Химическая классификация гормонов. Биохимия стероидных гормонов

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

15.1. Интеграция обмена веществ

Вышеприведенное раздельное описание реакций, характерных для обмена углеводов, липидов и белков, является искусственным и вызывается исключительно удобством для изучения.

В действительности обмен веществ протекает как единое целое, одновременно и совместно, хотя и в разном объеме. Уже первый этап обмена– пищеварение – представляет собой одновременное расщепление углеводов, липидов и белков. Еще большая общность обмена различных соединений имеется при внутриклеточном обмене. Такие реакции как переаминирование, переметилирование, переамидирование, пересульфирование и др. путем межмолекулярного переноса атомных групп обеспечивает возможность перехода одних химических веществ в другие.

Одним из промежуточных продуктов расщепления углеводов является ацетил-КоА. Но и при распаде жиров и при окислении углеродной цепочки аминокислот появляется это же промежуточное вещество. Именно в этом пункте, в момент образования одного и того же промежуточного вещества– ацетил-КоА – углеводный, жировой и белковый обмен сливаются воедино. Далее ацетил-КоА независимо от своего происхождения расщепляется в -ли моннокислом цикле, сопряженном с цепью дыхательных ферментов, до одних и тех же конечных продуктов обмена: углекислоты и воды. Именно в лимоннокислом цикле происходит полное и окончательное объединение процессов обмена белков, липидов и углеводов, и именно отсюда идут пути взаимных превращений этих веществ.

При определенных условиях единство обмена различных веществ может опять дифференцироваться и пойти по разным путям. На этом основана возможность взаимопревращения углеводов, жиров, аминокислот, перехода одного вещества в другое. В частности, ацетил-КоА, НАДФ.H2 , фосфодиоксиацетон, полученные при расщеплении углеводов, или ацетил-КоА из безазотистого остатка аминокислот, могут синтезироваться в жирные кислоты и жиры. И, наоборот, углеводы в животном организме могут синтезироваться из продуктов окисления жиров и белков, т.е. из продуктов лимоннокислого цикла через

оксалоацетат и обращение ряда реакций гликолиза с включением обходных путей для необратимых реакций гликолиза. Это можно наблюдать в особенно большом количестве при сахарном диабете. У растений и микроорганизмов образование глюкозы может происходить из ацетил-КоА через гликооксилатный цикл.

308 15. Интеграция и регуляция обмена веществ. Гормоны

Многие заменимые аминокислоты могут синтезироваться, как мы видели выше, из промежуточных продуктов расщепления углеводов и жиров(т.е. кетокислот и непредельных кислот путем их аминирования). К примеру, из пировиноградной кислоты может образоваться аланин, из кетоглутаровой – глутаминовая кислота, из щавелево-уксусной и фумаровой кислот– аспарагиновая кислота.

Конечно, возможности биосинтеза аминокислот из других веществ значительно ниже, по сравнению с синтезом жиров и углеводов. Образование новых аминокислот может происходить только при наличии в тканях свободного аммиака, освобождающегося при дезаминировании других аминокислот. Переаминирование сумму аминокислот не меняет.

Естественно, что незаменимые аминокислоты не могут синтезироваться из жиров и углеводов и из заменимых аминокислот. Поэтому белки и являются незаменимой составной частью пищи человека и животных.

Таким образом, изучение различных видов обмена веществ свидетельствует, что обмен веществ представляет собой стройный ансамбль многочисленных и тесно связанных друг с другом химических процессов, в которых ключевыми метаболитами служат пируват, a -глицерофосфат, ацетил-КоА, метаболиты цикла Кребса, а лимитирующими факторами являются незаменимые аминокислоты и незаменимые полиеновые жирные кислоты. Ведущая роль в этом сложнейшем ансамбле принадлежит белкам. Благодаря их каталитической функции осуществляется все многочисленное множество химических реакций распада и синтеза. С помощью нуклеиновых кислот поддерживается строгая специфичность при биосинтезе макромолекул, т.е. в конечном счете, видовая специфичность в строении важнейших биополимеров. Благодаря, главным образом, обмену углеводов и липидов, в организме постоянно возобновляются запасы АТФ– универсального источника энергии для биохимических преобразований. Эти пути поставляют также простейшие органические молекулы, из которых строятся биополимеры и другие соединения, включающиеся в состав организма в процессе непрерывного самообновления живой материи.

