Хлор в природе. Соединения хлора (–1)

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Хлор, Cl, - это химический элемент VII группы , порядковый номер 17, атомный вес (масса) 35,453, валентность в соединениях от -1 до +7. В свободном состоянии желто-зеленый, с резким удушающим запахом, ядовитый газ; молекулы состоят из двух (Cl 2). Растворяется в воде и органических жидкостях.

В состав организма человека входит около 0,15% хлора, который поступает с пищей, в основном в виде хлористого натрия. Ионы Cl- играют большую роль в поддержании осмотического давления крови, регуляции водного обмена, кислотно-щелочного равновесия, в образовании желудочного сока и др. Из организма выводится с мочой, потом и .

Применяют для получения соляной кислоты (см.) и ряда органических соединений, хлорирования питьевых и , в производстве отбеливающих и дезинфицирующих средств (см. ), для уничтожения грызунов - вредителей (см. ).

Сильно раздражает слизистые оболочки глаз и дыхательных путей.

Хранят и транспортируют хлор под давлением 6 атм. в стальных баллонах защитного цвета, имеющих в верхней части зеленую полосу.

Острые отравления. При вдыхании высоких концентраций хлора развивается так называемая молниеносная форма поражения. Пострадавший задыхается, лицо его синеет, движения некоординированны, частый и затем нитевидный. Смерть наступает быстро в результате рефлекторной остановки дыхания. При несколько меньших концентрациях хлора развивается тяжелая форма поражения, рефлекторная остановка дыхания короче, дыхание возобновляется, но становится частым, поверхностным, судорожным; дыхание останавливается через 5-25 минут после вдыхания хлора. Смерть наступает от ожога легких.

При отравлении средними и низкими концентрациями хлора пострадавший испытывает резкие боли за грудиной, резь в глазах, слезотечение. Возникает мучительный сухой кашель. Через 2-3 часа после вдыхания хлора увеличивается одышка, развивается отек легких, характеризующийся появлением пенистой желтой или красноватой мокроты со значительным количеством слизи.

В легких случаях отравление хлором ограничивается покраснением конъюнктивы, мягкого и глотки, астмоидным бронхитом, небольшой одышкой и часто рвотой. Иногда развивается отек и воспаление легких.

Хроническое отравление хлором проявляется в виде воспаления десен, слизистой оболочки носа, хронических бронхитов; длительный контакт с Cl 2 приводит к кариесу зубов. Хлор при высокой концентрации может вызвать острый дерматит, иногда переходящий в .

Первая помощь при отравлении - чистый воздух, покой, тепло, как можно раньше ингаляция кислорода. Госпитализация. При явлениях раздражения верхних дыхательных путей вдыхание распыленного 2% раствора тиосульфата (гипосульфит) натрия, 0,5% раствора гидрокарбоната натрия (), теплое молоко с боржомом или содой, кофе.

Меры предупреждения: герметизация аппаратуры, систематический контроль содержания хлора в воздухе производственных помещений, индивидуальные .

Хлор

ХЛОР -а; м. [от греч. chlōros - бледно-зелёный] Химический элемент (Cl), удушливый газ зеленовато-жёлтого цвета с резким запахом (используется как отравляющее и обеззараживающее средство). Соединения хлора. Отравление хлором.

Хло́рный (см.).

хлор

(лат. Chlorum), химический элемент VII группы периодической системы, относится к галогенам. Название от греческого chlōros - жёлто-зелёный. Свободный хлор состоит из двухатомных молекул (Cl 2); газ жёлто-зелёного цвета с резким запахом; плотность 3,214 г/л; t пл -101°C; t кип -33,97°C; при обычной температуре легко сжижается под давлением 0,6 МПа. Химически очень активен (окислитель). Главные минералы - галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов. Применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбеливания целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды. Токсичен.

