорте, в связи, в быту, в медицине и искусстве. Электричество позволило создать новую технологию производства и материалы, не существующие в природе. Электромобиль, идущий на смену автомобилю, будущее индивидуального транспорта. В жизни много примеров, когда электричество спасало жизнь человека.

Огромное достижение в области протезирования. Перспективны работы по созданию искусственного сердца. Человек с сердцем, пересаженным от погибшего при катастрофе, живёт годами, если его сердце и сердце его донора имеют совместимость биопотенциалов.

В процессе жизнедеятельности каждый живой организм- человек, животное или другое существо - создаёт вокруг себя различные поля и излучения. Их сложная картина отражает работу физиологических систем, обеспечивающих гомеостаз организма, т. е постоянство внутренней среды. Изучение биополей и биоизлучений открывает новые диагностические возможности, поэтому подобными исследованиями занимаются ученые всего мира, среди которых ведущую роль играют отечественные ученые и инженеры. Описанные ниже методы визуализации физических полей и излучений позволяют существенно расширить возможности наших органов чувств, заглянуть в самую глубину тела и мозга, понаблюдать физиологическую жизнь в её изменениях. Для медицинской диагностики эти методы обладают особой ценностью, поскольку они являются абсолютно стерильными и неинвазивными. Кроме того, эта основа ранней диагностики, т. к. функциональные нарушения появляются обычно задолго до возникновения необратимой патологии, когда больного ещё можно легко вылечить.

Во взаимодействии с электромагнитными полями возникла и развилась жизнь на Земле. Электричество присуще всему живому, в том числе и наиболее сложной его форме – жизнедеятельности человека.

Очень много сделано учёными в изучении этого удивительного взаимодействия электричества и живого, но многое пока ещё скрывает от нас природа.

Цель статьи: теоретически и экспериментально исследовать возникновение статического электричества в живой природе.

Задачи исследования:

Установить факторы и условия, способствующие возникновению статического электричества.

Установить характер воздействия статического электричества на живые организмы.

Сформулировать направления полезного использования получившихся результатов.

Историческая справка

Откуда пришло к нам это слово – электричество? Историю науки об открывает электрических явлениях можно начать с исследований Гильберта, врача английской королевы Елизаветы, который в 1600 г. опубликовал свой первый научный трактат « О магните, магнитных телах и большом магните – Земле. ». В нём было описано более 600 опытов по изучению магнитных и электрических явлении и сделана первая попытка создания теории электричества и магнетизма.

До 1600 г. учение об электрических явлениях оставалось практически на уровне знаний Фалеса Милетского, который ещё в VI веке до нашей эры одним из первых описал способность натёртого янтаря притягивать к себе лёгкие предметы.

Слово янтарь произошло от латышского gintaras. Греки, собиравшие прозрачный, золотисто-жёлтый янтарь на берегах Балтийского моря, называли его (электро). У древних римлян и арабов для янтаря было много названий: смола веков, слёзы дочерей Солнца, солнечный камень. С древних времён существовало много легенд и преданий о янтаре. Вот одна из них.

Фаэтон-сын бога солнца Гелиоса и океаниды Климены – уговорил своего отца позволить ему проехать по небу в золотой колеснице вместо него самого. Отец уступил настойчивым просьбам сына. Сел Фаэтон в колесницу и помчался по небу. Но крылатые огненные кони сразу почувствовали слабую руку юноши. Они понесли колесницу, пролетели близко от Земли, опалив её огнём. На Земле начался страшный пожар. Разгневанный Зевс-громовержец метнул огненную молнию в несчастного Фаэтона и убил его. Тело упало в воду реки Эридан. Сёстры Фаэтона, прекрасные Гелиады, превратившись в прибрежные тополя, безутешно оплакивали погибшего брата. От горя склонились стройные деревца у гробницы, а девичьи горькие слёзы застыли янтарными гроздьями в студеной воде.

Чем привлекали внимание древних эти тёплые камни удивительной красоты, иногда содержащие внутри диковинных маленьких насекомых? Они обладали одним необычным свойством – могли притягивать пылинки, обрывки нитей, кусочки папируса. Это свойство янтаря, очевидно, определяло в древности его название в языках разных народов: греки называли его электроном - притягивающим к себе, римляне - харпаксом, что означало грабитель, персы - кавубой, т. е. камнем, способным притягивать мякину.

Считалось, что удивительное свойство янтаря было открыто дочерью Фалеса Милетского. Но оно, скорее всего, было известно и раньше. Так, Гумбольт, побывавший в конце прошлого века у индейцев бассейна реки Ориноко, убедился в том, что этим, незатронутым цивилизацией племенам, тоже известны электрические свойства янтаря. Скорее всего, история о янтарном веретене дочери милетского философа - просто красивая древняя сказка.

Янтарь в те далёкие времена считался действительным лекарственными косметическим средством. Полагали, что янтарные ожерелья и чётки защищают от напастей, болезней и «дурного глаза». Наверное, поэтому на картинах старых фламандцев мадонны с младенцами на руках часто изображались с янтарными ожерельями.

В 1551 году вышел трактат Кардана « О точности », в котором он указывает, что янтарь притягивает к себе разные вещества, а магнит – только железо. Через полвека Гильберт в своём трактате « О магните » впервые употребляет слово электрический: « Электрические тела – те, которые притягивают таким же образом, как янтарь ». К ним Гильберт относит серу, стекло, гагат (разновидность каменного угля), ирис, сапфир, карборунд, бристольский алмаз, аметист, горный хрусталь, сланцы, сургуч, каменную соль и др. Оказалось, что таких веществ довольно много. Гильберт называл их электрическими веществами и заметил, что пламя уничтожает электрические свойства тел, приобретённые при трении.

Человек и электричество

С давних времён человек пытался понять явления в природе. Много гениальных гипотез, объясняющих происходящие вокруг человека, появилось в разное время и в разных странах. Мысли греческих и римских учёных и философов, которые жили ещё до нашей эры: Архимеда, Евклида, Лукреция, Аристотеля, Демокрита и других - и сейчас помогают развитию научных исследований.

Интересны в изучении темы « Электричество и человек» первые сведения об электричестве магнетизме. Идут они из старинного торгового города на Средиземном море Милета, автор их – милетский философ Фалес (конец VII – начало VIвв. до н. э.). Ученики Фалеса накапливали по крупицам сведения об электризации, которая в той или иной степени связывалась с живым организмом, с человеком. Так в античные времена были известны электрические свойства некоторых видов рыб и они даже использовались в качестве лечебного средства. За 30 лет до нашей эры Диаскорд электрическими ударами лечил подагру и головную боль. В русских летописях ХIV века имеется описание, из которого видно, что это удивительное исцеляющее средство было известно и русским. Электричество и человек – это вопрос, который интересен человеку нашего времени. Изучая электричество, многие опыты проводятся с участием человека. Например, проводя опыты с электризацией человека, его ставят на изолированную скамейку. Это делают для того, чтобы все заряды оставались в теле и не стекали в землю. Электрические опыты, которые проводятся с участием человека, не всегда влияют на него хорошо. Так, с помощью электростатической машины тело человека можно зарядить до потенциала в десятки тысяч вольт. Человеческое тело – проводник электричества. Если его изолировать от земли и зарядить, то заряд располагается исключительно по поверхности тела, поэтому заряжение до сравнительно высокого потенциала не влияет на нервную систему, так как нервные волокна находятся под кожей. Влияние электрического заряда на нервную систему сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.

Поражение током с тяжёлым исходом возможно при напряжении, начиная приблизительно с 30 В.

Тело человека является проводником электрических зарядов, при соприкосновении происходит перераспределение зарядов, и заряды разных знаков притягиваются (электростатическая индукция). Так происходит, если к заряженной гильзе, подвешенной на шёлковой нити поднести руку, в этом случае гильза притянется к руке.

Ток приводит к изменениям в теле организма. Ток, проходя через тело человека, воздействует на центральную и периферическую нервную систему, вызывая нарушение работы сердца и дыхания.

Гроза-это тоже своеобразное электричество. По некоторым данным считается, что нельзя стоять в толпе во время грозы потому, что пары, выделяющиеся при дыхании людей, увеличивают электропроводность воздуха.

Органы человеческого тела создают вокруг себя магнитное поле. Установлено, что вдоль возбуждаемого нерва примерно за пять десятитысячных секунд до передачи возбуждения образуется магнитное поле. По-видимому, в момент раздражения молекулы, несущие на себе заряд, каким-то образом изменяют своё положение в пространстве, позволяя пройти по нерву волне возбуждения. Именно это перемещение молекул, вероятно, и является причиной возникновения магнитного поля.

Впервые электризацию человеческого тела осуществил в 1740 г. аббат Ноле. Эксперимент заключается в том, что демонстратор поднимается на металлическую подставку толщиной 80 см. и соединённую с электростатическим генератором, который вырабатывает отрицательное относительно земли напряжение 30 кВ.

Электрический контакт демонстратора с площадкой должен быть безукоризненным и для этого он должен снять обувь. В действительности подошва толщиной 1см – не препятствие для зарядов (они могут пробивать шестидесятиметровый слой воздуха!), но при этом их накапливание осуществилось бы весьма неприятным образом: с помощью множества маленьких искорок, проскакивающих от подошвы к ступне.

Приближённый расчёт показывает, что при разности потенциалов в 300кВ относительно Земли накапливаемое на демонстраторе избыточное количество электронов - порядка 10 триллионов – смехотворно мало. Эта цифра может показаться огромной, но на самом деле, если сравнить её с числом электронов, естественным образом присутствующих во всех атомах и молекулах наших тел (порядка 1027), то её ничтожность становится очевидной. Подчеркнём, что значительному накоплению зарядов опять препятствует колоссальная сила их взаимного отталкивания, так что эксперимент, предоставляя взгляду зрителей удивительные эффекты, остаётся совершенно безопасным

Во –первых, волосы встают дыбом. Они показывают распределение электрического поля вблизи головы, т. е направление силовых линий: перпендикулярное проводящей поверхности, как и положено.

Во – вторых, когда наэлектризованный субъект протягивает указательный палец к пламени он подносит металлический прут к другому – заземлённому – пруту, который держит его помощник, то между прутьями проскакивает искра (прут демонстратора заряжен отрицательно, заземлённый прут-положительно).

В-третьих, вокруг головы и пальцев рук в темноте зажигается корона. Что любопытно: положительная корона оказывается гораздо более обширной, чем отрицательная. Это связано с различной подвижностью положительных и отрицательных ионов в воздухе. Последние – в большинстве своём на электроны, а гроздья молекул, налепленных на электрон,- относительно громоздки и довольно малоподвижны.

Электричество и слух

Электричество действует не только на человека в целом, но и на его органы.