15.2. Нейрогуморальная регуляция обмена веществ, роль гормонов

В каждой клетке живого организма одновременно протекают огромное количество реакций обмена углеводов, липидов, белков и других веществ. И в то же время в любой клетке соблюдается строгий порядок течения биохимических процессов, строгая их направленность и согласованность, связанная с условиями внешней среды и направленная на поддержание постоянства внутренней среды (гомеостаза). Такое состояние обменных реакций достигается

15. Интеграция и регуляция обмена веществ. Гормоны 309

тем, что в процессе эволюции в живых организмах сформирована определенная, свойственная только живому, организация биохимических процессов, с одной стороны, а с другой – выработалась стройная система регуляции обмена веществ на различных уровнях. Наиболее простыми являются внутриклеточные механизмы регуляции, важнейшими элементами которых являются:

1) изменение проницаемости биологических мембран;

2) аллостерическое изменение активности ферментных белков;

3) изменение количества молекул ферментов путем регуляции биосинтеза ферментных белков на генетическом уровне.

В организме высших животных и человека ведущую роль в регуляции биохимических реакций выполняет сложно построенная, возникшая в процессе эволюции, нервно-эндокринная система. У этих организмов вся информация о состоянии обмена веществ в тканях в виде нервных импульсов или -хи мических сигналов поступает в центральную нервную систему и железы внутренней секреции. В головном мозге эта информация перерабатывается и в виде сигналов передается как непосредственно в ткани, так и в железы внутренней секреции. Последние вырабатывают особые вещества-гормоны, которые изменяют (регулируют) биохимические процессы непосредственно в клетках.

Гормоны – это биологически активные органические вещества, вырабатываемые в организме определенными клеточными группами или железами и оказывающие регулирующее влияние на процессы обмена веществ и функционирование органов и тканей. Термин «гормон» был введен в1905 году Старлингом при изучении механизма действия секретина. Слово «гормон» – греческого происхождения и означает поощряю, побуждаю, возбуждаю. Выработка почти всех гормонов происходит в хорошо отграниченных отдельных железах. Поскольку выработанные гормоны выделяются не через выводные протоки, а поступают через клеточную стенку в кровь, лимфу или тканевый сок, эти железы называют железами внутренней секреции или эндокринными железами, а выделение гормонов – внутренней секрецией или инкрецией.

Образование гормонов в клеточных группах происходит в ходе метаболизма и является основной (или одной из основных) их функцией. Если же образующиеся биологически активные вещества являются побочными продуктами жизнедеятельности клеток, специализированных на выполнении какихлибо иных функций, то эти вещества называются парагормонами или гормоноидами.

Гормоны и гормоноиды интегрируют обмен веществ, т.е. регулируют соподчиненность и взаимосвязь протекания различных химических реакций в организме, как в едином целом. Само возникновение гормонов и гормоноидов в процессе эволюции живой материи, несомненно, связано с её дифференциацией, с обособлением тканей и органов, деятельность которых должна была

310 15. Интеграция и регуляция обмена веществ. Гормоны

быть тонко скоординирована с тем, чтобы они стали единым организмом. Самая простая форма этой координации заключается в том, что продукты обмена, образующиеся в результате повышенной деятельности одного типа клеток, влияют на деятельность другого рода клеток, усиливая или ослабляя их функции. Продукты обмена, а также гормоноиды при этом распространяются от клетки к клетке преимущественно путем диффузии. Это и имеет место у простейших организмов. На более высоком уровне развития организмов появляется гормональная регуляция, отличающаяся от упомянутой выше тем, что на этой ступени развития уже дифференцируются такие клетки, специализированная функция которых заключается именно в выработке веществ, служащих для регуляции деятельности других клеток и органов. Эти вещества, получившие название гормонов, транспортируются к регулируемым клеткам и органам преимущественно через кровоток.

На высоком уровне развития органов наряду с гормональной регуляцией, являющейся более древней эволюционно, появляются и координирующая деятельность нервной системы. В ходе развития организмов гормональная и нервная регуляция тесно взаимосвязываются в процессе своей деятельности, но нервная система имеет то преимущество, что характеризуется более точной локализацией действия и может быстрее вызвать необходимые функциональные изменения, чем гормональная. Центральная нервная система, анализируя сигналы, идущие из внутренней или наружной среды, в гораздо большей степени может обеспечивать единство организма, чем гормональная регуляция.

Но последняя, присоединяясь к нервной регуляции, имеет для организма то преимущество, что способна воздействовать одновременно на целый ряд различных видов клеток организма и держать под постоянным влиянием соответствующие ткани и органы. По существу, роль эндокринной и нервной систем совпадают, так как их деятельность направлена на обеспечение регулирования и координирования функций организма и сохранение его равновесия(гомеостаза).

