Где образуются гормоны окситоцин и вазопрессин. Гормоны задней доли гипофиза вазопрессин и окситоцин

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Гормоны вазопрессин и окситоцин синтезируются в гипоталамусе одновременно с тремя белками: нейрофизин I, II и III, функция которых заключается в нековалентном связывании окситоцина и вазопрессина и транспорте этих гормонов в нейросекреторные гранулы гипоталамуса. Далее в виде комплексов нейрофизин-гормон они мигрируют вдоль аксона и достигают задней доли гипофиза, где откладываются про запас; в кровь гормон выделяется после диссоциации комплекса. Нейрофизины также выделены в чистом виде, и выяснена первичная структура двух из них; это богатые цистеином белки, содержащие по семь дисульфидных связей.

Химическое строение гормонов было расшифровано классическими работами В. дю Виньо и сотр., впервые выделивших эти гормоны (1953) из задней доли гипофиза и осуществивших их химический синтез. Оба гормона представляют собой нонапептиды (9 аминокислотных остатков), отличающиеся двумя аминокислотами.

Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышц волокон сосудов, вызывая сильное вазопрессорное действие, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. В небольших концентрациях (0,2 нг на 1 кг массы тела) вазопрессин оказывает мощное антидиуретическое действие – стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При атрофии задней доли гипофиза развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой (полиурия) . При этом нарушен обратный процесс всасывания воды в канальцах почек.

Относительно механизма действия нейрогипофизарных гормонов известно, что гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему. Однако конкретный механизм действия вазопрессина на транспорт воды в почках остается неясным.

Адренокортикотропный гормон (АКТГ, кортикотропин)

Еще в 1926 году было установлено, что гипофиз оказывает стимулирующее влияние на надпочечники, повышая синтез и выделение гормонов коркового вещества.

Молекула АКТГ у всех видов животных содержит 39 аминокислотных остатков. В молекуле АКТГ, как и других белковых гормонов, хотя и не открыты активные центры наподобие активных центров ферментов, однако предполагается наличие двух активных участков пептидной цепи, один из которых ответственен за связывание с соответствующим рецептором, другой – за гормональный эффект.

Данные о механизме действия АКТГ на синтез стероидных гормонов свидетельствуют о существенной роли аденилатциклазной системы. Предполагают, что АКТГ вступает во взаимодействие со специфическими рецепторами на внешней поверхности клеточной мембраны. Сигнал затем передается на фермент аденилатциклазу, расположенную на внутренней поверхности клеточной мембраны, которая катализирует распад АТФ и образование цАМФ. Последний активирует протеинкиназу, которая в свою очередь с участием АТФ осуществляет фосфорилирование холинэстеразы, превращающей эфиры холестерина в свободный холестерин, который поступает в митохондрии надпочечников, где содержатся все ферменты, катализирующие превращение холестерина в кортикостероиды.

Действие АКТГ опосредовано корой надпочечников, то есть он вызывает все те ответные реакции, которые характерны для действия кортикостероидов. Глюконеогенез ускоряется, а синтез белка замедляется во всех исследованных тканях, за исключением печени. Происходит мобилизация липидов (которые поступают в печень), сопровождающаяся кетонемией и гиперхолестеринемией. Стимулируется реабсорбция воды и солей почками, однако в меньшей степени, чем при действии альдостерона. Введение АКТГ вызывает лимфопению, эозинопению и усиление эритропоэза. Продолжительное введение АКТГ может вызывать нежелательные проявления гиперфункции коры надпочечников, включая маскулинизацию (появление у женщин мужских признаков), обусловленную влиянием андрогенов.

Соматотропный гормон (СТГ, гормон роста, соматотропин)

Гормон роста был открыт в экстрактах передней доли гипофиза еще в 1921 году, однако в химически чистом виде был получен только в 1956-1957 годах. СТГ синтезируется в клетках передней доли гипофиза; концентрация его в гипофизе составляет 5-15 мг на 1 г ткани, что в 1000 раз превышает концентрацию других гормонов гипофиза. К настоящему времени выяснена полностью первичная структура белковой молекулы СТГ человека, быка и овцы. СТГ человека состоит из 191 аминокислоты и содержит две дисульфидные связи.

СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особые белковые факторы , образующиеся в печени, мышцах и почках под влиянием гормона. По крайней мере шесть полипептидов с активностью соматомединов («соматомедин», т.е. медиатор действия СТГ в организме) были выделены из плазмы крови человека. Первый идентифицированный факторбыл назван сульфирующим, или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина в ДНК, уридина в РНК и пролина – в коллаген. По своей природе эти факторы оказались пептидами с мол. массой порядка 7000.

Многогранный характер действия СТГ (в отличие от действия других аденогипофизарных гормонов) не обусловлен влиянием на другие эндокринные железы (!).

Введение СТГ вызывает следующие изменения в метаболизме:

1. Стимулирование синтеза РНК и белков в печени и периферических тканях, сопровождающееся задержкой азота (анаболическое действие гормона).

2. Повышение уровня глюкозы в крови; этому предшествует быстро наступающая острая гипогликемия, обусловленная освобождением инсулина из поджелудочной железы (панкреотропный эффект). Продолжительное введение гормона роста вызывает глюкозурию, а также усиливает проявления сахарной болезни (диабетогенный эффект).

3. Увеличение содержания гликогена в мышцах и сердце (глюкостатический эффект) вследствие прямого действия гормона на эти ткани.

4. Двухфазное изменение содержания в плазме неэтерифицированных (свободных) жирных кислот; после быстро наступающего снижения происходит повышение их уровня. Продолжительное введение гормона роста вызывает кетонемию, кетонурию, а также увеличение содержания в печени липидов, обусловленное мобилизацией липидов из депо. Этот эффект является результатом прямого действия соматотропина на жировую ткань (липидмобилизующий эффект).

5. Увеличение размера почек и усиление их функции; увеличение клеточного клиренса и канальцевой экскреции (ренотропный эффект).

6. Стимулирование ретикулоцитоза (эритропоэтический эффект).

7. Стимулирование секреции молока (лактопоэтический эффект).

8. Стимулирование хондрогенеза и остеогенеза.

СТГ регулирует процессы роста и развития всего организма, что подтверждается клиническими наблюдениями. Так при гипофизарной карликовости (пангипопитуитаризм) отмечается пропорциональное недоразвитие тела, в том числе скелета, хотя существенных отклонений в развитии психической деятельности не наблюдается. У взрослого человека также развивается ряд нарушений, связанных с гипо- или гиперфункцией гипофиза. Известно заболевание акромегалия, характеризующееся непропорционально интенсивным ростом отдельных частей тела, например рук, ног, подбородка, надбровных дуг, носа языка, и разрастанием внутренних органов. Болезнь вызывается, вероятно, опухолевым поражением передней доли гипофиза.

Лактотропный гормон (пролактин, лютеотропный гормон)

Пролактин считается одним из наиболее «древних» гормонов гипофиза, поскольку его удается обнаружить в гипофизе низших наземных животных, у которых отсутствуют молочные железы, а также получить лактогенный эффект у млекопитающих. Помимо основного действия (стимуляция развития молочных желез и лактации), пролактин имеет важное биологическое значение – стимулирует рост внутренних органов, секрецию желтого тела (отсюда его второе название «лютеотропный гормон»), оказывает стимулирующее влияние на функцию почек, кроветворение и обладает гипергликемическим действием. Избыток пролактина, образующийся обычно при наличии опухолей из секретирующих пролактин клеток, приводит к прекращению менструаций (аменорея) и увеличению молочных желез у женщин и к импотенции у мужчин.

Расшифрована структура пролактина из гипофиза овцы, быка и человека. Это крупный белок, представленный одной полипептидной цепью с тремя дисульфидными связями, состоящий из 199 аминокислотных остатков. Видовые отличия в последовательности аминокислот касаются по существу 2-3 аминокислотных остатков. Пролактина в гипофизе содержится значительно меньше, чем гормона роста. В крови женщин уровень пролактина резко повышается перед родами: до 0,2 нг/л против 0,01 нг/л в норме (в 20 раз!).

Тиреотропный гормон (ТТГ, тиреотропин)

В отличие от рассмотренных выше пептидных гормонов гипофиза, представленных в основном одной полипептидной цепью, тиреотропин является сложным гликопротеидом и содержит, кроме того, по две a- и b-субъединицы, которые в отдельности биологической активностью не обладают: мол.масса его около 30 000.