Врач Петербургской Максимилиановской больницы Р. Бреннер подробно изучил, на какие органы слуха действует электрический ток. В капитальном труде, вышедшем в 60-х годах ХIХ века, он обобщил результаты собственных исследований и данные других авторов. Цель его труда – разработка терапии заболеваний органов слуха на основе более общих физиологических закономерностей. Результаты исследований возникновения и характера слуховых ощущений показали, что у больных (страдающих глухотой) и здоровых людей они различны при действии постоянного тока разного значения. Особенно отмечена Бреннером зависимость ощущения от размыкания и замыкания электрической цепи, мест расположения электродов, размеров их поверхности. Использовались различные электроды, менялась полярность, их размещение. Основным являлся активный электрод, помещённый наружном слуховом проходе, заполненном однопроцентном раствором поваренной соли. Вторым электродом служила металлическая тонкая пластина значительно большей поверхности, расположенная в опытах Бреннера и последующих исследователей на шее или предплечье. Уже тогда удалось установить возникновение слуховых ощущений у нормально слышащих людей в условиях, когда активным электродом, расположенным в ухе, является катод. Плотность тока катода благодаря малой его поверхности значительно больше, чем у анода. При таком расположении электродов возникает чёткое слуховое ощущение при замыкании

Электрической цепи постоянного тока, при размыкании цепи его нет. Обратное явление имеет место при изменении площади электродов и места их расположения, когда анодам является электрод, находящийся в слуховом проходе, а катодом - электрод с большей поверхностью. Ощущение звука возникает в момент размыкания цепи. Слуховые ощущения разными людьми оцениваются по-разному – как звон, стук, звуковой удар, шипение. Чаще всего они оцениваются как звон.

Большое значение в понимании механизма слуховых ощущений приобрели результаты исследования, при котором использовались токи различных частот, что позволило установить появление музыкального ощущения, которое наблюдалось при применении тока с частотой 1000Гц и в переходных режимах во время разряда конденсатора большой ёмкости. Определение частоты тока, при которой появляются слуховые ощущения, проводилось в сравнении с ощущением звука камертона, настроенного на определённую частоту. Обобщение полученных результатов значительно расширило представление о механизме слухового восприятия. Исследователями слуха установлено, что только тонкие волокна слухового нерва являются структурами, раздражение которых токами различной частоты вызывает слуховые ощущения в виде звука музыкальной тональности, громкости звука, словом, только для них характерно дифференцированное восприятие электрического раздражителя, полностью отсутствующее у людей, страдающих потерей слуха.

Борьба с плохим слухом – это социальная проблема. В возрасте 60 -70 лет примерно четверть населения страдает той или иной степенью тугоухости. Нарушение слуха возникает при поражении (заболевании) звукопроводящего и звуковоспринимающего аппарата. Лечение тугоухости производится обычным терапевтическими средствами; если это не помогает, то применяют слуховые усилительные аппараты.

Электросварка в живых тканях

Институт электросварки им. Е. О Патона (Украина), возглавляемый Борисом Евгеньевичем Патоном,-крупнейший в мире научно-исследовательский центр в области электросварки и электрометаллургии. Открытия и разработки его учённых используются в самых разных сферах техники и производства. А недавно электросварка стала применяться в медицине. Патоновцы не только выдвинули и обосновали теоретически и экспериментально идею соединения живых тканей электрическим током, но и в содружестве с медиками и специалистами в области электротермии реализовали её на практике.

Известно, что уже несколько поколений учёных работали и работают над созданием для хирургии новых высококачественных шовных материалов, сшивающих аппаратов, различных клеев для соединения расчётных тканей. Ведь, к сожалению, далеко не всегда операции заканчиваются успешно: нередко в рану проникает инфекция, возникает воспалительный процесс, надолго, а то и навсегда, остаётся рубец. Применять же хирургии электрический ток давно отказались, так как в зоне его действия живая ткань погибает.

Работающей над проблемой её «электросварки» группе учёных удалось остановить жизнеспособность органов и тканей в зоне воздействия электрического тока. В качестве «сварочного материала» был использован белок, который содержится в клетках и межклеточном пространстве человеческого организма. Когда хирург с помощью специального зажима, включённого в электрическую цепь «сварочного аппарата, соединяет и сжимает края ткани, под воздействием электрического тока определённого напряжения и частоты происходит коагуляция белка в месте рассечения ткани, и она таким образом надёжно «сваривается». Необходимые параметры воздействия на ткань электротоком (напряжение, частота, время действия и др.) установлены экспериментально. Опытным же путём (в экспериментах на лабораторных животных) выяснено, что через 4-6 недель после сварки структура живой ткани полностью восстанавливаются, причём без образования рубцов.

Первая в мировой практике сварка живых тканей человека при удалении у пациента желудка была выполнена в июне 2000 г. Сейчас разрабатываются и осваиваются методика проведения операций с применением электросварки на желчном пузыре, печени, кишечнике и других органах брюшной полости. Ученые, как настоящие сварщики, многократно проверяют (в условиях лабораторных опытов) надёжность соединений различных тканей. Она очень высока: например, сварной шов такого нежного органа, как желчный пузырь, выдерживает давление до 300 мм рт. ст. В результате, когда стали в последние два года проводить операции на людях, было выполнено свыше 500 соединений тканей с применением электросварки, и при этом не наблюдалось ни одного случая послеоперационного осложнения. Так что есть все основания полагать возможность значительного расширения сферы использования электросварки в медицине. Инженеры сварщики уже создали необходимую для этого автоматическую аппаратуру. Основные элементы её сварочного блока – это источник переменного электрического тока высокочастотного диапазона и компьютер, управляющий работой аппарата. Созданы также необходимые для сварки живых тканей комплекты обычного и специального хирургического инструмента.

Электрическое поле

Честь открытия биоэлектричества принадлежит профессору Булонского университета Луиджи Гальвани. Он обнаружил, что электрический ток, пропущенный по нерву препарированной лягушачьей лапки, вызывает её сокращение (этим «прибором» какое-то время пользовался даже известный ученый Георг Ом). Когда Гальвани прикоснулся к телу лягушки двумя проводниками из различных металлов, то по ним пошёл ток. На основании этого опыта Гальвани решил, что живое тело является источником животного электричества. Другой итальянский профессор – Алессандро Вольта – выразил резкое несогласие с этим утверждением. С помощью своих опытов он доказывал, что ток между двумя проводниками возникает, даже если их опустить в смолу или в раствор, схожей с ней по составу, так что животное электричество здесь не причём. И оба были не правы: Гальвани – в толковании своего опыта, а Вольта – в отрицании животного (био-) электричества. Кстати, потомки внесли ещё большую путаницу, назвав химический источник тока, работающий на открытом Вольта явлении, гальваническим, а прибор для измерения разности потенциалов электрического тока (заменивший лягушачью лапку) – вольтметром.

Тем не менее появление вольтметра и возможность устойчивой регистрации животного электричества положило начало методам исследования электрических характеристик органов человеческого организма, в первую очередь – сердца и головного мозга. Первыми наличие электрических явлений в сокращающейся сердечной мышце обнаружили немецкие ученые Р. Келликер и И. Мюллер (1856г.) на препарате лягушки, а Шарпи (1880г.) и Уоллер (1887г.) первыми записали электрокардиограмму человека.

На старинной фотографии – полураздетый пожилой мужчина, который сидит посреди комнаты, опустив ноги в два таза с растворами. Справа и слева на подставках стоят ещё два таза, в которые опущены руки человека. Комната заполнена каким-то громоздкими приборами, соединенными проводами с тазами. На лице мужчины выражение суровой решимости, говорящее о незаурядной силе духа Так происходила регистрация электрокардиограммы в начале нашего столетия, когда этот метод только начинал внедряться в медицинскую практику. В чем же суть самого процесса электрокардиографии?

Каждое мышечное волокно, в том числе и волокно сердечной мышцы, окружено оболочкой – мембраной, которая представляет препятствие для движения ионов веществ, растворённых в биологических жидкостях нашего тела. Одни ионы преодолевают эти препятствия легче, другие – труднее, поэтому концентрация ионов снаружи и внутри волокна неодинакова. Каждый ион – это электрически заряженная частица, следовательно, снаружи и внутри мембраны скапливается разное количество заряженных частиц, возникает разность электрических потенциалов. Во время сокращения мышцы в мышечном волокне и его мембране протекают сложнейшие электрохимические процессы, вследствие чего свойства мембраны резко меняются: проницаемость мгновенно увеличивается, и сквозь мембрану устремляются ионы, которые в покое не могли через нее пройти. Но движение ионов и есть электрический ток!

Измерение с помощью микроэлектродов, приведённых в непосредственной контакт с тканями сердца, показывают, что изменение потенциалов при работе этого органа составляет примерно 100мВ. Благодаря электропроводности окружающих тканей через грудную клетку при каждом ударе сердца проходит электрический ток. Подключив к любым двум точкам на поверхности тела чувствительный прибор, можно проследить изменение разности потенциалов (1-2 мВ). Эти изменения, усиленные и записанные на бумаге, и называются электрокардиограммой (ЭКГ).

Форма ЭКГ зависит и от толщины различных участков сердечной мышцы, и от расположения сердца в грудной клетке, и от того, в каком состоянии находятся различные его отделы. Если электроды помещать всегда в одних и тех же точках тела, можно по форме кривых делать соответствующие выводы. В медицинской практике наибольшее распространение получили 12 стандартных способов расположения электродов (отведений) на теле человека. После обследования пациента врач получает 12 кривых, которые позволяют ему как бы рассмотреть сердце пациента с разных сторон, чтобы точнее поставить диагноз.

Показаны электрокардиограммы здорового человека (а), а также пациентов с различными заболеваниями сердца (б-г). В норме ЭКГ состоит из трёх направленных верх зубцов (P, R, и T) и двух, направленных вниз (Q и S). Отклонения от нормы – изменение интервалов времени общего цикла между всеми или отдельными его фазами, изменение амплитудных значений напряжений зубцов и т. п. свидетельствует о нарушении работы сердца.

Электрокардиограмма снимается с помощью электрокардиографа – прибора, позволяющего измерять напряжения от 0, 01 до 0, 50 мВ с регистрацией результатов (на ленте или на экране осциллографа). Если разделить напряжение, соответствующее зубцу на кривой ЭКГ (0, 3-0,5 мВ), на входное сопротивление электрокардиографа (0,5-2 Мом), то получим силу тока (10 -11-10-12 А). Зная ток и напряжение, можно оценить величину электрической энергии, генерируемой сердцем за некоторый промежуток времени.

Аналогично исследуют деятельность головного мозга. Электроэнцефалография (от греч. мозг) – это графическая суммарная регистрация биопотенциалов отдельных его зон, областей и зон, областей и долей. Однако электрическая активность мозга мала и выражается в миллионах долях вольта, так что её регистрируют лишь при помощи специальных высокочувствительных приборов – электроэнцефалографов.