Общность нервной и эндокринной систем обуславливается тем, что передача импульсов с нейрона на другой нейрон или на эффектор реализуется -че рез посредство особых биологически активных веществ– медиаторов, а также тем, что некоторым нервным клеткам свойственна нейросекреция, т.е. способность вырабатывать и секретировать продукты метаболизма, обладающие гормональной активностью.

Нейросекреторные клетки совмещают нервную и эндокринную функции, так как способны, с одной стороны, воспринимать нервные импульсы, а с другой стороны – передавать эти импульсы в виде нейрогормонов дальше через кровь. Нейросекреторные клетки у млекопитающих сосредоточены в гипоталамусе, являющемся мозговым центром вегетативных функций организма. При этом одни из нейросекреторных клеток гипоталамуса вырабатывают ней-

15. Интеграция и регуляция обмена веществ. Гормоны 311

рогипофизарные гормоны вазопрессин и окситоцин, которые затем поступают в заднюю долю гипофиза и аккумулируются в ней, выделяясь затем отсюда в кровь. Другие нейросекреторные клетки гипоталамуса продуцируют аденогипофизотропные вещества, так называемые рилизинг-факторы, среди которых различают стимулирующие факторы – либерины и угнетающие факторы – статины, которые активируют или угнетают гормонообразование в передней доле гипофиза. Рилизинг-факторы впервые выделили Гилемин и Шели, установив способность клеток мозга вырабатывать вещества, управляющие работой гипофиза. К числу либеринов относят соматолиберин, кортиколиберин, тиреолиберин, пролактолиберин, фоллилиберин, люлилиберин, а к числу статинов – соматостатин, пролактостатин, меланостатин. Все они являются по химической структуре низкомолекулярными пептидами.

В последние годы из мозга животных выделено более 50 пептидов, получивших название нейропептидов, определяющие в известной степени поведенческие реакции. Показано, что эти вещества влияют на некоторые формы поведения, на процессы обучения и запоминания, регулируют сон, подобно морфину устраняют боль. В качестве примера может быть назван b -эндорфин (обезболивающее действие), скотофобин (вызывает страх перед темнотой) и др. Ряд пептидов, оказывающих фармакологический эффект, получен синтетическим путем (брадикинин, нейрогипофизарный гормон окситоцин, соматостатин и др.). Установлено, что тканевые пептидные гормоны имеют не линейную, а квазициклическую структуру.

Под влиянием рилизинг-факторов в передней доле гипофиза вырабатываются так называемые тропные гормоны, которые активируют деятельность ряда эндокринных желез(щитовидной железы, половых желез, коры надпочечников), непосредственно регулирующих отдельные процессы и функции в организме. Следовательно, если сопоставить функции центральной нервной системы и гормонов, то можно заключить, что роль гормонов по существу состоит в том, что они гуморально передают начальный нервный импульс на конечный эффектор, и, следовательно, гормональная и нервная системы образуют единую систему регуляции жизнедеятельности организма.

При патологических состояниях, вызванных заболеванием эндокринных желез, нейро-гормональная регуляция биохимических процессов оказывается нарушенной, что приводит к резкому понижению способности организма противостоять действию повреждающих факторов. В большинстве случаев эти заболевания есть следствие либо гипофункции эндокринной железы(т.е. недостаточного образования гормона), либо ее гиперфункции (т.е. избыточного выделения гормона). При этом нарушение функции одной эндокринной железы не происходит изолированно, так как отдельные эндокринные железы оказывают своими секретами мощное влияние не только на различные органы и ткани организма, но и на функцию других желез внутренней секреции и на

312 15. Интеграция и регуляция обмена веществ. Гормоны

нервную систему. В этой связи заболевание, вначале вызванное изменением функции той или иной эндокринной железы, в последующем в большинстве случаев отражает нарушение деятельности ряда желез.

Нарушение гормонообразования может обусловливаться не только действием внешних факторов, вызывающих патологическое состояние эндокринных желез, но и эндогенными причинами. К числу этих причин следует отнести: прекращение или искажение активирующих и регулирующих импульсов, посылаемых прямо или опосредованно нервной системой; форму выделения и циркуляции гормона в крови– в доступной или недоступной для эффектора (связывание гормонов белками плазмы крови и пр.); степень реактивности регулируемых систем к гормонам.

В связи с тесной взаимосвязью эндокринной и нервной систем существенное значение для направленного воздействия на функции эндокринных желез приобрели средства, действующие на центральную нервную систему. К примеру, резерпин способен высвобождать катехоламины, являющиеся гормональными веществами, из окончаний симпатических нервов и тем менять функциональное состояние организма.