Тиреотропин контролирует развитие и функцию щитовидной железы и регулирует биосинтез и выделение в кровь тиреоидных гормонов. Помимо щитовидной железы ТТГ оказывает действие и на некоторые другие ткани, в частности на жировые клетки in vitro, стимулируя липолиз.

Полностью расшифрована первичная структура a- и b-субъединиц тиреотропина быка, овцы и человека: a-субъединица, содержащая 96 аминокислотных остатков, имеет одинаковую аминокислотную последовательность во всех изученных ТТГ и во всех лютеинизирующих гормонах гипофиза (!); b-субъединица тиреотропина человека, содержащая 112 аминокислотных остатков, отличается от аналогичного полипептида в ТТГ крупного рогатого скота аминокислотными остатками и отсутствием С-концевого метионина. Поэтому многие авторы специфические биологические и иммунологические свойства гормона связывают с b-субъединицей. Предполагается, что действие тиреотропина осуществляется, подобно действию других гормонов белковой природы, посредством связывания со специфическими рецепторами плазматических мембран и активирования аденилатциклазной системы.

ТТГ оказывает влияние на скорости следующих процессов в щитовидной железе:

1) поглощение йода из крови;

2) включение йода в состав тиреоидных гормонов;

3) освобождение гормонов из железы.

Наряду с увеличением скорости синтеза и секреции тиреоидных гормонов ТТГ ускоряет ряд метаболических процессов в железе:

образование цАМФ;

транспорт и превращение глюкозы (пентозофосфатный путь, гликолиз, цикл трикарбоновых кислот);

синтез фосфоглицеридов и сфинголипидов;

синтез РНК и белков;

синтез простагландонов и

потребление кислорода.

Гонадотропные гормоны (гонадотропины)

К гонадотропинам относятся фолликулостимулирующий гормон (ФСГ, фоллитропин), лютеинизирующий гормон (ЛГ, лютропин) или гормон, стимулирующий интерстициальные клетки и описанный выше пролактин или лютеотропный гормон . (К группе гонадотропинов относят также хорионический гонадотропин человека (ХГЧ), синтезируемый клетками плаценты и представленный гликопротеидом). ФСГ и ЛГ гормоны синтезируются в передней доле гипофиза и являются, как и тиреотропин, сложными белками-гликопротеидами с мол. массой 28000-34000. Они регулируют стероидо- и гаметогенез в половых железах. Фоллитропин вызывает созревание фолликулов в яичниках у самок и сперматогенез - у самцов. Лютропин у самок стимулирует секрецию эстрогенов и прогестерона, как и разрыв фолликулов с образованием желтого тела, а у самцов – секрецию тестостерона и развитие интерстициальной ткани. Биосинтез гонадотропных гормонов, как было отмечено, регулируется гипоталамическим гормоном гонадолиберином.

Гипофизарные гонадотропины ФСГ, ЛГ, а также плацентарный ХГЧ являются гликопротеидами состоящими из двух a- и b-субъединиц; a-субъединицы всех этих гормонов идентичны. Структурные взаимоотношения этих гормонов с тиреотропином рассмотрены выше. a- и b-субъединицы в отдельности лишены биологической активности. Биологическая и иммунологическая специфичность рассматриваемых гормонов связана с b-субъединицей.

Хотя хорионический гонадотропин является гормоном не гипофизарного, а плацентарного происхождения, характер его биологического действия сходен с действием гормонов гипофиза. Он появляется в моче в ранний период беременности, приблизительно в течении первой недели (!) после срока наступления менструального периода; это используется в двух обычно применяемых диагностических тестах на беременность (тест Ашгейма-Цондека ставится на мышках, а тест Фридмана – на крольчихах). Для тестов используется моча, которая вводится в кровь животных; при беременности происходят заметные изменения в яичниках животных: увеличивается их вес, наблюдаются кровоизлияния в некоторых неразорвавшихся фолликулах или «овуляторный» ответ в виде лопнувших фолликулов.

Причиной ошибочно положительных тестов Ашгейма-Цондека и Фридмана могут быть злокачественная опухоль плацентарной ткани (хорионэпителиома) или пузырный занос (кистозное дегенеративное заболевание хорионической ткани). Высокое содержание гонадотропинов в моче наблюдается также у самцов с опухолями семенников, состоящими из злокачественной эмбриональной ткани, например при тератоме или эпителиоме. Определение гонадотропинов является ценным диагностическим тестом при этих заболеваниях.