ХЛОР

ХЛОР (лат. Сhlorum), Cl (читается «хлор»), химический элемент с атомным номером 17, атомная масса 35,453. В свободном виде - желто-зеленый тяжелый газ с резким удушливым запахом (отсюда название: греч. chloros - желто-зеленый).
Природный хлор представляет смесь двух нуклидов (см. НУКЛИД) с массовыми числами 35 (в смеси 75,77% по массе) и 37 (24,23%). Конфигурация внешнего электронного слоя 3s 2 p 5 . В соединениях проявляет главным образом степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII). Расположен в третьем периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам (см. ГАЛОГЕНЫ) .
Радиус нейтрального атома хлора 0,099 нм, ионные радиусы равны, соответственно (в скобках указаны значения координационного числа): Cl - 0,167 нм (6), Cl 5+ 0,026 нм (3) и Clr 7+ 0,022 нм (3) и 0,041 нм (6). Энергии последовательной ионизации нейтрального атома хлора равны, соответственно, 12,97, 23,80, 35,9, 53,5, 67,8, 96,7 и 114,3 эВ. Сродство к электрону 3,614 эВ. По шкале Полинга электроотрицательность хлора 3,16.
История открытия
Важнейшее химическое соединение хлора - поваренная соль (химическая формула NaCl, химическое название хлорид натрия) - было известно человеку с древнейших времен. Имеются свидетельства того, что добыча поваренной соли осуществлялась еще 3-4 тысячи лет до нашей эры в Ливии. Возможно, что, используя поваренную соль для различных манипуляций, алхимики сталкивались и с газообразным хлором. Для растворения «царя металлов» - золота - они использовали «царскую водку» - смесь соляной и азотной кислот, при взаимодействии которых выделяется хлор.
Впервые газ хлор получил и подробно описал шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) в 1774 году. Он нагревал соляную кислоту с минералом пиролюзитом (см. ПИРОЛЮЗИТ) MnO 2 и наблюдал выделение желто-зеленого газа с резким запахом. Так как в те времена господствовала теория флогистона (см. ФЛОГИСТОН) , новый газ Шееле рассматривал как «дефлогистонированную соляную кислоту», т. е. как окись (оксид) соляной кислоты. А.Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) рассматривал газ как оксид элемента «мурия» (соляную кислоту называли муриевой, от лат. muria - рассол). Такую же точку зрения сначала разделял английский ученый Г. Дэви (см. ДЭВИ Гемфри) , который потратил много времени на то, чтобы разложить «окись мурия» на простые вещества. Это ему не удалось, и к 1811 году Дэви пришел к выводу, что данный газ - это простое вещество, и ему отвечает химический элемент. Дэви первым предложил в соответствие с желто-зеленой окраской газа назвать его chlorine (хлорин). Название «хлор» элементу дал в 1812 французский химик Ж. Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) ; оно принято во всех странах, кроме Великобритании и США, где сохранилось название, введенное Дэви. Высказывалось мнение о том, что данный элемент следует назвать «галоген» (т. е. рождающий соли), но оно со временем стало общим названием всех элементов группы VIIA.
Нахождение в природе
Содержание хлора в земной коре составляет 0,013% по массе, в заметной концентрации он в виде иона Cl – присутствует в морской воде (в среднем около 18,8 г/л). Химически хлор высоко активен и поэтому в свободном виде в природе не встречается. Он входит в состав таких минералов, образующих большие залежи, как поваренная, или каменная, соль (галит (см. ГАЛИТ) ) NaCl, карналлит (см. КАРНАЛЛИТ) KCl·MgCl 2 ·6H 21 O, сильвин (см. СИЛЬВИН) КСl, сильвинит (Na, K)Cl, каинит (см. КАИНИТ) КСl·MgSO 4 ·3Н 2 О, бишофит (см. БИШОФИТ) MgCl 2 ·6H 2 O и многих других. Хлор можно обнаружить в самых разных породах, в почве.
Получение
Для получения газообразного хлора используют электролиз крепкого водного раствора NaCl (иногда используют KCl). Электролиз проводят с использованием катионообменной мембраны, разделяющей катодное и анодное пространства. При этом за счет процесса
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2
получают сразу три ценных химических продукта: на аноде - хлор, на катоде - водород (см. ВОДОРОД) , и в электролизере накапливается щелочь (1,13 тонны NaOH на каждую тонну полученного хлора). Производство хлора электролизом требует больших затрат электроэнергии: на получение1 т хлора расходуется от 2,3 до 3,7 МВт.
Для получения хлора в лаборатории используют реакцию концентрированной соляной кислоты с каким-либо сильным окислителем (перманганатом калия KMnO 4 , дихроматом калия K 2 Cr 2 O 7 , хлоратом калия KClO 3 , хлорной известью CaClOCl, оксидом марганца (IV) MnO 2). Наиболее удобно использовать для этих целей перманганат калия: в этом случае реакция протекает без нагревания:
2KMnO 4 + 16HCl = 2KСl + 2MnCl 2 + 5Cl 2 + 8H 2 O.
При необходимости хлор в сжиженном (под давлением) виде транспортируют в железнодорожных цистернах или в стальных баллонах. Баллоны с хлором имеют специальную маркировку, но даже при ее отсутствии хлорный баллон легко отличить от баллонов с другими неядовитыми газами. Дно хлорных баллонов имеет форму полушария, и баллон с жидким хлором невозможно без опоры поставить вертикально.
Физические и химические свойства