Большое научное и практическое значение имеют вещества, способные тормозить образование и секрецию гормонов или блокировать их физиологическую активность в эффекторных органах(так называемые антигормональные средства). Это открывает возможность медикаментозной терапии заболеваний, которые возникают вследствии избыточной продукции гормонов. Примером таких веществ являются тиоцианиды, производные тиомочевины, мерказолил, аллоксан, дитизон, хлорпроизводные дифенилэтана, аминоглютетимид, флутаминд, нафоксидин и др., обладающие ингибирующим воздействием на гормоны щитовидной железы, инсулярного аппарата поджелудочной железы, коры надпочечников.

В основе молекулярного механизма действия некоторых антигормонов лежит их конкуренция с гормонами за связывание их цитозольных рецепторов. Антигормоны обладают меньшим сродством к рецепторам, чем истинные гормоны, и поэтому оказывают действие при высоких концентрациях. На этом механизме основано действие природных антигормонов, например, эстрогенов

и андрогенов. Эстрагены блокируют андрогенные рецепторы, а андрогены - эстрагонные рецепторы. На этом механизме основано лечебное применение тестостерона и эстрадиола для терапии опухолей половой сферы у лиц противоположного пола. Такие антигормоны используют для лечения гормонозависимых опухолей, при отклонении в половом поведении(например, при гиперсексуальности).

Функциональная активность эндокринной железы находится в равновесии

с концентрацией ее гормонов в циркулирующей крови.

15. Интеграция и регуляция обмена веществ. Гормоны 313

Это равновесие обеспечивается разными путями: активирующим влиянием тропного гормона гипофиза на периферическую эндокринную железу и

действием гормона последней на тропную функцию гипофиза по принципу обратной связи; угнетающим действием гормонов на железу, их продуцирующую; влиянием выделившихся гормонов на высшие отделы центральной нервной системы и через них на функции эндокринных желез; существованием связи между функцией эндокринной железы и некоторыми продуктами ее метаболизма и т.д.

Деятельность некоторых эндокринных желез специализирована исключительно на продукции гормонов(аденогипофиз, щитовидная железа, околощитовидная железы, кора и мозговая часть надпочечников), тогда как другие эндокринные железы сочетают гормонообразование с неэндокринными функциями (поджелудочная железа, половые железы).

Гормоны отличаются друг от друга видом действия и избирательностью воздействия на тот или иной исполнительный орган. Некоторые гормоны, как, например, гормон щитовидной железы, обладают универсальным действием, другие имеют строго ограниченный диапазон действия: например, гормоны паращитовидной железы действуют преимущественно на костную систему и почки. Особый вид гормонов, вырабатываемых гипофизом, несет регулирующую функцию по отношению к другим эндокринным железам(щитовидной железе, надпочечникам и половым железам). Это различные тропные гормоны гипофиза. Благодаря этому гипофиз занимает особое место в системе эндокринных желез, являясь как бы главной, ведущей эндокринной железой. Ряд гормонов, оказывают непосредственное действие на некоторые основные функции организма (обмен веществ, рост, размножение и др.). Среди последних гормоны щитовидной железы обладают катаболическим действием, тогда как соматотропный гормон передней доли гипофиза, инсулин, андрогены – в основном анаболическим действием.

Гормоны надпочечников (глюкокортикоиды и катехоламины) являются «гормонами адаптации», так как повышают сопротивляемость организма к действию повреждающих факторов. Кроме того, глюкокортикоидам свойственно пермиссивное действие, состоящее в повьшении реактивности эффекторов к действию нервных импульсов и других гормонов, что, поддерживая повышенную работоспособность эффекторных клеток, делает возможной их длительную и напряженную работу.

В регуляции основных жизненных функций участвуют, как правило, несколько гормонов. Так, в регуляции углеводного обмена участвуют инсулин, глюкагон, глюкокортикоиды, соматотропный гормон, адреналин, в регуляции минерального обмена – альдостерон, паратиреоидный гормон и тиреокальцитонин, в регуляции водного обмена– алъдостерон и антидиуретический гормон.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Строение, номенклатура и классификация стероидных гормонов, обзор путей их биосинтеза. Ферменты, вовлечённые в биосинтез стероидных гормонов, их регуляция. Механизм действия, взаимодействие с клетками-мишенями. Особенности инактивации и катаболизма.