Первую электроэнцефалограмму (ЭЭГ) снял в 1913 г. русский учёный В. В. Правдин-Неминский. Он с помощью струнного гальванометра зарегистрировал различные типы изменений потенциалов обнаженного головного мозга собаки, а также представил их описание и классификацию. В 1928 г. немецкий психиатр Бергер впервые записал биотоки мозга человека, используя в качестве отводящих электродов иглы, которые вводил в лобную и затылочную области головы. Такой способ отведения биотоков мозга был вскоре заменён прикладыванием к коже головы металлических пластинок (электродов). ЭЭГ отражает как морфологические (относящиеся к строению) особенности мозговых структур, так и динамику их функционирования.

Пациент помещается в отдельное помещение-кабину; на его голове укрепляется множество датчиков-электродов с отходящими от них проводами. Сначала, для выявления морфологических особенностей мозга, снимается ЭЭГ в состоянии покоя, а затем регистрируется динамика его функционирования: в кабине звучат звуковые сигналы различной интенсивности и частоты, мигает свет, пациенту предлагают задержать дыхание и, наоборот, делать глубокие вдохи и выдохи.

ЭЭГ здорового взрослого человека обнаруживает два основных типа ритмов: альфа-ритм (частота 8-13 Гц, амплитуда 25-30 мкВ) и бета-ритм (частота 14-30 Гц, амплитуда 15-20 мкВ). По нарушениям нормы можно определить тяжесть и локализацию поражения (например, выявить область расположения опухоли или кровоизлияния). Интересно отметить, что когда наступает смерть, электрическая активность мозга сначала очень быстро нарастает, а только затем пропадает. Беспорядочные электрические импульсы наблюдаются иногда в течение часа.

Ещё один важный метод исследования связан с интенсивным электрическим полем, которое создаётся вокруг живого организма вследствие накапливания на коже трибоэлектрического заряда. Этот заряд стекает через роговой слой в глубь тела, причём время релаксации в зависимости от сопротивления эпидермиса может изменится в широких приделах: от 15 минут до 10 секунд. Сопротивление же эпидермиса варьирует от 10 11 до 10 9 Ом\см 2 из-за диффузии воды через микрокапилляры в ходе кожного дыхания, являющегося одним из основных механизмов терморегуляции. Таким образом, динамика электрического поля, окружающего тело, отражает терморегуляционные реакции организма. Кроме того, внешнее электрическое поле из-за вибрации заряженной поверхности тела, вызываемой механическим движением внутренних органов, модулируется ритмами сердца, дыхания, перистальтики желудка и кишечника, микротремора (дрожания) мышц и др.

Таким образом, пространственно-временное распределение электрического поля в окружающем любой биологический объект пространстве в реальном времени отражает функционирование его физиологических систем.

Медицина во многом обязана электрическим явлениям. Лечебное действие электрических явлений на человека по существующим в далёкие времена наблюдениям можно рассматривать как своеобразное стимулирующие и психогенное средство.

Рентген

В наше время нельзя, наверное, представить медицину без рентгеновских лучей. Рентген обнаружил принципиально иной источник излучения, названный им Х-лучами. Позже эти лучи получили название рентгеновские. Сообщение Рентгена вызвало сенсацию. Во всех странах множество лабораторий начали воспроизводить установку Рентгена, повторять и развивать его исследования. Особенный интерес это вызвало у врачей. Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами, их пациентами, подозревавшими, что в их теле находятся проглоченные иголки, металлические пуговицы и т. д. История медицины не знала до этого столь быстрой практической реализации открытий в области электричества, как это случилось с новым диагностическим средством – рентгеновскими лучами.

Новые достижения электротехники соответственно расширили возможности исследования «животного» электричества. Итальянский физик Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышцы возникает электрический потенциал. Разрезав мы- шцу поперёк волокон, он соединил поперечный разрез её с одним из полюсов гальванометра, а продольную поверхность мышцы – с другим полюсом и получил потенциал в пределах 10 – 80 мВ. Значение потенциала обусловлено видом мышц. По утверждению Маттеучи, «биоток течёт» от продольной поверхности к поперечному разрезу и поперечный разрез является электроотрицательным.

Относительно слабое статическое электрическое поле на человека, по – видимому, не влияет никак. Стоит только вспомнить, что мы живём в электрическом поле Земли, которое примерно равно 100 В/м. Во время грозы это поле увеличивается в десятки раз. В сильном электрическом поле воздух может ионизироваться, что, вообще говоря, вредно для здоровья. Возможны также и электрические разряды, которые могут просто убить

Что касается высокочастотных электромагнитных полей, то они весьма опасны, т. к. вызывают локальный перегрев внутренних органов и частей тела. (Например, СВЧ излучение длиной волны порядка 3-10 см. вредно действует на глаза). В результате воздействия СВЧ излучения на организм возможны серьёзные расстройства здоровья, значительно возрастает риск возникновения онкологических заболеваний.

Александр Леонидович Чижевский

Александр Леонидович Чижевский родился 8 февраля 1897 года в местечке Цехановец бывший Гродненской губернии, где тогда стояла артиллерийская бригада, в которой служил его отец- кадровый военный. В год рождения сына Леонид Васильевич Чижевский имел чин капитана (в 1916 году стал генералом). Будучи широко образованным человеком, он интересовался наукой, изобретательством (изобрёл угломер для стрельбы орудий по невидимой цели с закрытых позиций), ракетным оружием. Мать будущего ученого – человек поэтический и музыкальный – умерла от туберкулёза, когда ему не было ещё и года.

Мальчик получил домашнее начальное образование, которое включало естественнонаучные дисциплины и математику, но наибольший его интерес в раннем возрасте вызвали гуманитарные предметы, которые отвечали его внутренним склонностям: он любил музыку, поэзию, живопись. Книги стали источником его увлечения астрономией, которое подкреплялось «еженощными» наблюдениями звёздного неба с помощью приобретенного для них телескопа. Эти наблюдения вызывали у мальчика восхищения и открывали ему «несказанное великолепие надземного мира». Огромное впечатление производили на него наблюдения Луны и особенно кометы Галлея.

Чижевский изучил атмосферное электричество, а именно биологическое действие аэроионов – заряженных молекул воздуха. Гипотеза о влиянии аэроионов на жизнедеятельность организмов требовала экспериментального подтверждения, и Чижевский устраивает лабораторию дома на средства своей семьи (его родные продали часть вещей и помогали ухаживать за подопытным животными). В 1924 году он стал сотрудником калужской Практической лаборатории по зоопсихологии (а вскоре и членом её учёного совета), где провёл множество наблюдений над животными. В 1929 году в одном из французских журналов была помещена его статья, которая была первой тщательно обоснованной работой о лечебном действии аэроионов при заболевании дыхательных путей животных и человека; в ней впервые использовался термин «аэроионотерапия». В том же году Александр Леонидович был избран членом Тулонской Академии наук.

Надо заметить, что ещё в начальную эпоху развития знаний об электричестве было замечено влияние атмосферных зарядов на растения и животных, но наблюдения эти были неоднозначны, бессистемны и в большинстве случаев не имели практической ценности. Только к началу текущего столетия выяснилось, что часть воздуха (особенно его слои, прилегающие к земной поверхности) находится в ионизированном состоянии (ионизация происходит главным образом под влиянием излучений радиоактивных веществ, содержащихся в земной коре, а также космических лучей).

Ионы воздуха (аэроионы) обладают способностью присоединять к себе несколько нейтральных молекул газа и образовывать устойчивые комплексы из 10-15 молекул, несущие заряд. Такой комплекс частиц называют лёгким ионом. Присоединяя к себе мельчайшие жидкие и твёрдые частицы, взвешенные в воздухе, ионы становятся тяжелыми и обычно малоподвижны. Как лёгкие, так тяжёлые ионы бывают двух полярностей – положительной и отрицательной. Число ионов в воздухе изменяется в зависимости от метеорологических и геофизических условий, времени года или суток и других причин. В деревенском или горном воздухе число лёгких аэроионов обоих знаков в солнечный день доходит до 1000 в1см3 (на некоторых курортах их число поднимается до нескольких тысяч); тяжёлые ионы в чистом воздухе обычно отсутствуют. В воздухе промышленных городов число лёгких ионов падает – иногда до 50-100, а число тяжёлых – возрастает до нескольких тысяч, даже десятков тысяч в 1 см3. Таким образом, электрическое состояние чистого деревенского и загрязнённого городского воздуха очень различно.

Это различие важно для здоровья людей, потому что тяжёлые ионы, или псевдоионы (заряженная пыль, копоть, дым, разные испарения) вредны, а лёгкие ионы, причём отрицательного знака, оказывают благотворное и целебное действие на живые организмы. Ученый, впервые установивший этот факт и подробно изучивший действие аэроионов, - А. Л. Чижевский.

Хотя идея о биологическом действии естественных аэроионов высказывалась многими учёными, но теоретического и экспериментального обоснования она не имела и не нашла практического применения. И только Чижевский показал в своих работах необходимость управления ионизации воздуха в общественных, производственных и жилых помещениях так же, как регулируются его температура и влажность. По мнению самого Чижевского, это произошло потому, что почти все экспериментаторы не придавали значения полярности ионов, а он специально изучил действие на живые организмы положительных и отрицательных аэроионов в отдельности.

Для этих целей он применил источник высокого напряжения с выпрямителем, к которому подключалось металлическое приспособление с остриями, с помощью которых он получал -10 4 аэроионов в 1 см 3, имеющих только имеющих только отрицательный и только положительный заряд. Опыты позволили ему установить, что отрицательные ионы воздуха действуют на организм благотворно, а положительные чаще всего оказывают неблагоприятное влияние (например, подавляют аппетит и рост крыс). В дальнейшем учёный провёл многочисленные серии экспериментов с различными объектами (растениями, домашними животными и т. д), которые подтвердили его вывод.

Он выяснил к тому же, как действует на животных воздух, лишенный аэроионов, поставив такой эксперимент: в герметизированную стеклянную камеру, куда помещались испытуемые животные, воздух подавался через трубку, в которую вкладывался рыхлый ватный тампон (его толщина определялась заранее так, чтобы он поглощал все аэроионы, содержащиеся в воздухе, не изменяя его химического состава); контрольная группа животных находилась в точно такой же камере, с таким же рационом питания и режимом жизни, но воздух поступал к ним через свободную от ватного тампона трубку. Сравнительно через небольшой срок испытуемые животные заболевал, а затем умирали-Чижевский установил, что лишенные ионов воздух опасен для организма.

Чтобы убедится в том, что аэроионы – необходимый для жизни фактор, ученый, пользуясь теми же установками, создавал искусственную ионизацию уже профильтрованного воздуха внутри камеры: за слоем ваты он впаял в трубку тонкое остриё, которое соединялось с отрицательным полюсом источника высокого напряжения: животные в этом случае не заболевали и росли даже лучше, чем контрольные.

В 1931 г. вышло постановление Совета народных Комисаров СССР о научных работах А. Л Чижевского в этой области; его наградили премиями Совнаркома и Наркомзема СССР; одновременно была учреждена Центральная научно-исследовательская лаборатория ионификации с целым рядом филиалов, директором которой он был назначен. В ЦНИЛИ были проведены опыты с тысячами биологических объектов – кроликами, овцами, свиньями, рогатым скотом, птицами, семенами различных растений и самими растениями. Во всех случаях установлено благоприятное воздействие отрицательных аэроионов, стимулирующее рост и развитие организмов.