При обычных условиях хлор - желто-зеленый газ, плотность газа при 25°C 3,214 г/дм 3 (примерно в 2,5 раза больше плотности воздуха). Температура плавления твердого хлора –100,98°C, температура кипения –33,97°C. Стандартный электродный потенциал Сl 2 /Сl - в водном растворе равен +1,3583 В.
В свободном состоянии существует в виде двухатомных молекул Сl 2 . Межъядерное расстояние в этой молекуле 0,1987 нм. Сродство к электрону молекулы Сl 2 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации молекул Сl 2 на атомы сравнительно невелика и составляет 239,23 кДж/моль.
Хлор немного растворим в воде. При температуре 0°C растворимость составляет 1,44 масс.%, при 20°C - 0,711°C масс.%, при 60°C - 0,323 масс. %. Раствор хлора в воде называют хлорной водой. В хлорной воде устанавливается равновесие:
Сl 2 + H 2 O H + = Сl - + HOСl.
Для того, чтобы сместить это равновесие влево, т. е. понизить растворимость хлора в воде, в воду следует добавить или хлорид натрия NaCl, или какую-либо нелетучую сильную кислоту (например, серную).
Хлор хорошо растворим во многих неполярных жидкостях. Жидкий хлор сам служит растворителем таких веществ, как ВСl 3 , SiCl 4 , TiCl 4 .
Из-за низкой энергии диссоциации молекул Сl 2 на атомы и высокого сродства атома хлора к электрону химически хлор высоко активен. Он вступает в непосредственное взаимодействие с большинством металлов (в том числе, например, с золотом) и многими неметаллами. Так, без нагревания хлор реагирует с щелочными (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) и щелочноземельными металлами (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) , с сурьмой:
2Sb + 3Cl 2 = 2SbCl 3
При нагревании хлор реагирует с алюминием:
3Сl 2 + 2Аl = 2А1Сl 3
и железом:
2Fe + 3Cl 2 = 2FeCl 3 .
С водородом H 2 хлор реагирует или при поджигании (хлор спокойно горит в атмосфере водорода), или при облучении смеси хлора и водорода ультрафиолетовым светом. При этом возникает газ хлороводород НСl:
Н 2 + Сl 2 = 2НСl.
Раствор хлороводорода в воде называют соляной (см. СОЛЯНАЯ КИСЛОТА) (хлороводородной) кислотой. Максимальная массовая концентрация соляной кислоты около 38%. Соли соляной кислоты - хлориды (см. ХЛОРИДЫ) , например, хлорид аммония NH 4 Cl, хлорид кальция СаСl 2 , хлорид бария ВаСl 2 и другие. Многие хлориды хорошо растворимы в воде. Практически нерастворим в воде и в кислых водных растворах хлорид серебра AgCl. Качественная реакция на присутствие хлорид-ионов в растворе - образование с ионами Ag + белого осадка AgСl, практически нерастворимого в азотнокислой среде:
СаСl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl.
При комнатной температуре хлор реагирует с серой (образуется так называемая однохлористая сера S 2 Cl 2) и фтором (образуются соединения ClF и СlF 3). При нагревании хлор взаимодействует с фосфором (образуются, в зависимости от условий проведения реакции, соединения РСl 3 или РСl 5), мышьяком, бором и другими неметаллами. Непосредственно хлор не реагирует с кислородом, азотом, углеродом (многочисленные соединения хлора с этими элементами получают косвенными путями) и инертными газами (в последнее время ученые нашли способы активирования подобных реакций и их осуществления «напрямую»). С другими галогенами хлор образует межгалогенные соединения, например, очень сильные окислители - фториды ClF, ClF 3 , ClF 5 . Окислительная способность хлора выше, чем брома, поэтому хлор вытесняет бромид-ион из растворов бромидов, например:
Cl 2 + 2NaBr = Br 2 + 2NaCl
Хлор вступает в реакции замещения со многими органическими соединениями, например, с метаном СН 4 и бензолом С 6 Н 6:
СН 4 + Сl 2 = СН 3 Сl + НСl или С 6 Н 6 + Сl 2 = С 6 Н 5 Сl + НСl.
Молекула хлора способна присоединятся по кратным связям (двойным и тройным) к органическим соединениям, например, к этилену С 2 Н 4:
С 2 Н 4 + Сl 2 = СН 2 СlСН 2 Сl.
Хлор вступает во взаимодействие с водными растворами щелочей. Если реакция протекает при комнатной температуре, то образуются хлорид (например, хлорид калия КCl) и гипохлорит (см. ГИПОХЛОРИТЫ) (например, гипохлорит калия КClО):
Cl 2 + 2КОН = КClО + КСl +Н 2 О.
При взаимодействии хлора с горячим (температура около 70-80°C) раствором щелочи образуется соответствующий хлорид и хлорат (см. ХЛОРАТЫ) , например:
3Сl 2 + 6КОН= 5КСl + КСlО 3 + 3Н 2 О.
При взаимодействии хлора с влажной кашицей из гидроксида кальция Са(ОН) 2 образуется хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) («хлорка») СаСlОСl.
Степени окисления хлора +1 отвечает слабая малоустойчивая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО. Ее соли - гипохлориты, например, NaClO - гипохлорит натрия. Гипохлориты - сильнейшие окислители, широко используются как отбеливающие и дезинфицирующие агенты. При взаимодействии гипохлоритов, в частности, хлорной извести, с углекислым газом СО 2 образуется среди других продуктов летучая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) , которая может разлагаться с выделением оксида хлора (I) Сl 2 О:
2НСlО = Сl 2 О + Н 2 О.
Именно запах этого газа Сl 2 О - характерный запах «хлорки».
Степени окисления хлора +3 отвечает малоустойчивая кислота средней силы НСlО 2 . Эту кислоту называют хлористой, ее соли - хлориты (см. ХЛОРИТЫ (соли)) , например, NaClO 2 - хлорит натрия.
Степени окисления хлора +4 соответствует только одно соединение - диоксид хлора СlО 2 .
Степени окисления хлора +5 отвечает сильная, устойчивая только в водных растворах при концентрации ниже 40%, хлорноватая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО 3 . Ее соли - хлораты, например, хлорат калия КСlО 3 .
Степени окисления хлора +6 соответствует только одно соединение - триоксид хлора СlО 3 (существует в виде димера Сl 2 О 6).
Степени окисления хлора +7 отвечает очень сильная и довольно устойчивая хлорная кислота (см. ХЛОРНАЯ КИСЛОТА) НСlО 4 . Ее соли - перхлораты (см. ПЕРХЛОРАТЫ) , например, перхлорат аммония NH 4 ClO 4 или перхлорат калия КСlО 4 . Следует отметить, что перхлораты тяжелых щелочных металлов - калия, и особенно рубидия и цезия мало растворимы в воде. Оксид, соответствующий степени окисления хлора +7 - Сl 2 О 7 .
Среди соединений, содержащих хлор в положительных степенях окисления, наиболее сильными окислительными свойствами обладают гипохлориты. Для перхлоратов окислительные свойства нехарактерны.
Применение
Хлор - один из важнейших продуктов химической промышленности. Его мировое производство составляет десятки миллионов тонн в год. Хлор используют для получения дезинфицирующих и отбеливающих средств (гипохлорита натрия, хлорной извести и других), соляной кислоты, хлоридов многих металлов и неметаллов, многих пластмасс (поливинилхлорида (см. ПОЛИВИНИЛХЛОРИД) и других), хлорсодержащих растворителей (дихлорэтана СН 2 СlСН 2 Сl, четыреххлористого углерода ССl 4 и др.), для вскрытия руд, разделения и очистки металлов и т.д. Хлор применяют для обеззараживания воды (хлорирования (см. ХЛОРИРОВАНИЕ) ) и для многих других целей.
Биологическая роль
Хлор относится к важнейшим биогенным элементам (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) и входит в состав всех живых организмов. Некоторые растения, так называемые галофиты, не только способны расти на сильно засоленных почвах, но и накапливают в больших количествах хлориды. Известны микроорганизмы (галобактерии и др.) и животные, обитающие в условиях высокой солености среды. Хлор - один из основных элементов водно-солевого обмена животных и человека, определяющих физико-химические процессы в тканях организма. Он участвует в поддержании кислотно-щелочного равновесия в тканях, осморегуляции (см. ОСМОРЕГУЛЯЦИЯ) (хлор - основное осмотически активное вещество крови, лимфы и др. жидкостей тела), находясь, в основном, вне клеток. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.
Мышечная ткань человека содержит 0,20-0,52% хлора, костная - 0,09%; в крови - 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.
Особенности работы с хлором
Хлор - ядовитый удушливый газ, при попадании в легкие вызывает ожог легочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л. Хлор был одним из первых химических отравляющих веществ (см. ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА) , использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 . ПДК хлора в воздухе рабочих помещений 1 мг/м 3 , в воздухе населенных пунктов 0,03 мг/м 3 .