    презентация , добавлен 23.10.2016

    Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа , добавлен 06.12.2008

    Исходное сырье для получения стероидных гормонов. Основные микробиологические превращения стероидов. Гидролиз эфиров стероидов, отщепление боковых цепей. Методы проведения процессов микробиологических трансформаций, примеры их промышленного использования.

    курсовая работа , добавлен 11.06.2014

    Характеристика и классификация видов гормонов. Характеристика анаболических стероидов. Механизм действия стероидов. Влияние анаболических стероидов на организм. Регуляция деятельности органов и тканей живого организма. Пептидные и белковые гормоны.

    презентация , добавлен 01.03.2013

    Изучение эндокринных желез и гормонов в 1855 году Томасом Аддисоном. Характерные свойства и основные виды гормонов: стероидные, производные аминокислот и жирных кислот, белковые и пептидные. Механизм действия и значение гормонов в организме человека.

    презентация , добавлен 22.04.2014

    Стероидные гормоны - группа физиологически активных веществ, регулирующих процессы жизнедеятельности у животных и человека: группы, физико-химические свойства, функции, синтез. Определение подлинности препаратов, их использование в медицинской практике.

    дипломная работа , добавлен 25.03.2011

    Стероидные гормоны - группа физиологически активных веществ, регулирующих процессы жизнедеятельности у животных и человека. Препараты гормонов коры надпочечников. Половые гормоны: эстрогены, прогестагены, андрогены. Анаболические стероиды и их применение.

    презентация , добавлен 13.04.2016

    Необходимость создания препаратов, специфически усиливающих синтез белка в тканях организма вследствие ослабления андрогенных или усиления анаболических свойств тестостерона. Принцип действия анаболических стероидов и их влияние на организм человека.

    Глава 16. ГОРМОНЫ, НЕРВНО-ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ

    Понятие о гормонах. Основные принципы регуляции обмена веществ

    Одной из уникальных особенностей живых организмов является их слособносгь сохранять постоянство гомеостаза (постоянство многих свойств организма при постоянных условиях среды) при помощи меха­низмов саморегуляции, в координации которых одно из главных мест принадлежит гормонам. Гормоны - это биологически активные вещест­ва органической природы, вырабатывающиеся в клетках желез внутрен­ней секреции и оказывающие регулирующее влияние на обмен веществ.

    В результате действия механизмов саморегуляции, а именно нервно-гормональных механизмов, в живой клетке достигается согласо­вание скоростей всех химических реакций и физико-химических процес­сов друг с другом, обеспечивается координация функций всех органов и адекватная реакция организма на изменения внешней среды. В регуляции процессов обмена веществ гормоны занимают промежуточное положение между нервной системой и действием ферментов, т.е. регуля­ция обмена веществ реализуется путем изменения скорости фермента­тивных реакций. Гормоны вызывают либо очень быструю реакцию, либо наоборот медленную реакцию, связанную с синтезом необходимого фер­мента заново. Таким образом, нарушения синтеза и распада гормонов, обусловленные, например, заболеваниями эндокринных желез, приводят к изменению нормального синтеза ферментов и, следовательно, к нару­шению обмена веществ и энергии.

    В механизмах саморегуляции можно выделить три уровня.

    Первый уровень - внутриклеточные механизмы регуляции. Сиг­налами для изменения состояния клетки служат различные метаболиты. Они могут:

    - изменять активность ферментов путем их ингибирования или активации;

    - изменять количество ферментов путем регулирования их син­теза и распада;

    - изменять скорость трансмембранного перекоса веществ. Межорганная координация этого уровня регуляции обеспечивается пере­дачей сигналов двумя путями: через кровь с помощью гормонов (эндокринная система) и через нервную систему.

    Второй уровень регуляции - эндокринная система. Гормоны ос­вобождаются в кровь на специфический стимул, которым может быть нервный импульс или изменение концентрации какого-то метаболита в крови, протекающей через эндокринную железу (например, снижение концентрации глюкозы). Гормон транспортируется с кровью и, достигая клеток мишеней, модифицирует в них обмен веществ через внутрикле­точные механизмы. При этом происходит изменение обмена веществ и устраняется стимул, вызвавший освобождение гормона. Выполнивший свою функцию гормон разрушается специальными ферментами.

    Третий уровень регуляции - нервная система с рецепторами сиг­налов как внешней среды, так и внутренней. Сигналы трансформируются в нервный импульс, который в синапсе с клеткой-эффектором вызывает освобождение медиатора - химического сигнала. Медиатор через внутри­клеточные механизмы регуляции вызывает изменение обмена веществ. Клетками-эффекторами могут быть и эндокринные клетки, отвечающие на нервный импульс синтезом и выделением гормонов.