Через несколько лет эти исследования получили подтверждения в трудах отечественных и зарубежных ученых. Подтвердилась и эффективность использования искусственной ионизации воздуха в медицине для профилактических оздоровительных целей.

Электромагнитные поля и человеческий мозг

Учёные Объединённого института физики Земли им. О. Ю. Шмидта РАН исследовали влияние физических полей различной природы (в основном электромагнитных) на поведенческие реакции живых организмов, в том числе людей. Слабые (фоновые) атмосферное электрическое и геомагнитное поля, постоянно действующие на земные существа, изменчивы: они испытывают годовые, суточные и более быстрые колебания. Но их наличие и вариации столь привычны, что, как правило, не замечаются, хотя параметры колебаний природных электрического и магнитного полей неоднозначны и имеют широкий диапазон значений. Например, амплитуда (в данном случае отклонение от среднего значения) напряженности электромагнитного поля особенно велика на частоте от 1 Гц до 20 кГц, причем наблюдаются резонансы (резкие её изменения) на частотах 8-10, 16-17, 20-24 Гц.

Примечательно, что эти частоты близки к частотам основных ритмов человеческого мозга, также инфразвука, который, по мнению многих ученых, воздействует на подсознание человека (этим, в частности, объясняют случаи безотчётного ужаса, охватывающего иногда моряков, так как одним из природных источников инфразвука служит волнение на море). Многочисленными исследованиями установлено, что это совпадение частот играет важную роль: изменения с такой частотой электрических и магнитных полей оказывают неблагоприятное действие на человека.

В последние годы ученые выяснили, каковы должны быть отклонения физических полей от стабильного состояния, чтобы они ощущались так же, как, например, магнитные бури некоторыми людьми. При этом обнаружился удивительный факт: физические характеристики природных «вредных» полей отличаются от «нормальных» почти неуловимо. Однако проявление очень малых изменений сразу нескольких даже слабых полей (электрического) может оказывать заметное влияние, если их действия согласуются с ритмам физиологических процессов.

Чудеса в костном мозге

Еще в начале 50-х годов доктор Маркус Сингер из Кливлендского университета показал, что нервы должны составлять, по крайней мере, одну треть общей массы тканей в спонтанно регенерирующихся конечностях. Транспортируя дополнительный нерв на ампутированную лапу лягушки, он вырастил около 1 см. новой ткани. Но способна ли нервная система обеспечить необходимый электрический сигнал для «запуска» бластемы? В поисках ответа Беккер стал измерять электрические напряжения на «внешней» стороне самих нервных волокон. Согласно традиционным представлениям существует только один механизм передачи электрического сигнала – короткие импульсы, «бегущие» по нервному волокну. Беккер убедился, что здесь присутствует и другой канал – околонервные клетки, по которым непрерывно идёт ток. Это ток, пронизывая плотную сеть периферических нервов, формирует «узоры» поверхностного поля. Как только в результате ранения оно деформируется, околонервная ткань начинает «выдавать» электричество, черпая его в недрах организма; и если «нервная» масса в пораженной области достаточно велика, генерируемые напряжения смогут инициировать регенерацию. В противном случае формируются рубцы.

Срастание костной ткани – один из примеров человеческой способности к спонтанной регенерации, хотя здесь «работают» не только нервы. При сгибе или поломке кости сами электрически поляризуются. Их «хрустальная», кристаллическая структура трансформирует механическое напряжение в электрическую энергию. И вот эта энергия вмешивается в клеточно – восстановительный механизм, помогая, прежде всего образованию бластемы на поврежденной части. К сожалению, иногда что-то случается с этим механизмом, и срастание не происходит. И тогда только электричество может помочь успешному лечению.

Исследования на животных подтвердили эту мысль, начались работы на людях. Пропуская электрический ток прямо через перелом, доктор Карл Бригтон и его коллеги из Пенсильванского университета вылечили несколько тяжёлых пациентов, которым грозила ампутация: в поврежденные конечности попала инфекция. Многие клиники США переняли опыт. Электричество стало предпочтительным средством для лечения труднозаживающих переломов. Появилось несколько методов электротерапии. Однако Бассет предпочитает электрические «витки» - соленоид – электродам, их не надо вживлять. Его процедуры успешны в 85% случаев, и он надеется улучшить результаты до 95 – 98 %.

Биоэнергетика

В 50-х годах Роберт О. Беккер, используя электронную аппаратуру, приступил к изучению «электрической картины ранений». Выяснилось следующие. Как только возникает рана, повреждённые клетки начинают вырабатывать электрический ток. Измеряя напряжение, генерируемое поврежденными частями тела, Беккер открыл ключ к оному из самых странных парадоксов природы, формулируемому так: почему низкоорганизованная саламандра может регенерировать одну треть полной массы тела, а человек едва способен восстановить даже единственный повреждённый орган? Да потому, что только токи в несколько биллионных долей ампера способны вернуть к забытому эволюционному механизму.

Руководствуясь этим соображением, Беккер с помощью имплантированных электродов стимулировал регенерацию ампутированной передней лапы крысы до коленного сустава. Выросшая часть лапы, хотя и не была совершенной, обладала многотканевой организацией, включая новые мускулы, кости, хрящи, и нервы

Более 20 лет Беккер настойчиво работал над неортодоксальной теорией, согласно которой высшие животные, будь то лягушка, крыса или человек, не способны к регенерации естественным путём, поскольку их организмы вырабатывают недостаточное количество электричества для «запуска регенерационного механизма», но если создать клеткам соответствующее «электрическое окружение», то они, подобно клеткам саламандры, могут трансформироваться в новые ткани. Пора традиционной медицине понять, что регенерация способна делать чудеса. Способ применим ко всем тканям: восстановимы мозг, периферические нервные окончания, пальцы, конечности, органы. «Уж если мы смогли выявить механизмы, стимулирующие регенерацию у саламандры, то ничто не мешает нам проделать то же самое и с человеком», - говорит Беккер.

Сейчас в мире проводятся множество операций, и здесь тоже не обошлось без электричества. Пожалуй, каждый человек в той или иной степени подвергался наркозу. К местной и общей анестезии прибегают хирурги при полостных и не полостных операциях. Последствие наркоза, конечно, болезненно, однако во многих случаях операция спасает жизнь. А это главное.

Огромная заслуга в создании биоэлектрического наркоза Центрального научно-исследовательского института «Электроника».

Есть такая наука, как реаниматология она достигла очень много. Пока сохраняется электрическая активность сердца, борьба за жизнь умирающего продолжается, и во многих случаях человека удаётся спасти.

У человека тряслась склонная на бок голова, тряслись руки. Лекарства помогали мало. Усадив больного в кресло, врач наложил на его виски небольшие металлические посеребренные пластинки – электроды, закрепив их обычным пластарым. Через электроды в тело больного прошёл электрический ток. Под воздействием тока уменьшилась тряска головы и рук. А в глазах зажглась надежда на выздоровление.

Электричество в телах животных

На примере лягушки покажем, как можно создать ток в теле лягушки. Гальвани де лал следующий опыт. Соединив две проволоки из различных металлов, он концом одной из них касался лапки свежепрепарированной лягушки, а концом другой – поясничных нервов; при этом мускулы лапки судорожно сокращались. Это можно объяснить тем, что Дао металла и жидкость лапки составляют гальванический элемент. Ток, возникающий при замыкании цепи, раздражает нервные окончания лягушки.

В теле птицы тоже есть электричество. Тело сидящей на проводе птицы представляет собой ответвление цепи, включённое параллельно участку проводника между лапками птицы. При параллельном соединении двух участков цепи величина токов в них обратно пропорциональна сопротивлению. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна, Следует добавить ещё, что разность потенциалов на участке между ногами птицы мала.

Птицы чаще всего гибнут в тех случаях, когда они, сидят на проводе линии электропередачи, касаются столба крылом, хвостом или клювом, то есть соединяются с землёй.

Ещё одно интересное явление. Когда включают ток, птицы слетают с проводов. Это объясняется тем, что при включении высокого напряжения на перьях птиц возникает статический электрический заряд, из-за наличия которого перья птицы расходятся, как кисти бумажного султана, соединённого с электрической машиной. Это действие статического заряда и побуждает птицу слететь с провода.

Некоторые рыбы для самообороны используют ток. Этих рыб называют живыми электростанциями. Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшое напряжение, возникающие обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи. Так у электрического угря, обитающего в водах тропической Америки, насчитывается до 8 тысяч пластинок, отдельных одна от другой студенистым веществом. К каждой пластинке подходит нерв, идущий от спинного мозга. С точки зрения физики эти приспособления представляют своего рода систему конденсаторов большой ёмкости. Угорь, накапливая электрическую энергию в этих конденсаторах и по своему усмотрению разряжая её через тело, прикасающееся к нему, производит электрические удары, чрезвычайно чувствительные для человека и смертельные для мелких животных. У крупного, долго не разряжающегося угря напряжение электрического тока в момент удара может достигать 800 В. Обычно же оно несколько меньше.

Среди других электрических рыб особенно выделяется скат Торпедо, который встречается в Атлантическом, Индийском и Тихом океанах. Размеры торпеды достигают двух метров, а его электрические органы состоят из нескольких сот пластинок. Торпедо способен в течение 10-16 секунд давать до 150 разрядов в секунду, по 80В каждый. Электрические органы крупных Торпедо развивают напряжение до 220В.

У электрического сома, дающего разряды до 360В, электрический орган располагается тонким слоем под кожей по всему туловищу.

Характерная особенность рыб, имеющих электрические органы,- их малая восприимчивость к действию электрического тока. Так, например, электрической угорь без вреда для себя переносит напряжение 220В.

Ещё одна из рыб, которая связанна с электричеством - это морская минога. Она в возбуждённом состоянии излучает короткие электрические импульсы. Каждый такой импульс представляет собой электрический ток, который из одной части тела миноги через воду попадает в другую. Минога воспринимает любые изменения посланного ею импульса. Обычно такое изменение означает, что не далее чем сантиметрах в десяти от головы находится какой-то объект, отличающийся по своей электрической проводимости от воды. Часто этот объект оказывается рыбой, к которой минога тут же присасывается бесчелюстным ртом и начинает «просверливать» отверстие, добираясь до крови.

Откуда рыбы берут электричество?

Клеточные мембраны, способные «сортировать» положительные и отрицательные ионы вне и внутри клетки, являются «организаторами» разницы потенциалов. В зависимости от состояния клетки её мембраны обладают разной электропроводностью. Нет возбуждения, начинается сортировка, возникает разность потенциалов. Возбудилась клетка, повысилась проводимость, ионы с разных сторон мембраны, положительные и отрицательные, устремляются навстречу друг к другу, в результате чего устанавливается нулевой потенциал. Другими словами, клетка постоянно генерирует электрический ток. Биоэлектричество, перенося определённую информацию, тем самым координирует сложнейшие процессы жизнедеятельности.