Хлор, вероятно, получали еще алхимики, но его открытие и первое исследование неразрывно связано с именем знаменитого шведского химика Карла Вильгельма Шееле . Шееле открыл пять химических элементов – барий и марганец (совместно с Юханом Ганом), молибден, вольфрам, хлор, а независимо от других химиков (хотя и позже) – еще три: кислород, водород и азот. Это достижение впоследствии не смог повторить ни один химик. При этом Шееле, уже избранный членом Шведской королевской академии наук, был простым аптекарем в Чёпинге, хотя мог занять более почетную и престижную должность. Сам Фридрих II Великий , прусский король, предлагал ему занять пост профессора химии Берлинского университета. Отказываясь от подобных заманчивых предложений, Шееле говорил: «Я не могу есть больше, чем мне нужно, а того, что я зарабатываю здесь в Чёпинге, мне хватает на пропитание».

Многочисленные соединения хлора были известны, конечно, задолго до Шееле. Этот элемент входит в состав многих солей, в том числе и самой известной – поваренной соли. В 1774 Шееле выделил хлор в свободном виде, нагревая черный минерал пиролюзит с концентрированной соляной кислотой: MnO 2 + 4HCl ® Cl 2 + MnCl 2 + 2H 2 O.

Вначале химики рассматривали хлор не как элемент, а как химическое соединение неизвестного элемента мурия (от латинского muria – рассол) с кислородом. Считалось, что и соляная кислота (ее называли муриевой) содержит химически связанный кислород. Об этом «свидетельствовал», в частности, такой факт: при стоянии раствора хлора на свету из него выделялся кислород, а в растворе оставалась соляная кислота. Однако многочисленные попытки «оторвать» кислород от хлора ни к чему не привели. Так, никому не удалось получить углекислый газ, нагревая хлор с углем (который при высоких температурах «отнимает» кислород от многих содержащих его соединений). В результате подобных опытов, проведенных Гемфри Дэви, Жозеф Луи Гей-Люссаком и Луи Жаком Тенаром, стало ясно, что хлор не содержит кислорода и является простым веществом. К тому же выводу привели и опыты Гей-Люссака, который проанализировал количественное соотношение газов в реакции хлора с водородом.