    Все три уровня регуляции тесно взаимосвязаны и действуют как единая нервно-гормональная или нейро-гуморальная система регуляции (рис. 43).

    Поток информации о состоянии внешней и внутренней среды организма поступает в нервную систему, где перерабатывается, а в ответ посылаются регуляторные сигналы к периферическим органам и тканям. Под прямым контролем нервной системы находятся мозговое вещество надпочечников и гипоталамус. Нервные импульсы, поступающие от раз­личных отделов головного мозга, влияют на секрецию клетками гипота­ламуса нейропептидов - либеринов и статинов, регулирующих выделение тропных гормонов гипофиза. Либерины стимулируют синтез и выделение тройных гормонов, а статины - ингибируют. Тройные гормоны гипофиза влияют на секрецию гормонов в периферических железах. Образование и секреция гормонов периферическими железами происходит непрерывно. Это необходимо для поддержания нужного уровня их в крови, так как они быстро инактивируются и выделяются из организма.

    Рис. 43. Схема нервно-гормональной регуляции (сплошные стрелки означают син­тез гормонов, а пунктирные - влияние гормона на органы-мишени)

    Концентрация гор­монов в крови невелика: порядка 10 -6 – 10- 11 моль/л. Время полужизни, в основ­ном, несколько минут, для некоторых - десятки минут, очень редко - часы. Тре­буемый уровень гормона в крови поддерживается за счет механизма саморегуля­ции по принципу «плюс-минус» межгормональных взаимоотошений. Тропные гормоны стимулируют обра­зование и секрецию гормо­нов периферическими желе­зами (знак "+"), а последние по механизму отрицатель­ной обратной связи угнета­ют (знак "-") образование тропных гормонов, действуя через клетки гипофиза (ко­роткая обратная связь) или нейро-секреторные клетки гипоталамуса (длинная обратная связь), рис.44. В последнем случае угнетается секре­ция либеринов в гипоталамусе.

    Кроме того существует метаболитно-гормональная обратная связь: гормон, действуя на обмен веществ в тканях, вызывает изменение содержания в крови какого-либо метаболита, а тот по механизму обрат­ной связи влияет на секрецию гормонов в периферических железах или непосредственно (внутриклеточный механизм), или через гипофиз и ги­поталамус (см. рис. 44). Такими метаболитами являются глюкоза (инди­катор состояния углеводного обмена), аминокислоты (индикатор состоя­ния белкового обмена), нуклеотиды и нуклеозиды (индикаторы состояния нуклеинового и белкового обмена), жирные кислоты, холестерин (инди­каторы состояния липидного обмена); Н 2 О, Са 2+ , Na+, К + , СI¯ и некоторые другие ионы (индикаторы состояния водно-солевого баланса).

    Классификация гормонов

    Гормонам присущи следующие общие биологические признаки:

    1) дисгантность действия, то есть они регулируют обмен и функ­ции зффекторных клеток на расстоянии;

    2) строгая специфичность биологического действия, то есть один гормон нельзя целиком заменить другим;

    3) высокая биологическая активность - достаточно очень малых количеств, порой десятка микрограмм, чтобы сохранить жизнь организма.

    Гормоны классифицируются по:

    1) химической природе;

    2) механизму передачи сигнала в клетку - мишень;

    3) биологическим функциям.

    Все типы классификации несовершенны и носят несколько ус­ловный характер, особенно классификация по функциям, так как многие гормоны полифункциональны.

    По химическому строению гормоны делят следующим обра­зом:

    1) белково-пептидные (гормоны гипоталамуса, гипофиза, подже­лудочной и паращитовидной желез, кальциотонин щитовидной железы);

    2) производные аминокислот (адреналин - производное фениланина и тирозина);

    3) стероиды (половые гормоны - андрогены, эстрогены и гестагены, кортикостероиды).

    По биологическим функциям гормоны делят на следующие группы:

    1) регулирующие обмен углеводов, жиров, аминокислот - инсу­лин, глюкагон, адреналин, глюкокортикостероиды (кортизол);

    2) регулирующие водно-солевой обмен - минераллокортикостероиды (альдостерон), антидиуретический гормон (вазопрессин);

    3) регулирующие обмен кальция и фосфатов - паратгормон, кальцитонин, кальцитриол;

    4)регулирующие обмен веществ, связанный с репродуктивной функцией (половые гормоны) - эстрадиол, прогестерон, тестостерон.