Липотропные гормоны (ЛТГ, липотропины)

Среди гормонов передней доли гипофиза, структура и функция которых выяснена в последнее десятилетие, следует отметить липотропины, в частности b- и g-ЛТГ. Наиболее подробно изучена первичная структура b-липотропина человека, овцы и свиньи, молекулы которого состоят из 91 аминокислотного остатка и имеют существенные видовые различия в последовательности аминокислот. К биологическим свойствам b-липотропина относятся жиромобилизующее действие, кортикотропная, меланоцитстимулирующая и гипокальциемическая активность и, кроме того, инсулиноподобный эффект, выражающийся в повышении скорости утилизации глюкозы в тканях. По-видимому, липотропный эффект осуществляется через систему аденилатциклаза-цАМФ-протеинкиназа, завершающей стадией действия которого является фосфорилирование неактивной триацилглицерол-липазы. Этот фермент после активирования расщепляет нейтральные жиры на диацилглицерол и высшую жирную кислоту.

Перечисленные биологические свойства обусловлены не b-липотропином, гормонально неактивным (!), а продуктами его распада , образующимися при ограниченном протеолизе и обладающими опиатноподобной активностью (метионин-энкефалин, лейцин-энкефалин и b-эндорфин и др.). Повышенный интерес к указанным пептидам диктуется их необычайной способностью, подобно морфину, снимать болевые ощущения.

Эпифиз (шишковидное тело, шишковидная железа) является небольшим образованием, имеющим форму сосновой шишки, расположенной у млекопитающих между полушариями мозга. Это овальной формы и красноватой окраски тело, более узкий конец которого направлен вниз и назад. Длина тела 7-10 мм, поперечник 5-7 мм. Группирующиеся в виде тяжей клетки имеют секреторные свойства, вырабатывают и выделяют в кровь меланотонин. Шишковидное тело крупнее в раннем детстве, но уже на 7 году жизни обнаруживаются первые признаки инволюции (обратного развития). Эпифиз у женщин крупнее, чем у мужчин.

Функция. Влияет на пигментацию кожи, вызывая агрегацию пигмента, сопровождающуюся просветлением кожи (!) стимулируя агрегацию, а не рассредоточение меланиновых гранул в меланоцитах, что происходит под влиянием МSH. Меланотонин тормозит развитие половой функции у молодых животных, а также действие гонадотропинов у взрослых животных (результат прямого действия на гипоталамус и гипофиз). Удаление эпифиза у молодых животных приводит к быстрому росту скелета и преждевременному и преувеличенному развитию половых желез и вторичных половых признаков.

антидиурети́ческий гормо́н (АДГ) - гормон гипоталамуса.

Функции вазопрессина

– увеличивает реабсорбцию воды почкой, поэтому повышает концентрацию мочи и уменьшает её объём. Является единственным физиологическим регулятором выведения воды почкой.

– ряд эффектов на кровеносные сосуды и головной мозг.

– наряду с кортикотропин-рилизинг-гормоном, стимулирует секрецию АКТГ.

Конечным эффектом действия вазопрессина на почки являются увеличение содержания воды в организме, рост объёма циркулирующей крови и разведение плазмы крови.

повышает тонус гладкой мускулатуры внутренних органов, в особенности ЖКТ, сосудистый тонус, вызывает увеличение периферического сопротивления. Благодаря этому повышает артериальное давление. Однако, его сосудодвигательный эффект невелик.

– имеет кровоостанавливающий эффект, за счёт спазма мелких сосудов и повышения секреции из печени некоторых факторов свёртывания крови. Развитию гипертензии способствует наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов . В связи с этим АДГ и получил название .

– В головном мозге участвует в регуляции агрессивного поведения. Предполагается его участие в механизмах памяти

Аргинин-вазопрессин играет роль в социальном поведении: в нахождении партнёра, отцовском инстинкте у животных и отцовской любви у мужчин.

Связь с окситоцином

Вазопрессин химически весьма сходен с окситоцином, поэтому может связываться с рецепторами к окситоцину и через них оказывает стимулирующее тонус и сокращения матки действие. Эффекты у вазопрессина гораздо слабее, чем у окситоцина. Окситоцин, связываясь с рецепторами к вазопрессину, оказывает слабое вазопрессиноподобное действие.