В 1811 Дэви предложил для нового элемента название «хлорин» – от греч. «хлорос» – желто-зеленый. Именно такой цвет имеет хлор. Этот же корень – в слове «хлорофилл» (от греч. «хлорос» и «филлон» – лист). Спустя год Гей-Люссак «сократил» название до «хлора». Но до сих пор англичане (и американцы) называют этот элемент «хлорином» (chlorine), тогда как французы – хлором (chlore). Приняли сокращенное название и немцы – «законодатели» химии на протяжении почти всего 19 в. (по-немецки хлор – Chlor). В 1811 немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (от греческих «халс» – соль, и «геннао» – рождаю). Впоследствии этот термин закрепился не только за хлором, но и за всеми его аналогами по седьмой группе – фтором, бромом, иодом, астатом.

Интересна демонстрация горения водорода в атмосфере хлора: иногда во время опыта возникает необычный побочный эффект: раздается гудение. Чаще всего пламя гудит, когда тонкую трубку, по которой подается водород, опускают в заполненный хлором сосуд конической формы; то же справедливо для сферических колб, а вот в цилиндрах пламя обычно не гудит. Это явление назвали «поющим пламенем».

В водном растворе хлор частично и довольно медленно реагирует с водой; при 25° С равновесие: Cl 2 + H 2 O HClO + HCl устанавливается в течение двух суток. Хлорноватистая кислота на свету разлагается: HClO ® HCl + O. Именно атомарному кислороду приписывают отбеливающий эффект (абсолютно сухой хлор такой способностью не обладает).

Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl 2 O – желто-оранжевый газ, ClO 2 – желтый газ (ниже 9,7 о С – яркокрасная жидкость), перхлорат хлора Cl 2 O 4 (ClO–ClO 3 , светло-желтая жидкость), Cl 2 O 6 (O 2 Cl–O–ClO 3 , ярко-красная жидкость), Cl 2 O 7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl 2 O 3 и ClO 3 . Оксид ClO 2 производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF 3 , ClF 5 , BrCl, ICl, ICl 3 .

Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K 4 + Cl 2 ® K 3 + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

Хлор в разных степенях окисления образует ряд кислот: HCl – хлороводородная (соляная, соли – хлориды), HClO – хлорноватистая (соли – гипохлориты), HClO 2 – хлористая (соли – хлориты), HClO 3 – хлорноватая (соли – хлораты), HClO 4 – хлорная (соли – перхлораты). В чистом виде из кислородных кислот устойчива только хлорная. Из солей кислородных кислот практическое применение имеют гипохлориты, хлорит натрия NaClO 2 – для отбеливания тканей, для изготовления компактных пиротехнических источников кислорода («кислородные свечи»), хлораты калия (бертолетова соль), кальция и магния (для борьбы с вредителями сельского хозяйства, как компоненты пиротехнических составов и взрывчатых веществ, в производстве спичек), перхлораты – компоненты взрывчатых веществ и пиротехнических составов; перхлорат аммония – компонент твердых ракетных топлив.

Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl 2 ® RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

СН 3 СООН + Cl 2 ® CH 2 ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl 3 СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH 3 COO) 2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH 2 Cl 2 , хлороформ CHCl 3 , четыреххлористый углерод CCl 4 , трихлорэтилен CHCl=CCl 2 , тетрахлорэтилен C 2 Cl 4 . В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

Хлор как отравляющий газ.

Получивший хлор Шееле отметил его очень неприятный резкий запах, затруднение дыхания и кашель. Как потом выяснили, человек чувствует запах хлора даже в том случае, если в одном литре воздуха содержится лишь 0,005 мг этого газа, и при этом он уже оказывает раздражающее действие на дыхательные пути, разрушая клетки слизистой оболочки дыхательных путей и легких. Концентрация 0,012 мг/л переносится с трудом; если же концентрация хлора превышает 0,1 мг/л, он становится опасным для жизни: дыхание учащается, становится судорожным, а затем – все более редким, и уже через 5–25 минут происходит остановка дыхания. Предельно допустимой в воздухе промышленных предприятий считается концентрация 0,001 мг/л, а в воздухе жилых районов – 0,00003 мг/л.