    5) регулирующие функции эндокринных желез (тройные гормо­ны) - кортикотропин, тиротропин, гонадотропин.

    Вэту классификацию не включены соматотропин, тироксин и некоторые другие гормоны, которые оказывают полифункциональное действие.

    Кроме того, помимо гормонов, выделяющихся в кровь и дейст­вующих на органы, удаленные от места синтеза гормона, существуют еще гормоны местного действия, регулирующие обмен веществ в тех органах, где они образуются. К ним относят гормоны желудочно-кишечного трак­та, гормоны тучных клеток соединительной ткани (гепарин, гистамин), гормоны, выделяемые клетками почек, семенных пузырьков и других ор­ганов (простагландины) и т. д.


    Похожая информация.


    Регуляция метаболизма Система регуляции обмена веществ и функций организма образуют три иерархических уровня: 1 – ЦНС. Нервные клетки получают сигналы, поступающие из внешней среды, преобразуют их в нервный импульс и передают через синапсы, используя медиаторы (химические сигналы), которые вызывают изменения метаболизма в эффекторных клетках. 2 – эндокринная система. Включает гипоталамус, гипофиз и периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула. 3 -внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, в результате: изменения активности ферментов (активация, ингибирование) ; изменение кол-ва ферментов (индукция или репрессия синтеза или изменение скорости их разрушения) ; изменение скорости транспорта в-ва через мембраны клеток.

    Регуляция метаболизма Синтез и секреция гормонов стимулируется внешними и внутренними сигналами, поступающими в ЦНС; Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных релизинг-гормонов -либеринов и статинов, которые стимулируют или ингибируют, соответственно, синтез и секрецию гормонов передней доли гипофиза (тропных гормонов) ; Тропные гормоны стимулируют образование и секрецию гормонов периферических эндокринных желез, которые выделяются в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов за счет механизма обратной связи характерно для гормонов надпочечников, щитовидной железы, половых желез.

    Регуляция метаболизма Не все эндокринные железы регулируются подобным образом: Гормоны задней доли гипофиза (окситоцин и вазопрессин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (глюкагон и инсулин) напрямую зависит от концентрации глюкозы в крови.

    Гормоны Гормоны – вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Классификация гормонов, основанная на их химической природе: 1) пептидные и белковые гормоны; 2) гормоны – производные аминокислот; 3) гормоны стероидной природы; 4) эйкозаноиды – гормоноподобные вещества, оказывающие местное действие.

    Гормоны 1) Пептидные и белковые гормоны включают: гормоны гипоталамуса и гипофиза (тиролиберин, соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин и др. – см. далее) ; гормоны поджелудочной железы (инсулин, глюкагон). 2) Гормоны – производные аминокислот: гормоны мозгового вещества надпочечников (адреналин и норадреналин) ; гормоны щитовидной железы (тироксин и его производные). 3) Гормоны стероидной природы: гормоны коркового вещества надпочечников(кортикостероиды) ; половые гормонами (эстрогены и андрогены) ; гормональная форма витамина D. 4) Эйкозаноиды: простагландины, тромбоксаны и лейкотриены.

    Гормоны гипоталамуса Гипоталамус — место взаимодействия высших отделов ЦНС и эндокринной системы. В гипоталамусе открыто 7 стимуляторов (либерины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин; По химическому строению –низкомолекулярные пептиды. ц. АМФ участвует в передаче гормонального сигнала.

    Гормоны гипофиза В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях. В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза. В передней доле вырабатываются тропные гормонами (тропинами) , вследствие их стимулирующего действия на ряд других эндокринных желез.

    Гормоны задней и средней долей гипофиза Гормоны задней доли гипофиза: Окситоцин у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышечных волокон сосудов, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. Гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему. Гормоны средней доли гипофиза: Физиологическая роль меланотропинов заключается в стимулировании меланиногенеза у млекопитающих.

    Гормоны щитовидной железы Синтезируются гормоны –йодированные производные аминокислоты тирозина. Трийодтиронин и тироксин (тетрайодтиронин). Регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечно- сосудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, считается генетический аппарат.

    Гормоны поджелудочной железы Поджелудочная железа относится к железам со смешанной секрецией. Панкреатические островки (островки Лангерганса) : α- (или А-) клетки продуцируют глюкагон, β- (или В-) клетки синтезируют инсулин, δ-(или D-) клетки вырабатывают соматостатин, F-клетки – малоизученный панкреатический полипептид. Инсулин Полипептид. В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот.