Некоторые рыбы не имеющие специальных электрических органов, тоже излучают разряды. Но они малы и маломощны.

«Рыбьи» сигналы легко регистрируются. Поскольку электромагнитное, его электрический компонент улавливается электродами, а магнитный – специальными антеннами. Магнитный компонент легко преодолевает экраны, непроницаемые для обычного электрического поля. Поэтому сигналы рыб можно ловить даже в воздухе над аквариумом, используя катушки индуктивности, даже тогда, когда аквариум, где находятся рыбы, окружён сеткой Фарадея.

Рыбы не только генерируют, но и воспринимают электрические сигналы. У них для этого есть специальные органы. Подавая сигналы, рыбы употребляют порой довольно сложную систему кодирования - низкочастотные колебания, импульсы различной частоты, длительности, напряжения. Язык этот только-только начинает расшифровываться.

Было известно, что есть тела, которые являются хорошими проводниками для электрической жидкости, а другие являются диэлектриками. Бенджамин Франклин предположил, что многие примеры, как притяжения, так и отталкивания заряженных тел можно объяснить на основе представлений об избытке или недостатке электрической жидкости. Когда электрод обладает избытком электрической жидкости, его считают положительным и обозначают знаком плюс, и наоборот.

Франклин описал электрические заряды в терминах плюса и минуса, поскольку два тела, которые первоначально были электрически нейтральными, можно сделать заряженными, потерев друг о друга. Заряд на одном теле совершенно отличен от заряда на другом, так как, хотя эти тела притягиваются друг к другу, каждое из них будет отталкивать одноименно заряженное тело. Более ого, эти два тела можно привести в соприкосновение, так что они становятся снова нейтральными, или с нулевым зарядом

Франклин произвольно назвал «отрицательным» зарядом, который появляется на твёрдом каучуке, если его потереть о шерсть или волосы. Соответственно шерсть или волосы заряжаются положительно.

Оценка степени электризации

При трении многих тел о мех наблюдается электризация. Я задалась целью выяснить, чей мех электризуется больше. Предварительно просушила шерсть котёнка и собаки (электризация существенно ослабляется при большой влажности). В ходе опытов приходилось следить за тем, чтобы котёнок – Маркиз не успел вылизать свою шкурку и тем самым нарушить условия эксперимента. Затем натёрла расчёску по очереди о шерсть каждого животного одинаковое количество раз, подносила её к гильзе из фольги, подвешенной на нити, и измеряла угол отклонения от вертикали. (таб.)

Животное Угол отклонения шерсти Шерсть

Котенок Мягкая, бархатистая

Собака Длинная, средней жесткости

На основании результатов эксперимента можно высказать следующую гипотезу: чем жестче шерсть, тем хуже способность электризовать другие тела. Возможно, кошачья шерсть обладает лучшими свойствами электризовать, нежели собачья. Однако для проверки этих утверждений требуется дальнейшее исследование с большим числом опытов. Приятно, что в этой области чемпионом оказался котенок, который по массе, скорости, силе тяги и объему никак не мог превзойти своего соперника.

Хорошо ли когда электролизуется волос?

Для того, чтобы выяснить, как электричество влияет на человека, я провела опыт.

Взяла две расчески деревянную и пластмассовую. Расчесав волосы (сухие) расческами, выяснилось, что после этого волосы притягиваются к расчёски. Но лучше они притягиваются к пластмассовой расческе, а не к деревянной. Это можно объяснить тем, что дерево хуже электризуется. Перед натиранием расчёски о волосы количество положительных и отрицательных зарядов на волосах и расчёске одно и тоже. После натирания расчески о волосы на последних появляется положительный заряд, а на расчёске - отрицательный.

Когда электризуются волосы это не очень удобно и вообще не естественно, поэтому лучше пользоваться деревянными расчёсками, это будет лучше для ваших волос и для вас.

Электричество - достояние не только нашей цивилизации, рыбы научились использовать его задолго до появления людей. Электрический скат, угорь и еще представители более чем 300 видов имеют электрические органы, которые представляют собой видоизмененные мышцы. Эти органы способны генерировать импульсы до 5 киловатт и разность потенциалов до 1200 вольт, что может быть крайне опасно для людей. Рыбы используют эти органы по-разному: для охоты, для привлечения жертв, для навигации и даже для генерации кислорода из воды, чтобы дышать.



Нильский слоник и амазонская рыба-нож используют электрические органы только для навигации, подобно тому, как летучие мыши ориентируются с помощью эхолокации. Они создают вокруг себя слабое электрическое поле и объект, попадающий в него, вызывает искажение, которое зависит от его проводимости. Эти искажения рыбы считывают с помощью электрорецепторов на коже и интерпретируют для построения маршрута. Чем-то напоминает металлоискатель.

Электрические угри - пресноводные рыбы, они способны генерировать самые мощные электрические разряды, конечно, такая мощь используется как оружие для отпугивания хищников и оглушения жертв. Угри стали особенно популярны в Викторианскую эпоху, когда у ученых проснулся интерес к электричеству. Электрический сом , тоже пресноводный обитатель и подобно угрю использует этот орган как оружие. Благодаря электрическим разрядам, который разлагает молекулы воды на кислород и водород, вода вокруг этих рыб обогащена кислородом, что дополнительно привлекает потенциальных жертв. Разряды этих пресноводных хищников опасны для людей, убить может и не убьют, но будет очень больно.



Электрический скат - морской житель, имеет крайне слабое зрение, что компенсирует электрорецепцией, помимо ориентирования электрическими разрядами эти хрящевые рыбы могут убить достаточно крупную жертву. Тоже весьма опасны.

Это лишь самые известные обладатели электрических органов, однако их разнообразие по истине огромно и крайне интересно.

Электрические органы оказались настолько полезны, что за время существования рыб эволюционно возникали независимо 6 раз (согласно последним генетическим исследованиям, опубликованным в Science)! Но, несмотря на это, группы генов, вовлеченные в формирование электроцитов (клеток, отвечающих за генерацию электричества) очень схожи у всех видов, другими словами они использовали те же самые генетические инструменты, чтобы на клеточном уровне на ранних этапах развития преобразовать мышечные клетки в специфические структуры электрического органа. Все мышечные клетки (не только рыб) обладают электрическим потенциалом, и при сокращении можно фиксировать небольшое электрическое напряжение на поверхности тела. Именно эту разность потенциалов измеряют, когда, например, снимают электрокардиограмму . Порядка 100 млн лет назад рыбы научились преумножать этот потенциал, превращая мышечные клетки в гораздо большие по размеру электроциты. Вместе эти клетки способны генерировать весьма мощные заряды.


(Lindsay Block a.k.a. bionic woman)
Подобные исследования имеют и прикладную ценность. Если мы будет понимать, как происходит образование электроцитов на молекулярном уровне, то сможем использовать это в биотехнологии для создания «живых батарей», от которых могут работать бионические протезы и другие медицинские приборы, улучшающие качество жизни людей. Только подумать - электроника, которую запитывает само человеческое тело, и не надо никаких батареек!

Продолжаем публикацию научно-популярных лекций, прочитанных молодыми вузовскими преподавателями, получившими гранты Благотворительного фонда В. Потанина. На этот раз предлагаем вниманию читателей изложение лекции, которую прочла доцент кафедры физиологии человека и животных Саратовского государственного университета им. Н. Г. Чернышевского кандидат биологических наук Оксана Семячкина-Глушковская.

Живые электростанции

Электричество играет порой невидимую, но жизненно важную роль в существовании многих организмов, включая человека.

Удивительно, но электричество вошло в нашу жизнь благодаря животным, в частности электрическим рыбам. Например, в основе электрофизиологического направления в медицине лежит использование в лечебных процедурах электрических скатов. Живые источники электричества в свою врачебную практику впервые ввёл известный древнеримский врач Клавдий Гален. Сын богатого архитектора, Гален получил вместе с хорошим образованием внушительное наследство, что позволило ему путешествовать в течение нескольких лет по берегам Средиземного моря. Однажды в одной из маленьких деревушек Гален увидел странное зрелище: двое местных жителей шли ему навстречу с привязанными к голове скатами. Это «обезболивающее средство» нашло применение при лечении ран гладиаторов в Риме, куда Гален вернулся после завершения путешествия. Своеобразные физиопроцедуры оказались настолько действенными, что даже император Марк Антоний, страдавший болями в спине, рискнул воспользоваться непривычным способом лечения. Избавившись от изнурительного недуга, император назначил Галена личным врачом.

Однако многие электрические рыбы используют электричество далеко не в мирных целях, в частности для того, чтобы убивать свою добычу.

Впервые европейцы столкнулись с чудовищными живыми электростанциями в джунглях Южной Америки. Отряд искателей приключений, проникших в верховья Амазонки, наткнулся на множество мелких ручейков. Но как только один из участников экспедиции ступил ногой в тёплую воду ручейка, он упал без сознания и пробыл в таком состоянии два дня. Всё дело было в электрических угрях, обитающих в этих широтах. Амазонские электрические угри, достигающие трёх метров в длину, способны генерировать электричество напряжением более 550 В. Электрический удар в пресной воде оглушает добычу, которая обычно состоит из рыб и лягушек, но способен также убить человека и даже лошадь, если они в момент разряда находятся вблизи угря.

Неизвестно, когда бы всерьёз человечество взялось за электричество, если бы не удивительный случай, произошедший с женой известного болонского профессора Луиджи Гальвани. Не секрет, что итальянцы славятся широтой вкусовых пристрастий. Поэтому они не прочь иногда побаловаться лягушачьими лапками. День был ненастный, дул сильный ветер. Когда сеньора Гальвани зашла в мясную лавку, то её глазам открылась ужасная картина. Лапки мёртвых лягушек, словно живые, дёргались, когда касались железных перил при сильном порыве ветра. Сеньора так надоедала мужу своими рассказами о близости мясника с нечистой силой, что профессор решил сам выяснить, что же происходит на самом деле.

Это был тот самый счастливый случай, который разом перевернул жизнь итальянского анатома и физиолога. Принеся домой лягушачьи лапки, Гальвани убедился в правдивости слов жены: они действительно дёргались, когда касались железных предметов. В то время профессору было всего 34 года. Последующие 25 лет он потратил на то, чтобы найти разумное объяснение этому удивительному явлению. Результатом многолетних трудов явилась книга «Трактаты о силе электричества при мышечном движении», которая стала настоящим бестселлером и взволновала умы многих исследователей. Впервые заговорили о том, что электричество есть в каждом из нас и что именно нервы являются своеобразными «электропроводами». Гальвани казалось, что мышцы накапливают в себе электричество, а при сокращении испускают его. Эта гипотеза требовала дальнейших исследований. Но политические события, связанные с приходом к власти Наполеона Бонапарта, помешали профессору закончить эксперименты. В силу своего вольнодумства Гальвани был в бесчестии изгнан из университета и через год после этих трагических событий скончался в возрасте шестидесяти одного года.