Петербургский академик Товий Егорович Ловиц, повторяя в 1790 опыт Шееле, случайно выпустил значительное количество хлора в воздух. Вдохнув его, он потерял сознание и упал, потом в течение восьми дней страдал от мучительной боли в груди. К счастью, он выздоровел. Чуть не умер, отравившись хлором, и знаменитый английский химик Дэви. Опыты даже с небольшим количеством хлора опасны, так как могут вызвать сильное поражение легких. Рассказывают, что немецкий химик Эгон Виберг одну из своих лекций о хлоре начал словами: «Хлор – ядовитый газ. Если я отравлюсь во время очередной демонстрации, вынесите меня, пожалуйста, на свежий воздух. Но лекцию при этом придется, к сожалению, прервать». Если же выпустить в воздух много хлора, он становится настоящим бедствием. Это испытали на себе во время Первой мировой войны англо-французские войска. Утром 22 апреля 1915 германское командование решило провести первую в истории войн газовую атаку: когда ветер подул в сторону противника, на небольшом шестикилометровом участке фронта в районе бельгийского городка Ипр были одновременно открыты вентили 5730 баллонов, каждый из которых содержал 30 кг жидкого хлора. В течение 5 минут образовалось огромное желто-зеленое облако, которое медленно уходило от немецких окопов в сторону союзников. Английские и французские солдаты оказались полностью беззащитными. Газ проникал через щели во все укрытия, от него не было спасения: ведь противогаз еще не был изобретен. В результате было отравлено 15 тысяч человек, из них 5 тысяч – насмерть. Через месяц, 31 мая немцы повторили газовую атаку на восточном фронте – против русских войск. Это произошло в Польше у города Болимова. На фронте 12 км из 12 тысяч баллонов было выпущено 264 тонны смеси хлора со значительно более ядовитым фосгеном (хлорангидридом угольной кислоты COCl 2). Царское командование знало о том, что произошло при Ипре, и тем не менее русские солдаты не имели никаких средств защиты! В результате газовой атаки потери составили 9146 человек, из них только 108 – в результате ружейного и артиллерийского обстрела, остальные были отравлены. При этом почти сразу же погибло 1183 человека.

Вскоре химики указали, как спасаться от хлора: надо дышать через марлевую повязку, пропитанную раствором тиосульфата натрия (это вещество применяется в фотографии, его часто называют гипосульфитом). Хлор очень быстро реагирует с раствором тиосульфата, окисляя его:

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ® 2H 2 SO 4 + 2NaCl + 6HCl. Конечно, серная кислота тоже не безвредное вещество, но ее разбавленный водный раствор намного менее опасен, чем ядовитый хлор. Поэтому у тиосульфата в те годы появилось еще одно название – «антихлор», но первые тиосульфатные противогазы были мало эффективны.

В 1916 русский химик, будущий академик Николай Дмитриевич Зелинский изобрел действительно эффективный противогаз, в котором ядовитые вещества задерживали слоем активированного угля. Такой уголь с очень развитой поверхностью мог задержать значительно больше хлора, чем пропитанная гипосульфитом марля. К счастью, «хлорные атаки» остались лишь трагическим эпизодом в истории. После мировой войны у хлора остались только мирные профессии.

Применение хлора.

Ежегодно во всем мире получают огромные количества хлора – десятки миллионов тонн. Только в США к концу 20 в. ежегодно путем электролиза получали около 12 млн. тонн хлора (10-е место среди химических производств). Основная его масса (до 50%) расходуется на хлорирование органических соединений – для получения растворителей, синтетического каучука, поливинилхлорида и других пластмасс, хлоропренового каучука, пестицидов, лекарственных средств, многих других нужных и полезных продуктов. Остальное потребляется для синтеза неорганических хлоридов, в целлюлозно-бумажной промышленности для отбеливания древесной пульпы, для очистки воды. В сравнительно небольших количествах хлор используют в металлургической промышленности. С его помощью получают очень чистые металлы – титан, олово, тантал, ниобий. Сжиганием водорода в хлоре получают хлороводород, а из него – соляную кислоту. Хлор применяют также для производства отбеливающих веществ (гипохлоритов, хлорной извести) и обеззараживания воды хлорированием.

Илья Леенсон

Современные методы обеззараживания воды Хохрякова Елена Анатольевна

4.2.1. Хлор

Хлор является самым распространенным веществом, используемым для обеззараживания питьевой воды. Это объясняется его высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.

Хлор легко растворяется в воде, после смешения газообразного хлора с водой в водном растворе устанавливается равновесие:

НСlО? Н + + ОСl -

Наличие хлорноватистой кислоты в водных растворах хлора и получающиеся в результате ее диссоциации анионы ОСl - обладают сильными бактерицидными свойствами. Хлорноватистая кислота почти в 300 раз более активна, чем гипохлорит-ионы ClO - . Объясняется это уникальной способностью HClO проникать в бактерии через их мембраны. Хлорноватистая кислота подвержена разложению на свету:

2HClO ? 2O + 2HCl ? О 2 + 2HCl

с образованием хлористоводородной кислоты и атомарного кислорода в качестве промежуточного вещества, который также является сильнейшим окислителем.

Обработку воды хлором осуществляют с помощью, так называемых, хлораторов, в которых газообразный (испаренный) хлор абсорбируют водой. Полученная хлорированная вода из хлоратора сразу подается к месту ее потребления. Несмотря на то что этот метод обработки воды и является наиболее распространенным, у него тоже есть ряд недостатков. Прежде всего, сложная транспортировка и хранение больших объемов жидкого высокотоксичного хлора. При такой организации процесса неизбежно присутствуют потенциально опасные стадии – прежде всего разгрузка емкостей с жидким хлором и его испарение для перевода в рабочую форму.