    Гормоны поджелудочной железы Глюкагон Полипептид. Вызывает увеличение концентрации глюкозы в крови главным образом за счет распада гликогена в печени. Органами-мишенями для глюкагона являются печень, миокард, жировая ткань, но не скелетные мышцы. Биосинтез и секреция глюкагона контролируются главным образом концентрацией глюкозы по принципу обратной связи. Действие через аденилатциклазную систему с образованием ц. АМФ.

    Гормоны надпочечников Мозговое вещество вырабатывает гормоны, которые считаются производными аминокислот. Корковое вещество секретирует гормоны стероидной природы. Гормоны мозгового вещества надпочечников: Катехоламины (дофамин, адреналин и норадреналин) синтезируются из тирозина. Оказывают мощное сосудосуживающее действие, вызывая повышение АД. Регулируют обмен углеводов в организме. Адреналин вызывает резкое повышение уровня глюкозы в крови, что обусловлено ускорением распада гликогена в печени под действием фермента фосфорилазы. Адреналин, как и глюкагон, активирует фосфорилазу не прямо, а через систему аденилатциклаза-ц. АМФ-протеинкиназа

    Гормоны надпочечников Гормоны коркового вещества надпочечников: Глюкокортикоиды -кортикостероиды, оказывающие влияние на обмен углеводов, белков, жиров и нуклеиновых кислот; кортикостерон, кортизон, гидрокортизон (кортизол), 11 — дезоксикортизол и 11 -дегидрокортикостерон. Минералокортикоиды -кортикостероиды, оказывающие преимущественное влияние на обмен солей и воды; дезоксикортикостерон и альдостерон. В основе их структуры лежит циклопентанпергидрофенантрен. Оказывают действие через ядерный аппарат. См. лекцию 13.

    Молекулярные механизмы передачи гормонального сигнала По механизму действия гормоны можно разделить на 2 группы: 1) Гормоны, взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, цитокины и эйкозаноиды) ; Действие реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, 2) Гормоны (стероидные, тиреоидные гормоны, ретиноиды, витамин D 3 -гормоны), взаимодействующие с внутриклеточными рецепторами выступают в качестве регуляторов экспрессии генов.

    Механизмы передачи гормонального сигнала Гормоны, взаимодействующие с клеточными рецепторами, передают сигнал на уровне клетки через вторичные посредники (ц. АМФ, ц. ГМФ, Са 2+ , диацилглицерол). Каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ. протеинкиназа типа А регулируется ц. АМФ, протеинкиназы G – ц. ГМФ; Са 2+ — кальмодулинзависимые протеинкиназы — под контролем внутриклеточной [Са 2+ ], протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мессенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки.

    Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: В нем задействовано мимимум пять белков: 1) рецептор гормона; 2) G-белок, осуществляющий связь между аденилатциклазой и рецептором; 3) фермент аденилатциклаза, выполняющая функцию синтеза циклического АМФ (ц. АМФ); 4) ц. АМФ-зависимая протеинкиназа, катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность; 5) фосфодиэстераза, которая вызывает распад ц. АМФ и тем самым прекращает (обрывает) действие сигнала

    Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 1) C вязывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим G -белком. 2) G-белок – представляет собой смесь2 типов белков: активного Gs и ингибиторного G i. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить Gs-белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы Gs в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее.

    Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 3) Аденилатциклаза представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и в активированном состоянии катализирует реакцию синтеза ц. АМФ из АТФ:

    Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 4) Протеинкиназа А– это внутриклеточный фермент, через который ц. АМФ реализует свой эффект. Протеинкиназа А может существовать в 2 формах. В отсутствие ц. АМФ протеинкиназа не активна и представлена в виде тетрамерного комплекса из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц. В присутствии ц. АМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность. Адреналин, глюкагон.

    Молекулярные механизмы передачи гормонального сигнала Ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень ц. АМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi), ингибирует аденилатциклазу и синтез ц. АМФ, т. е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном.

    Молекулярные механизмы передачи гормонального сигнала К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потен- циальных вторичных мессенджера – диацилглицерол и инозитол-1, 4, 5 -трифосфат.

    Молекулярные механизмы передачи гормонального сигнала Биологические эффекты этих вторичных мессенджеров реализуютсяпо-разному. Диацилглицерол, как и свободны t ионов Са 2+ , действует через мембраносвязанный Са-зависимый фермент протеинкиназу С, которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1, 4, 5 -трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

    Молекулярные механизмы передачи гормонального сигнала Гормоны, взаимодействующие с внутриклеточными рецепторами: Изменяют экспрессию генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»