И всё-таки судьбе было угодно, чтобы труды Гальвани нашли своё продолжение. Соотечественник Гальвани Алессандро Вольта, прочитав его книгу, пришёл к мысли о том, что в основе живого электричества лежат химические процессы, и создал прообраз привычных для нас батареек.

Биохимия электричества

Прошло ещё два века, прежде чем человечеству удалось раскрыть тайну живого электричества. Пока не был изобретён электронный микроскоп, учёные не могли себе даже представить, что вокруг клетки находится настоящая «таможня» со своими строгими правилами «паспортного контроля». Мембрана животной клетки - тонкая, не видимая невооружённым глазом оболочка, - обладая полупроницаемыми свойствами, является надёжным гарантом сохранения жизнеспособности клетки (поддержания её гомеостаза).

Но вернёмся к электричеству. Какая существует взаимосвязь между мембраной клетки и живым электричеством?

Итак, первая половина XX века, 1936 год. В Англии зоолог Джон Юнг публикует методику препарирования нервного волокна головоногого моллюска. Диаметр волокна достигал 1 мм. Такой видимый глазу «гигантский» нерв сохранял способность проводить электричество даже вне организма в морской воде. Вот тот самый «золотой ключик», с помощью которого будет открыта дверь в тайны живого электричества. Прошло всего три года, и соотечественники Юнга - профессор Эндрю Хаксли и его ученик Алан Ходжкин, вооружившись электродами, поставили серию экспериментов на этом нерве, результаты которых перевернули мировоззрение и «зажгли зелёный свет» на пути к электрофизиологии.

Отправной точкой в этих исследованиях явилась книга Гальвани, а именно описание им тока повреждения: если мышцу разрезать, то электрический ток «выливается» из неё, что стимулирует её сокращение. Для того чтобы повторить эти эксперименты на нерве, Хаксли проткнул двумя тонкими, как волоски, электродами мембрану нервной клетки, поместив их таким образом в её содержимое (цитоплазму). Но вот неудача! Ему не удалось зарегистрировать электрические сигналы. Тогда он вынул электроды и поместил их на поверхность нерва. Результаты были печальными: ровным счётом ничего. Казалось, фортуна отвернулась от учёных. Оставался последний вариант - один электрод поместить внутрь нерва, а другой оставить на его поверхности. И вот он, счастливый случай! Уже через 0,0003 секунды был зарегистрирован электрический импульс с живой клетки. Было очевидно, что за такое мгновение импульс не может возникнуть вновь. Это означало только одно: заряд сконцентрирован на покоящейся неповреждённой клетке.

В последующие годы подобные опыты были проделаны на бесчисленном множестве других клеток. Оказалось, что все клетки заряжены и что заряд мембраны является неотъемлемым атрибутом её жизни. Пока клетка жива, у неё есть заряд. Однако оставалось всё ещё неясным, каким же образом клетка заряжается? Задолго до экспериментов Хаксли руcский физиолог Н. А. Бернштейн (1896–1966) опубликовал свою книгу «Электробиология» (1912). В ней он, словно провидец, теоретически раскрыл главную тайну живого электричества - биохимические механизмы возникновения заряда клетки. Удивительно, но через несколько лет данная гипотеза была блестяще подтверждена в экспериментах Хаксли, за что он и был удостоен Нобелевской премии. Итак, каковы же эти механизмы?

Как известно, всё гениальное просто. Так оказалось и в этом случае. Наш организм состоит на 70% из воды, а точнее, из раствора солей и белков. Если заглянуть внутрь клетки, то окажется, что её содержимое перенасыщено ионами К + (внутри их примерно в 50 раз больше, чем за её пределами). Между клетками, в межклеточном пространстве, преобладают ионы Na + (здесь их примерно в 20 раз больше, чем в клетке). Такое неравновесие активно поддерживается мембраной, которая, подобно регулировщику, пропускает через свои «ворота» одни ионы и не пропускает другие.

Мембрана, словно бисквитный пирог, состоит из двух рыхлых слоёв сложных жиров (фосфолипидов), толщу которых пронизывают, как бусины, белки, выполняющие самые разнообразные функции, в частности они могут служить своеобразными «воротами» или каналами. Внутри таких белков есть отверстия, которые могут открываться и закрываться с помощью особых механизмов. Для каждого типа ионов существуют свои каналы. Например, движение ионов К + возможно только через К + -каналы, а Nа + - через Na + -каналы.

Когда клетка находится в состоянии покоя, для ионов К + горит зелёный свет и они беспрепятственно покидают пределы клетки через свои каналы, направляясь туда, где их мало, чтобы уравновесить свою концентрацию. Помните школьный опыт по физике? Если взять стакан с водой и капнуть в него разведённый перманганат калия (марганцовку), то через некоторое время молекулы красящего вещества равномерно заполнят весь объём стакана, окрасив воду в розовый цвет. Классический пример диффузии. Аналогичным образом это происходит с ионами К + , которые есть в избытке в клетке и имеют всегда свободный выход через мембрану. Ионы же Nа + , как персона non grata , не имеют привилегий со стороны мембраны покоящейся клетки. В этот момент для них мембрана как неприступная крепость, проникнуть через которую почти невозможно, поскольку все Nа + -каналы закрыты.

Но при чём же здесь электричество, скажете вы? Всё дело в том, что, как было отмечено выше, наш организм состоит из растворённых солей и белков. В данном случае речь идёт о солях. Что такое растворённая соль? Это дуэт связанных между собой положительных катионов и отрицательных анионов кислот. Например, раствор хлорида калия - это K + и Сl – и т. д. Кстати, физиологический раствор, который широко используется в медицине для внутривенных вливаний, представляет собой раствор хлорида натрия - NaCl (поваренной соли) в концентрации 0,9%.

В естественных условиях просто ионов К + или Nа + поодиночке не бывает, они всегда находятся с анионами кислот - SO 4 2– , Cl – , PO 4 3– и т. д., и в обычных условиях мембрана непроницаема для отрицательных частиц. Это означает, что, когда ионы К + движутся через свои каналы, связанные с ними анионы, как магниты, тянутся за ними, но, не имея возможности выйти наружу, скапливаются на внутренней поверхности мембраны. Поскольку за пределами клетки, в межклеточном пространстве, преобладают ионы Nа + , то есть положительно заряженные частицы, плюс к ним постоянно просачиваются ионы К + , на наружной поверхности мембраны концентрируется избыточный положительный заряд, а на её внутренней поверхности - отрицательный. Так что клетка в состоянии покоя «искусственно» сдерживает неравновесие двух важных ионов - К + и Nа + , в силу чего мембрана поляризуется за счёт разности зарядов по обе её стороны. Заряд в состоянии покоя клетки называют мембранным потенциалом покоя, который равен примерно -70 мВ. Именно такой величины заряд был впервые зарегистрирован Хаксли на гигантском нерве моллюска.

Когда стало ясно, откуда берётся «электричество» в клетке в состоянии покоя, тут же возник вопрос: куда же оно девается, если клетка работает, например когда наши мышцы сокращаются? Истина лежала на поверхности. Достаточно было заглянуть внутрь клетки в момент её возбуждения. Когда клетка реагирует на внешние или внутренние воздействия, в этот момент молниеносно, как по команде, открываются все Na + -каналы и ионы Na + , словно снежный ком, за доли секунд устремляются внутрь клетки. Таким образом, за мгновение, в состоянии возбуждения клетки, ионы Na + уравновешивают свою концентрацию по обе стороны мембраны, ионы К + по-прежнему медленно покидают клетку. Выход ионов К + настолько медленный, что, когда ион Na + наконец-то прорывается через неприступные стены мембраны, их там остаётся ещё достаточно много. Теперь уже внутри клетки, а именно на внутренней поверхности мембраны, сконцентрируется избыточный положительный заряд. На её же внешней поверхности будет отрицательный заряд, потому что, как и в случае с К + , за Na + устремится целая армия отрицательных анионов, для которых мембрана по-прежнему непроницаема. Удерживаемые на её внешней поверхности электростатическими силами притяжения, эти «осколки» от солей создадут здесь отрицательное электрическое поле. Это означает, что в момент возбуждения клетки мы будем наблюдать реверсию заряда, то есть смену его знака на противоположный. Этим объясняется, почему заряд при возбуждении клетки меняется с отрицательного на положительный.

Есть и ещё один важный момент, который в далёкие времена описывал Гальвани, но не смог правильно объяснить. Когда Гальвани повреждал мышцу, она сокращалась. Тогда ему казалось, что это ток повреждения и он «выливается» из мышцы. В какой-то степени слова его были пророческими. Клетка действительно теряет свой заряд, когда работает. Заряд существует только тогда, когда есть разность между концентрациями ионов Na + /K + . При возбуждении клетки численность ионов Na + по обе стороны мембраны одинакова, к этому же состоянию стремится и К + . Именно поэтому при возбуждении клетки заряд уменьшается и становится равен +40 мВ.

Когда загадку «возбуждения» разгадали, неизбежно возник другой вопрос: как же клетка приходит в норму? Каким образом заряд на ней возникает вновь? Ведь не умирает же она, после того как поработает. И действительно, через несколько лет нашли этот механизм. Им оказался белок, встроенный в мембрану, но это был необычный белок. С одной стороны, выглядел он так же, как и белки-каналы. А с другой - в отличие от своих собратьев, этот белок «дорого брал за свою работу», а именно энергией, такой ценной для клетки. Причём пригодная для его работы энергия должна быть особая, в виде молекул АТФ (аденозинтрифосфорной кислоты). Эти молекулы специально синтезируются на «энергетических станциях» клетки - митохондриях, бережно там хранятся и при необходимости с помощью специальных переносчиков доставляются к месту назначения. Энергия из этих «боеголовок» высвобождается при их распаде и расходуется на различные нужды клетки. В частности, в нашем случае эта энергия требуется на работу белка, названного Na/K-АТФаза, основная функция которого заключается в том, чтобы, подобно челноку, перевозить Na + наружу из клетки, а К + - в обратном направлении.

Таким образом, чтобы восстановить утраченные силы, необходимо поработать. Задумайтесь, тут скрывается реальный парадокс. Когда клетка работает, то на уровне клеточной мембраны этот процесс протекает пассивно, а для того чтобы отдохнуть, ей требуется энергия.

Как нервы «разговаривают» друг с другом

Если уколоть палец, то рука тут же отдёрнется. То есть при механическом воздействии на рецепторы кожи возбуждение, возникшее в данной локальной точке, достигает головного мозга и возвращается обратно, на периферию, для того чтобы мы могли адекватно отреагировать на ситуацию. Это пример врождённой реакции, или безусловных рефлексов, к которым относятся множество защитных ответов, таких как мигание, кашель, чихание, чесание и т. д.

Каким же образом возбуждение, возникнув на мембране одной клетки, способно двигаться дальше? Прежде чем ответить на этот вопрос, давайте познакомимся со строением нервной клетки - нейроном, смыл «жизни» которого состоит в проведении возбуждения или нервных импульсов.