Создание рабочих запасов хлора на складах представляет опасность не только для рабочего персонала станции, но и для жителей расположенных рядом домов. Как альтернативный вариант хлорирования в последние годы все шире используют обработку воды раствором гипохлорита натрия (NaClO), этот метод находит применение как на промышленных станциях водоподготовки, так и на небольших объектах, в том числе в частных домах.

Хлор — элемент 3-го периода и VII А-группы Периодической системы, порядковый номер 17. Электронная формула атома [ 10 Ne ]3s 2 Зр 5 , характерные степени окисления 0, -1, + 1, +5 и +7. Наиболее устойчиво состояние Cl -1 . Шкала степеней окисления хлора:

7 – Cl 2 O 7 , ClO 4 — ,HClO 4 , KClO 4

5 — ClO 3 — , HClO 3 ,KClO 3

1 – Cl 2 O , ClO — , HClO , NaClO , Ca(ClO) 2

— 1 – Cl — , HCl, KCl , PCl 5

Хлор обладает высокой электроотрицательностью (2,83), проявляет неметаллические свойства. Входит в состав многих веществ — оксидов, кислот, солей, бинарных соединений.

В природе — двенадцатый по химической распространенности элемент (пятый среди неметаллов). Встречается только в химически связанном виде. Третий по содержанию элемент в природных водах (после О и Н), особенно много хлора в морской воде (до 2 % по массе). Жизненно важный элемент для всех организмов.

Хлор С1 2 . Простое вещество. Желто-зеленый газ с резким удушливым запахом. Молекула Сl 2 неполярна, содержит σ-связь С1-С1. Термически устойчив, негорюч на воздухе; смесь с водородом взрывается на свету (водород сгорает в хлоре):

Cl 2 +H 2 ⇌HCl

Хорошо растворим в воде, подвергается в ней дисмутации на 50 % и полностью — в щелочном растворе:

Cl 2 0 +H 2 O ⇌HCl I O+HCl -I

Cl 2 +2NaOH (хол) = NaClO+NaCl+H 2 O

3Cl 2 +6NaOH (гор) =NaClO 3 +5NaCl+H 2 O

Раствор хлора в воде называют хлорной водой , на свету кислота НСlO разлагается на НСl и атомарный кислород О 0 , поэтому «хлорную воду» надо хранить в темной склянке. Наличием в «хлорной воде» кислоты НСlO и образованием атомарного кислорода объясняются ее сильные окислительные свойства: например, во влажном хлоре обесцвечиваются многие красители.

Хлор очень сильный окислитель по отношению к металлам и неметаллам:

Сl 2 + 2Nа = 2NаСl 2

ЗСl 2 + 2Fе→2FеСl 3 (200 °С)

Сl 2 +Se=SeCl 4

Сl 2 + РЬ→PbCl 2 (300 ° С )

5Cl 2 +2P→2PCl 5 (90 °С)

2Cl 2 +Si→SiCl 4 (340 °С)

Реакции с соединениями других галогенов:

а) Сl 2 + 2КВг (Р) = 2КСl + Вr 2 (кипячение)

б) Сl 2 (нед.) + 2КI (р) = 2КСl + I 2 ↓

ЗСl (изб.) + 3Н 2 O+ КI = 6НСl + КIO 3 (80 °С)

Качественная реакция — взаимодействие недостатка СL 2 с КI (см. выше) и обнаружение йода по синему окрашиванию после добавления раствора крахмала.

Получение хлора в промышленности :

2NаСl (расплав) → 2Nа + Сl 2 (электролиз)

2NaCl+ 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

и в лаборатории :

4НСl (конц.) + МnO 2 = Сl 2 + МnСl 2 + 2Н 2 O

(аналогично с участием других окислителей; подробнее см. реакции для НСl и NaСl).

Хлор относится к продуктам основного химического производства, используется для получения брома и йода, хлоридов и кислородсодержащих производных, для отбеливания бумаги, как дезинфицирующее средство для питьевой воды. Ядовит.

Хлороводород НС l . Бескислородная кислота. Бесцветный газ с резким запахом, тяжелее воздуха. Молекула содержит ковалентную σ -связь Н — Сl. Термически устойчив. Очень хорошо растворим в воде; разбавленные растворы называются хлороводородной кислотой , а дымящий концентрированный раствор (35-38 %)- соляной кислотой (название дано еще алхимиками). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Сильный восстановитель в концентрированном растворе (за счет Сl — I), слабый окислитель в разбавленном растворе (за счет Н I). Составная часть «царской водки».

Качественная реакция на ион Сl — — образование белых осадков АgСl и Нg 2 Сl 2 , которые не переводятся в раствор действием разбавленной азотной кислоты.