Уровень вазопрессина в крови повышается при шоковых состояниях, травмах, кровопотерях, болевых синдромах, при психозах, при приёме некоторых лекарственных препаратов.

Болезни, связанные с нарушением вазопрессиновых функций.

Несахарный диабет

При несахарном диабете уменьшается реабсорбция воды в собирательных трубочках почек.

Синдром неадекватной секреции антидиуретического гормона

Синдром сопровождается повышенным выделением мочи, проблемами в состоянием крови. Клинические симптомы - летаргия, анорексия,тошнота, рвота, мышечные подёргивания, судороги, кома. Состояние пациента ухудшается при поступлении в организм больших объёмов воды, ремиссия наступает при ограничении употребления воды.

Вазопрессин и социальные отношения

В 1999 на примере мышей-полёвок было открыто следующее свойство вазопрессина. Степные полёвки относятся к 3% млекопитающих с моногамными отношениями. Когда степные полевки спариваются, выделяются окситоцин и . Если выделение этих гормонов блокировать, половые отношения между степными полевками становятся такими же мимолетными, как и у их “распутных” горных родственников. Наибольший эффект приносит именно блокировка .

Крысы и мыши узнают друг друга по запаху. Ученые предполагают, что у других моногамных животных и человека эволюция механизма поощрения, участвующего в формировании привязанности, протекала схожим образом, в том числе с целью регулирования моногамии.

Среди исследованных человекоподобных обезьян уровень вазопрессина в центрах поощрения мозга у моногамных мартышек был выше, чем у немоногамных макак-резусов. Чем больше рецепторов находится в областях, связанных с поощрением, тем большее удовольствие доставляет социальное взаимодействие.

По альтернативной гипотезе считается, что моногамия полёвок вызвана изменениями в структуре и количестве дофаминовых рецепторов .

Вазопрессины же образуются только у млекопитающих.

Аргинин-вазопрессин образуется у представителей большинства классов млекопитающих, а лизин-вазопрессин – лишь у некоторых парнокопытных – домашних свиней, диких кабанов, американских свиней, бородавочников и гиппопотамов.

Система регуляции социального поведения и общественных отношений связана с нейропептидами – окситоцина и .

Эти нейропептиды могут работать и как нейромедиаторы (передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).

Окситоцин и вазопрессин - короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами.

У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.

У улиток гомолог вазопрессина и окситоцина регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а - на самцов.

Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру.

Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.

Если девственной крысе ввести в мозг , она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы , она теряет интерес к своим детям.

Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: нейропептид обеспечивает избирательную привязанность матери к собственным детям.

У полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина . Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется , а также .

Формирование личных привязанностей, видимо, является одним из аспектов более общей функции окситоцина - регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.

Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то такого не происходит. Видимо, нейропептиды не создают тип поведения из ничего, а только регулируют уже имеющиеся поведенческие стереотипы и предрасположенности.

У человека исследовать всё гораздо труднее - кто же позволит проводить с людьми эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг.

Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин - наоборот).

Опыты с введением проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.

В других экспериментах обнаружился эффект повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие».

По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин ? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью?

Гормон вазопрессин привязывает одного человека к другому, и это полезное его качество. Пусть его будет побольше.)))))))

Антидиуретический гормон (АДГ), или вазопрессин, осуществляет в организме 2 основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона. Это действие осуществляется благодаря взаимодействию гормона с вазопрессиновыми рецепторами типа V-2, что приводит к повышению проницаемости стенки канальцев и собирательных трубочек для воды, ее реабсорбции и концентрированию мочи. В клетках канальцев происходит также активация гиалуронидазы, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего повышается реабсорбция воды и увеличивается объем циркулирующей жидкости. В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином. В обычных условиях при его физиологических концентрациях в крови это действие не имеет существенного значения. Однако при кровопотере, болевом шоке происходит увеличение выброса АДГ. Сужение сосудов в этих случаях может иметь адаптивное значение. Образование АДГ усиливается при повышении осмотического давления крови, уменьшении объема внеклеточной и внутриклеточной жидкости, снижении артериального давления, при активации ренин-ангиотензиновой системы и симпатической нервной системы. При недостаточности образования АДГ развивается несахарный диабет, или несахарное мочеизнурение, который проявляется выделением больших количеств мочи (до 25 л в сутки) низкой плотности, повышенной жаждой. Причинами несахарного диабета могут быть острые и хронические инфекции, при которых поражается гипоталамус (грипп, корь, малярия), черепно-мозговые травмы, опухоль гипоталамуса. Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.