Итак, нейрон, словно летящая комета, состоит из тела нервной клетки, вокруг которого ореолом располагаются множество маленьких отростков - дендритов, и длинного «хвоста» - аксона. Именно эти отростки служат своеобразными проводами, по которым течёт «живой ток». Поскольку вся эта сложная конструкция представляет собой единую клетку, то отростки нейрона обладают таким же набором ионов, как и его тело. Что представляет собой процесс возбуждения локального участка нейрона? Это некое возмущение «спокойствия» его внешней и внутренней среды, выражающееся в виде направленного движения ионов. Возбуждение, возникнув в том месте, куда пришёлся раздражитель, далее по цепочке распространяется по тем же принципам, что на этом участке. Только теперь раздражителем для соседних участков будет являться не внешний стимул, а внутренние процессы, вызванные потоками ионов Na + и K + и изменением заряда мембраны. Этот процесс подобен тому, как распространяются волны от камешка, брошенного в воду. Так же, как и в случае с камешком, биотоки по мембране нервного волокна распространяются круговыми волнами, вызывая возбуждение всё более отдалённых участков.

В эксперименте возбуждение от локальной точки распространяется далее в обоих направлениях. В реальных же условиях проведение нервных импульсов осуществляется однонаправленно. Связано это с тем, что тот участок, который поработал, нуждается в отдыхе. А отдых у нервной клетки, как мы уже знаем, активный и связан с затратами энергии. Возбуждение клетки есть «потеря» её заряда. Именно поэтому, как только клетка поработает, её способность к возбуждению резко падает. Этот период называют рефрактерным, от французского слова refractaire - невосприимчивый. Такая невосприимчивость может быть абсолютной (сразу же после возбуждения) или относительной (по мере восстановления заряда мембраны), когда возможно вызвать ответную реакцию, но чрезмерно сильными раздражителями.

Если задаться вопросом - какого цвета наш мозг, то окажется, что подавляющая его масса, за небольшим исключением, серо-белых тонов. Тела и короткие отростки нервных клеток серые, а длинные отростки белые. Белые они потому, что сверху на них имеется дополнительная изоляция в виде «жировых» или миелиновых подушек. Откуда возникают эти подушки? Вокруг нейрона существуют особые клетки, названные по имени немецкого нейрофизиолога, который их впервые описал, - шванновские клетки. Они, словно няньки, помогают нейрону расти и, в частности, выделяют миелин, представляющий собой своеобразное «сало» или липид, которым бережно окутываются участки растущего нейрона. Однако такой наряд покрывает не всю поверхность длинного отростка, а отдельные участки, между которыми аксон остаётся голым. Оголённые места называют перехватами Ранвье.

Интересно, но от того, как «одет» нервный отросток, зависит скорость проведения возбуждения. Нетрудно догадаться - специальная «форма одежды» существует для того, чтобы увеличить эффективность прохождения биотоков по нерву. Действительно, если в серых дендритах возбуждение двигается как черепаха (от 0,5 до 3 м/с), последовательно, не пропуская ни одного участка, то в белом аксоне нервные импульсы прыгают по «оголённым» участкам Ранвье, что существенно повышает скорость их проведения до 120 м/с. Такие быстрые нервы иннервируют в основном мышцы, обеспечивая защиту организма. Внутренние же органы не нуждаются в такой скорости. К примеру, мочевой пузырь может долго растягиваться и посылать импульсы о своём переполнении, в то время как рука должна отдёрнуться сразу от огня, иначе это грозит повреждением.

Мозг взрослого человека весит в среднем 1300 г. Эту массу составляет 10 10 нервных клеток. Такое огромное количество нейронов! С помощью каких механизмов возбуждение с одной клетки попадает на другую?

Разгадка тайны коммуникации в нервной системе имеет свою историю. В середине XIX века французский физиолог Клод Бернар получил ценную посылку из Южной Америки с ядом кураре, тем самым, которым индейцы смазывали наконечники стрел. Учёный увлекался изучением действия ядов на организм. Было известно, что животное, сражённое таким ядом, умирает от удушья вследствие паралича дыхательных мышц, но никто не знал, как именно действует молниеносный убийца. Для того чтобы это понять, Бернар проделал простой опыт. Он растворил яд в чашке Петри, поместил туда мышцу с нервом и увидел, что если в яд погрузить только нерв, то мышца остаётся здоровой и по-прежнему может работать. Если отравить ядом только мышцу, то и в этом случае сохраняется её способность к сокращению. И лишь когда в яд помещали участок между нервом и мышцей, можно было наблюдать типичную картину отравления: мышца становилась неспособной сокращаться даже при очень сильных электрических воздействиях. Стало очевидно, что между нервом и мышцей существует «разрыв», на который и действует яд.

Оказалось, подобные «разрывы» можно найти в любой точке организма, вся нейронная сеть буквально ими пронизана. Были найдены и другие вещества, например никотин, который избирательно действовал на загадочные места между нервом и мышцей, вызывая её сокращение. Поначалу эти невидимые связи называли мионевральным соединением, а впоследствии английский нейрофизиолог Чарльз Шеррингтон дал им название синапсов, от латинского слова synapsis - соединение, связь. Однако жирную точку в этой истории поставил австрийский фармаколог Отто Леви, которому удалось найти посредника между нервом и мышцей. Говорят, ему привиделось во сне, что некое вещество «выливается» из нерва и заставляет мышцу работать. На следующее утро он твёрдо решил: нужно искать именно это вещество. И он его нашёл! Всё оказалось достаточно просто. Леви взял два сердца и выделил на одном из них самый крупный нерв - nervus vagus . Заранее предвидя, что из него должно что-то выделиться, он соединил системой трубочек эти два «мышечных мотора» и стал раздражать нерв. Леви знал - при его раздражении сердце останавливается. Однако останавливалось не только то сердце, на которое действовал раздражённый нерв, но и второе, соединённое с ним раствором. Немного позже Леви удалось выделить в чистом виде это вещество, которое получило название «ацетилхолин». Таким образом, было найдено неопровержимое доказательство наличия посредника в «разговоре» между нервом и мышцей. Это открытие удостоено Нобелевской премии.

А дальше всё пошло гораздо быстрее. Оказалось, открытый Леви принцип общения нервов с мышцами универсальный. С помощью такой системы общаются не только нервы и мышцы, но и сами нервы друг с другом. Однако, несмотря на тот факт, что принцип такой коммуникации один, посредники, или, как впоследствии их стали обозначать, медиаторы (от латинского слова mediator - посредник), могут быть разные. У каждого нерва он свой, как пропуск. Эту закономерность установил английский фармаколог Генри Дейл, за что тоже был удостоен Нобелевской премии. Итак, язык нейронного общения стал понятен, оставалось лишь только увидеть, как эта конструкция выглядит.

Как работает синапс

Если посмотреть на нейрон в электронный микроскоп, то мы увидим, что он, словно новогодняя ёлка, весь увешан какими-то пуговками. Таких «пуговок», или, как вы уже догадались, синапсов, только на одном нейроне может быть до 10 000. Посмотрим внимательнее на одну из них. Что мы увидим? На концевом участке нейрона длинный отросток утолщается, поэтому он нам кажется в виде пуговки. В этом утолщении аксон как бы истончается и теряет своё белое одеяние в виде миелина. Внутри же «пуговки» находится огромное количество пузырьков, заполненных каким-то веществом. В 1954 году Джордж Паладе догадался, что это есть не что иное, как хранилище для медиаторов (через 20 лет за эту догадку ему дали Нобелевскую премию). Когда возбуждение доходит до концевой станции длинного отростка, то медиаторы высвобождаются из своего заточения. Для этого используются ионы Са 2+ . Двигаясь к мембране, они сливаются с ней, затем лопаются (экзоцитоз), и медиатор под давлением попадает в пространство между двумя нервными клетками, которое получило название синаптической щели. Оно ничтожно мало, поэтому молекулы медиатора быстро попадают на мембрану соседнего нейрона, на которой в свою очередь находятся особые антенны, или рецепторы (от латинского слова recipio - брать, принимать), улавливающие посредника. Происходит это по принципу «ключ к замку» - геометрическая форма рецептора полностью соответствует форме посредника. Обменявшись «рукопожатием», медиатор и рецептор вынуждены расстаться. Встреча их весьма короткая и последняя для медиатора. Достаточно всего доли секунды, чтобы медиатор запустил возбуждение на соседнем нейроне, после чего он разрушается с помощью специальных механизмов. А потом эта история повторится ещё и ещё, и так до бесконечности будет бежать живое электричество по «нервным проводам», скрывая от нас множество тайн и тем самым привлекая к себе своей загадочностью.

Нужно ли говорить о значимости открытий в области электрофизиологии? Достаточно сказать, что за приоткрытие завесы в мир живого электричества присуждено семь Нобелевских премий. Сегодня львиная доля фармацевтической промышленности построена на этих фундаментальных открытиях. К примеру, сейчас поход к дантисту не такое уж страшное испытание. Один укол лидокаина - и в месте инъекции Na + -каналы временно заблокируются. И вы уже не почувствуете болезненных процедур. У вас заболел живот, врач назначит препараты (но-шпа, папаверин, платифилин и т. д.), в основе действия которых - блокада рецепторов, чтобы с ними не мог связаться медиатор ацетилхолин, запускающий многие процессы в желудочно-кишечном тракте, и т. д. В последнее время активно развивается серия фармакологических препаратов центрального действия, направленных на улучшение памяти, речевой функции и мыслительной деятельности.

Человечество пыталось логично объяснить различные электрические явления, примеры которых они наблюдали в природе. Так, в древности молнии считались верным признаком гнева богов, средневековые мореплаватели блаженно трепетали перед огнями святого Эльма, а наши современники чрезвычайно боятся встречи с шаровыми молниями.

Всё это - электрические явления. В природе всё, даже мы с вами, несёт в себе Если объекты с большими зарядами разной полярности сближаются, то возникает физическое взаимодействие, видимым результатом которого становится окрашенный, как правило, в жёлтый или фиолетовый цвет поток холодной плазмы между ними. Её течение прекращается, как только заряды в обоих телах уравновешиваются.

Самые распространённые электрические явления в природе - молнии. Ежесекундно в поверхность Земли их ударяет несколько сотен. Молнии выбирают своей целью, как правило, отдельностоящие высокие объекты, поскольку, согласно физическим законам, для передачи сильного заряда требуется кратчайшее расстояние между грозовым облаком и поверхностью Земли. Чтобы обезопасить здания от попадания в них молний, их хозяева устанавливают на крышах громоотводы, которые представляют собой высокие металлические конструкции с заземлением, что при попадании молний позволяет отводить весь разряд в почву.