Окситоцин

Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. На поверхностной мембране клеток существуют специальные окситоциновые рецепторы. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину.

Окситоцин участвует в процессе лактации. Усиливая сокращения миоэпителиальных клеток в молочных железах, он способствует выделению молока. Увеличение секреции окситоцина происходит под влиянием импульсов от рецепторов шейки матки, а также механорецепторов сосков грудной железы при кормлении грудью. Эстрогены усиливают секрецию окситоцина. Функции окситоцина в мужском организме изучены не достаточно. Считают, что он является антагонистом АДГ. Недостаток продукции окситоцина вызывает слабость родовой деятельности.

- От нейросекреторных ядер гипоталамуса (супраоптического и паравентрикулярного) отходят аксоны к гипофизу

- По этим аксонам в заднюю долю гипофиза приходят упакованные в гранулы гормоны

- В задней доле гипофиза (нейрогипофиз) синтеза гормонов не происходит

- В передней части гипофиза (аденогипофиз) секретируется целый набор пептидных гормонов. Аденогипофиз находится под контролем особых химических факторов, которые секретируются нейронами гипоталамуса и выделяются из окончаний аксонов этих клеток в срединном возвышении в основании ножки гипофиза, откуда током крови достигают клеток аденогипофиза. Четыре из этих факторов называются либерины, а три- статинами

- Либерины стимулируют секрецию соответствующих гормонов клетками аденогипофиза

- Статины тормозыт секрецию соответствующих гормонов

- Либерины и статины- короткие пептиды, состоят из небольшого числа

аминокислотных остатков. Характерен мембранный тип рецепции.

Кортиколиберин вырабатывается в гипоталамусе, стимулирует выброс в кровь АКТГ

Тиреолиберин гипоталамуса (короткий пептид) состоит из 3 аминокислотных остатков регулиерует синтез и выброс тиреотропного гормона, способен непосредственно влиять на клетки мозга, активируя эмоциональное поведение и поддерживая бодрствование, учащая дыхание, подавляя аппетит, смягчая течение депрессий

Люлиберин- гипоталамический либерин, контролирующий регуляцию гонадотропинов (фолликулостимулирующий и лютеинизирующий гормоны) состоит из 10 аминокислотных остатков; также способен действовать на клетки мозга, активируя половое поведение, повышая эмоциональность и улучшая обучение и память.

Снижение люлиберина обнаруживается при нервной анорексии

Соматолиберин стимулирует образование и выброс соматотропина

Соматостатин тормозит эти процессы

Так же стоит отметить что в островках Ларгенганса(поджелудочная железа), в дельта(15%), вырабатывается соматостатин.

ПРОЛАКТО-СТАТИН(Пролактин) из дофамина

Меланостатин тормозит выброс меланоцитстимулирующего гормона. Помимо прямого влиянии на гипофиз, активирует эмоциональную и двигательную активность, воздействуя прямым образом на функции мозга. Обладает антидепрессивным эффектом и применяется при Паркинсонизме

- Из нервных окончаний клеток гипоталамуса в сосуды задней доли гипофиза поступают 2 пептидных гормона, каждый из которых состоит из 9 аминокислотных остатков: антидиуритический гормон (АДГ= вазопрессин) и окситоцин

- Орган-мишень для вазопрессина- почки

- Вазопрессин вырабатывается в нейронах супраоптического ядра гипоталамуса, по аксонам поступает в заднюю долю гипофиза, а оттуда с током крови достигает собирательных трубочек и выводных протоков почек

- Под действием вазопрессина повышается обратное всасывание воды из мочи, что препятствует большим потерям жидкости

- В повышенных концентрациях вазопрессин действует на мышцы стенок артерий: они сокращаются, сосуды сужаются и давление крови повышается

- Вазопрессин- «сужающий сосуды»

- Выброс вазопрессина в кровь усиливается при больших потерях крови, когда давление падает и его нужно поднять

- Вазопрессин также воздействует на мозг, является природным стимулятором обучения и памяти