Ещё одно электрическое явление, природа которого очень долгое время оставалась неясной. Имели с ним дело в основном моряки. Проявляли огни себя следующим образом: при попадании корабля в грозу вершины его мачт начинали полыхать ярким пламенем. Объяснение явлению оказалось очень простым - основополагающую роль играло высокое напряжение электромагнитного поля, что всякий раз наблюдается перед началом грозы. Но не только моряки могут иметь дело с огнями. Пилоты крупных авиалайнеров также сталкивались с этим явлением, когда пролетали сквозь облака пепла, подброшенного в небо извержениями вулканов. Огни возникают от трения частиц пепла об обшивку.

И молнии, и огни святого Эльма - это электрические явления, которые видели многие, а вот с столкнуться удавалось далеко не каждому. Их природа так и не изучена до конца. Обычно очевидцы описывают шаровую молнию как яркое светящееся образование шарообразной формы, хаотично перемещающееся в пространстве. Три года назад была выдвинута теория, которая поставила под сомнение реальность их существования. Если ранее считалось, что разнообразные шаровые молнии - это электрические явления, то теория предположила, что они являются не чем иным, как галлюцинациями.

Есть ещё одно явление, имеющее электромагнитную природу - северное сияние. Оно возникает вследствие воздействия солнечного ветра на верхние Северное сияние похоже на всполохи самых разных цветов и фиксируется, как правило, в довольно высоких широтах. Есть, конечно, и исключения - если достаточно высока, то сияние могут видеть в небе и жители умеренных широт.

Электрические явления являются довольно интересным объектом исследования для физиков по всей планете, так как большинство из них требует подробного обоснования и серьёзного изучения.

Тема моей работы: Живое электричество

Целью работы было: выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.

Мы поставили перед собой следующие задачи:

Для достижения поставленных задач использовали следующие методы исследования: анализ литературы, экспериментальный метод, метод сравнения.

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.


«РАБОТА ЖИВОЕ ЭЛЕКТРИЧЕСТВО»

Министерство образования, науки и молодежи Республики Крым

Крымский кон­курс исследовательских работ и проектов школьников 5-8 классов «Шаг в науку»

Тема: Живое электричество

Работу выполнила:

Асанова Эвелина Асановна

ученица 5 класса

Научный руководитель:

Аблялимова Лиля Ленуровна,

учитель биологии и химии

МБОУ «Веселовская средняя школа»

с. Веселовка – 2017

1.Введение……………………………………………………………..…3

2.Источники электрического тока…………………………..…….……4

2.1. Нетрадиционные источники энергии………………………….…..4

2.2. «Живые» источники электрического тока………………………...4

2.3. Фрукты и овощи как источники электрического тока…………...5

3. Практическая часть……………………………..………….…………6

4. Заключение……………………………………………….………..…..8

Список источников литературы………………………………………….9

    ВВЕДЕНИЕ

Электричество и растения – что может быть общего у них? Однако еще в середине XVIII века естествоиспытатели поняли: эти два понятия объединяет какая-то внутренняя связь.

Люди столкнулись с «живым» электричеством еще на заре цивилизации: им была известна способность некоторых рыб с помощью какой-то внутренней силы поражать добычу. Об этом свидетельствуют наскальные рисунки и начертания некоторых египетских иероглифов, изображающих электрического сома. И не его одного выделяли тогда по этому признаку. Римские врачи умудрялись использовать «удары» скатов для лечения нервных болезней. Очень много сделано учёными в изучении удивительного взаимодействия электричества и живого, но многое пока ещё скрывает от нас природа.

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н.э. Он обнаружил, что янтарь, потертый о шерсть, приобретет свойства притягивать легкие предметы: пушинки, кусочки бумаги. Позже считалось, что таким свойством обладает только янтарь. Первый химический источник электрического тока был изобретен случайно, в конце XVII века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное. Будучи врачом, а не физиком, он видел причину в так называемом «животном электричестве». Свою теорию Гальвани подтверждал ссылкой на известные случаи разрядов, которые способны производить некоторые живые существа, например «электрические рыбы».

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Опыты, проведенные Дюфе, говорили, что один из зарядов образуется при трении стекла о шелк, а другой – при трении смолы о шерсть. Понятие о положительном и отрицательном заряде ввел немецкий естествоиспытатель Георг Кристоф. Первым количественным исследователем был закон взаимодействия зарядов, экспериментально установленный в 1785 году Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов.

    ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), гидроаккумулирующие электростанции, атомные электростанции (АЭС).

      НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Кроме традиционных источников тока существует множество нетрадиционных источников. Электричество, по сути, можно практически получать из всего, что угодно. Нетрадиционные источники электрической энергии, где невосполнимые энергоресурсы практически не тратятся: ветроэнергетика, приливная энергетика, солнечная энергетика.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

      «ЖИВЫЕ» ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

В природе есть животные, которых мы называем «живыми электростанциями». Животные очень чувствительны к электрическому току. Даже незначительной силы ток для многих из них смертелен. Лошади погибают даже от сравнительно слабого напряжения в 50-60 вольт. А есть животные, которые не только обладают высокой устойчивостью к электрическому току, но и сами вырабатывают ток в своём теле. Это рыбы - электрические угри, скаты, и сомы. Настоящие живые электростанции!

Источником тока служат особые электрические органы, расположенные двумя парами под кожей вдоль тела - под хвостовым плавником и на верхней части хвоста и спины. По внешнему виду такие органы представляют продолговатое тельце, состоящее из красновато-желтого студенистого вещества, разделённого на несколько тысяч плоских пластинок, ячеек-клеток, продольными и поперечными перегородками. Что-то вроде батареи. От спинного мозга к электрическому органу подходит более 200 нервных волокон, ответвления от которых идут к коже спины и хвоста. Прикосновение к спине или хвосту этой рыбы вызывает сильный разряд, который может мгновенно убить мелких животных и оглушить крупных животных и человека. Тем более, что в воде ток передаётся лучше. Оглушённые угрями крупные животные нередко тонут в воде.

Электрические органы – средство не только для защиты от врагов, но и для добычи пищи. Охотятся электрические угри ночью. Приблизившись к добыче, произвольно делает разряд своих «батарей», и всё живое – рыбы, лягушки, крабы - парализуются. Действие разряда передаётся на расстояние в 3-6 метров. Ему остаётся только заглотать оглушённую добычу. Израсходовав запас электрической энергии, рыба долгое время отдыхает и пополняет её, «заряжает» свои «батареи».

2.3. ФРУКТЫ И ОВОЩИ КАК ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

Изучив литературу, я узнала, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля – сырого и вареного. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек.

    ПРАКТИЧЕСКАЯ ЧАСТЬ

Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани. Если взять лимон или яблоко и разрезать, а потом приложить к кожуре два электрода, то они не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой к внутренней части мякоти, то появится разность потенциалов, и гальванометр отметит появление силы тока.

Я решила проверить на опыте и доказать, что в овощах и фруктах есть электричество. Для исследований мною были выбраны следующие фрукты и овощи: лимон, яблоко, банан, мандарин, картофель. Отмечала показания гальванометра и, действительно, в каждом случае получала ток.



В результате проделанной работы:

1. Я изучила и проанализировала научную и учебную литературу об источниках электрического тока.

2.Познакомилась с ходом работы по получению электрического тока из растений.

3. Доказала, что в плодах различных фруктов и овощей есть электричество и получила необычные источники тока.

Конечно, электрическая энергия растений и животных, в настоящее время не могут заменить полноценные мощные источники энергии. Однако и недооценивать их не стоит.

    ЗАКЛЮЧЕНИЕ

Для достижения цели моей работы решены все поставленные задачи исследования.

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнала много интересного о традиционных источниках тока - различного рода электростанциях.

С помощью опыта показала, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить мобильный телефон и др.). Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.

СПИСОК ИСТОЧНИКОВ ЛИТЕРАТУРЫ

    Гордеев А.М., Шешнев В.Б. Электричество в жизни растений. Издательство: Наука - 1991г.

    Журнал «Наука и жизнь», №10, 2004г.

    Журнал. «Галилео» Наука опытным путем. № 3/ 2011 г. «Лимонная батарейка».

    Журнал «Юный эрудит» № 10 / 2009 г. «Энергия из ничего».

    Гальванический элемент - статья из Большой советской энциклопедии.

    В. Лаврус «Батарейки и аккумуляторы».

Просмотр содержимого документа
«ТЕЗИСЫ»

Тема: Живое электричество

Научный руководитель: Аблялимова Лиля Ленуровна, учитель биологии и химии МБОУ «Веселовская средняя школа»

Актуальность выбранной темы: в настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет важное значение. Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.

Цель работы: выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.

    Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

    Ознакомиться с ходом работы по получению электрического тока из растений.

    Доказать, что в растениях есть электричество.

    Сформулировать направления полезного использования получившихся результатов.

Методы исследования: анализ литературы, экспериментальный метод, метод сравнения.

Просмотр содержимого презентации
«ПРЕЗЕНТАЦИЯ»


Живое электричество Работу выполнила: Асанова Эвелина, ученица 5 класса МБОУ «Веселовская средняя школа»


Актуальность работы:

В настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет важное значение.

Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.


Цель работы:

Выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.


  • Изучить и проанализировать научную и учебную литературу об источниках электрического тока.
  • Ознакомиться с ходом работы по получению электрического тока из растений.
  • Доказать, что в растениях есть электричество.
  • Сформулировать направления полезного использования получившихся результатов.

  • Анализ литературы
  • Экспериментальный метод
  • Метод сравнения

Введение

Наша работа посвящена необычным источникам энергии.

В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.

Современная жизнь просто немыслима без электричества - только представьте существование человечества без современной бытовой техники, аудио- и видеоаппаратуры, вечера со свечой и лучиной.


Живые электростанции

Самые сильные разряды производит южно американский электрический угорь. Они достигают 500-600 вольт. Такое напряжение способно свалить с ног лошадь. Угорь создает особенно сильное напряжение тока, когда изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо .


Живые электростанции

Скаты являются живыми электростанциями, вырабатывающими напряжение около 50-60 вольт и дающими разрядный ток 10 ампер.

Все рыбы, дающие электрические разряды, используют для этого специальные электрические органы.


Кое – что об электрических рыбах

Рыбы используют разряды:

  • чтобы освещать свой путь;
  • для защиты, нападения и оглушения жертвы;
  • передают сигналы друг другу и обнаруживают заранее препятствия.

Нетрадиционные источники тока

Кроме традиционных источников тока существует множество нетрадиционных. Оказывается, электричество можно практически получать из всего, что угодно.


Эксперимент:

Электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и самое интересное, из обычного картофеля. Я провела опыты с этими плодами и действительно получила ток.





  • В результате проделанной работы:
  • 1. Я изучила и проанализировала научную и учебную литературу об источниках электрического тока.
  • 2.Познакомилась с ходом работы по получению электрического тока из растений.
  • 3. Доказала, что в плодах различных фруктов и овощей есть электричество и получила необычные источники тока.

ЗАКЛЮЧЕНИЕ:

Для достижения цели моей работы решены все поставленные задачи исследования. Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнала много интересного о традиционных источниках тока - различного рода электростанциях.

С помощью опытов показала, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить мобильный телефон и др.). Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.




← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»