- В малых дозах способен ускорять обучение, замедлять забывание, восстанавливать память после тяжелых травм

- При уменьшении доз вазопрессина (из-за черепно-мозговых травм, опухолей мозга и менингитов) развивается НЕСАХАРНЫЙ диабет

- Симптомы болезни:

1) резкое увеличение объема мочи (до 20 литров в сутки)

При этом избытка сахара в мочи как при сахарном диабете нет. Связано это с тем, что без вазоперссина невозможно обеспечить обратное поглощение воды из мочи в кровь

Сейчас вазопрессин научились получать синтетически и лечат им несахарный диабет

В тяжелых случаях орган-мишень не способен реагировать даже на большие концентрации вазопрессина, это происходит из-за того, что рецепторы вазопрессина, расположенные в собирательных трубочках и выводных протоках, теряют чувствительность к гормону.

Окситоцин (ОТ) в большинстве случаев вырабатывается в нейронах паравентрикулярного ядра гипоталамуса, транспортируется по аксонам в нейрогипофиз и оттуда поступает в кровь

Ткани-мишени ОТ: гладкие мышцы матки и мышечные клетки, окружающие протоки молочных желез и семенников

К концу беременности (после 280 дня) секреция окситоцина повышается, что приводит к сокращению гладкой мускулатуры матки, плод продвигается к шейке матки и к влагалищу, что приводит к родам. После родов секреция окситоцина тормозится

При недостаточной секреции окситоцина роды невозможны: приходится прибегать к искусственной стимуляции, вводя роженице синтетический окситоцин

Либерины:

  • тиролиберин;
  • кортиколиберин;
  • соматолиберин;
  • пролактолиберин;
  • меланолиберин;
  • гонадолиберин (люлиберин и фоллилиберин)
  • соматостатин;
  • пролактостатин (дофамин);
  • меланостатин;
  • кортикостатин

Нейропептиды:

  • энкефалины (лейцин-энкефалин (лей-энкефалин), метионин-энкефапин (мет-энкефалин));
  • эндорфины (а-эндорфин, (β-эндорфин, у-эндорфин);
  • динорфины А и В;
  • проопиомеланокортин;
  • нейротензин;
  • субстанция Р;
  • киоторфин;
  • вазойнтестинальный пептид (ВИП);
  • холецистокинин;
  • нейропептид-Y;
  • агутиродственный протеин;
  • орексины А и В (гипокретины 1 и 2);
  • грелин;
  • дельта-сон индуцирующий пептид (ДСИП) и др.

Гипоталамо-заднегипофизарные гормоны:

  • вазопрессин или антидиуретический гормон (АДГ);
  • окситоцин

Моноамины:

  • серотонин;
  • норадреналин;
  • адреналин;
  • дофамин

Эффекторные гормоны гипоталамуса и нейрогипофиза

Эффекторными гормонами гипоталамуса и нейрогипофиза являются вазопрессин и окситоцин. Они синтезируются в крупноклеточных нейронах СОЯ и ПВЯ гипоталамуса, доставляются путем аксонального транспорта в нейрогипофиз и выделяются в кровь капилляров нижней гипофизарной артерии (рис. 1).

Вазопрессин

Антидиуретический гормон (АДГ, или вазопрессин) - пептид, состоящий из 9 аминокислотных остатков, его содержание в составляет 0,5 — 5 нг/мл.

Базальная секреция гормона имеет суточный ритм с максимумом в ранние утренние часы. Гормон транспортируется кровью в свободной форме. Его период полураспада составляет 5-10 мин. АДГ действует на клетки-мишени через стимуляцию мембранных 7-TMS- рецепторов и вторичные посредники.

Функции АДГ в организме

Клетками-мишенями АДГ являются эпителиальные клетки собирательных трубочек почек и гладкие миоциты стенок сосудов. Через стимуляцию V 2 -рецепторов эпителиальных клеток собирательных трубочек почек и повышение в них уровня цАМФ АДГ увеличивает реабсорбцию воды (на 10-15%, или 15-22 л/сут), способствует концентрированию и уменьшению объема конечной мочи. Этот процесс называется антидиурезом, а вазопрессин, его вызывающий, получил второе название — АДГ.

В больших концентрациях гормон связывается с V 1 -рецепторами гладких миоцитов сосудов и через повышение в них уровня ИФЗ и ионов Са 2+ вызывает сокращение миоцитов,сужение артерий и повышение артериального давления крови. Это влияние гормона на сосуды называется прессорным, откуда и произошло название гормона — вазопрессин. АДГ участвует также в стимуляции секреции АКТГ при стрессе (через V 3 -рецепторы и внутриклеточные ИФЗ и ионы Са 2+), формировании мотивации жажды и питьевого поведения, в механизмах памяти.

Рис. 1. Гипоталамические и гипофизарные гормоны (РГ- рилизингвысвобождающие гормоны (либерины), СТ — статины). Пояснения в тексте

Синтез и выделение АДГ в физиологических условиях стимулируют повышение осмотического давления (гиперосмолярность) крови. Гиперосмолярность сопровождается активацией осмочувствительных нейронов гипоталамуса, которые в свою очередь стимулируют секрецию АДГ нейросекреторными клетками СОЯ и ПВЯ. С этими клетками связаны также нейроны сосудодвигательного центра, получающие информацию о кровотоке от механо- и барорецепторов предсердий и синокаротидной зоны. Через эти связи рефлекторно стимулируется секреция АДГ при понижении объема циркулирующей крови (ОЦК), падении артериального давления крови.

Основные эффекты вазопрессина

  • Активирует
  • Стимулирует сокращение гладких мышц сосудов
  • Активирует центр жажды
  • Участвует в механизмах обучения и
  • Регулирует процессы терморегуляции
  • Выполняет нейроэндокринные функции, являясь медиатором и вегетативной нервной системы
  • Участвует в организации
  • Оказывает влияние на эмоциональное поведение

Усиление секреции АДГ наблюдается также при повышении уровня в крови ангиотензина II, при стрессе и физической нагрузке.

Выделение АДГ понижается при уменьшении осмотического давления крови, повышении ОЦК и (или) артериального давления крови, действии этилового спирта.

Недостаточность секреции и действия АДГ может быть следствием недостаточности эндокринной функции гипоталамуса и нейрогипофиза, а также нарушения функции рецепторов АДГ (отсутствие, снижение чувствительности V 2 - рецепторов эпителия собирательных трубочек почек), что сопровождается избыточным выделением мочи низкой плотности до 10-15 л/сут и гипогидратацией тканей организма. Это заболевание получило название несахарный диабет. В отличие от сахарного диабета, при котором избыточное выделение мочи обусловлено повышенным уровнем глюкозы в крови, при несахарном диабете уровень глюкозы в крови остается нормальным.

Избыточная секреция АДГ проявляется уменьшением диуреза и задержкой воды в организме вплоть до развития клеточных отеков и явлений водной интоксикации.

Окситоцин

Окситоцин — пептид, состоящий из 9 аминокислотных остатков, транспортируется кровью в свободной форме, период полураспада — 5-10 мин, действует на клетки-мишени (гладкие миоциты матки и миоэпитслиальныс клетки протоков молочных желез) через стимуляцию мембранных 7-TMS- рецепторов и повышение в них уровня ИФЗ и ионов Са 2+ .

Функции окситоцина в организме

Повышение уровня гормона, наблюдающееся в естественных условиях к концу беременности, вызывает усиление сокращения матки при родах и в послеродовой период. Гормон стимулирует сокращение миоэпителиальных клеток протоков молочных желез, способствуя выделению молока при кормлении новорожденных.

Основные эффекты окситоцина:

  • Стимулирует сокращения матки
  • Активирует выделение молока
  • Оказывает диуретический и натрийуретический эффекты, участвуя в водно-солевом поведении
  • Регулирует питьевое поведение
  • Повышает секрецию гормонов аденогипофиза
  • Участвует в механизмах обучения и памяти
  • Оказывает гипотензивный эффект

Синтез окситоцина увеличивается под влиянием повышенного уровня эстрогенов, а его выделение усиливается рефлекторным путем при раздражении механорецепторов шейки матки при ее растяжении во время родов, а также при стимуляции механорецепторов сосков молочных желез во время кормления ребенка.

Недостаточная функция гормона проявляется слабостью родовой деятельности матки, нарушением выделения молока.

Гипоталамические рилизинг-гормоны рассматриваются при изложении функций и периферических эндокринных желез.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»