Хлороводород служит сырьем в производстве хлоридов, хлорорганических продуктов, используется (в виде раствора) при травлении металлов, разложении минералов и руд. Уравнения важнейших реакций:

НСl (разб.) + NаОН (разб.) = NaСl + Н 2 O

НСl (разб.) + NН 3 Н 2 O = NH 4 Сl + Н 2 O

4НСl (конц., гор.) + МO 2 = МСl 2 + Сl 2 + 2Н 2 O (М = Мп, РЬ)

16НСl (конц., гор.) + 2КМnO 4(т) = 2МnСl 2 + 5Сl 2 + 8Н 2 O + 2КСl

14НСl (конц.) + К 2 Сr 2 O 7(т) = 2СrСl 3 + ЗСl 2 + 7Н 2 O + 2КСl

6НСl (конц.) + КСlO 3(Т) = КСl + ЗСl 2 + 3Н 2 O (50-80 °С)

4НСl (конц.) + Са(СlO) 2(т) = СаСl 2 + 2Сl 2 + 2Н 2 O

2НСl (разб.) + М = МСl 2 + H 2 (М = Ре, 2п)

2НСl (разб.) + МСO 3 = МСl 2 + СO 2 + Н 2 O (М = Са, Ва)

НСl (разб.) + АgNO 3 = НNO 3 + АgСl↓

Получение НСl в промышленности — сжигание Н 2 в Сl 2 (см.), в лаборатории — вытеснение из хлоридов серной кислотой:

NаСl (т) + Н 2 SO4 (конц.) = NаНSO 4 + НС l (50 °С)

2NaСl (т) + Н 2 SO 4 (конц.) = Nа 2 SO 4 + 2НСl (120 °С)

Хлориды

Хлорид натрия Na Сl . Бескислородная соль. Бытовое название поваренная соль . Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, растворимость мало зависит от температуры, раствор имеет характерный соленый вкус. Гидролизу не подвергается. Слабый восстановитель. Вступает в реакции ионного обмена. Подвергается электролизу в расплаве и растворе.

Применяется для получения водорода, натрия и хлора, соды, едкого натра и хлороводорода, как компонент охлаждающих смесей, пищевой продукт и консервирующее средство.

В природе — основная часть залежей каменной соли, или галита , и сильвинита (вместе с КСl),рапы соляных озер, минеральных примесей морской воды (содержание NaСl=2,7%). В промышленности получают выпариванием природных рассолов.

Уравнения важнейших реакций:

2NаСl (т) + 2Н 2 SO 4 (конц.) + МnO 2(т) = Сl 2 + МnSO 4 + 2Н 2 O + Na 2 SO 4 (100 °С)

10NаСl (т) + 8Н 2 SO 4 (конц.) + 2КМnO 4(т) = 5Сl 2 + 2МnSO 4 + 8Н 2 О + 5Nа 2 SO 4 + К 2 SO 4 (100°С)

6NaСl (Т) + 7Н 2 SO 4 (конц.) + К 2 Сr 2 O 7(т) = 3Сl 2 + Сr 2 (SO 4) 3 + 7Н 2 O+ ЗNа 2 SO 4 + К 2 SO 4 (100 °С)

2NаСl (т) + 4Н 2 SO 4 (конц.) + РЬO 2(т) = Сl 2 + Рb(НSO 4) 2 + 2Н 2 O + 2NaНSO 4 (50 °С)

NaСl (разб.) + АgNO 3 = NaNО 3 + АgСl↓

NaCl (ж) →2Na+Cl 2 (850°С, электролиз)

2NаСl + 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

2NаСl (р,20%) → Сl 2 + 2 N а(Н g ) “амальгама” (электролиз,на Hg -катоде)

Хлорид калия КСl . Бескислородная соль. Белый, негигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, раствор имеет горький вкус, гидролиза нет. Вступает в реакции ионного обмена. Применяется как калийное удобрение, для получения К, КОН и Сl 2 . В природе основная составная часть (наравне с NаСl) залежей сильвинита .

Уравнения важнейших реакций одинаковы с таковыми для NаСl.

Хлорид кальция СаСl 2 . Бескислородная соль. Белый, плавится без разложения. Расплывается на воздухе за счет энергичного поглощения влаги. Образует кристаллогидрат СаСl 2 6Н 2 О с температурой обезвоживания 260 °С. Хорошо растворим в воде, гидролиза нет. Вступает в реакции ионного обмена. Применяется для осушения газов и жидкостей, приготовления охлаждающих смесей. Компонент природных вод, составная часть их «постоянной» жесткости.

Уравнения важнейших реакций:

СаСl 2(Т) + 2Н 2 SO 4 (конц.) = Са(НSO 4) 2 + 2НСl (50 °С)

СаСl 2(Т) + Н 2 SO 4 (конц.) = СаSO 4 ↓+ 2НСl (100 °С)

СаСl 2 + 2NaОН (конц.) = Са(ОН) 2 ↓+ 2NaCl

ЗСаСl 2 + 2Nа 3 РO 4 = Са 3 (РO 4) 2 ↓ + 6NaCl

СаСl 2 + К 2 СO 3 = СаСО 3 ↓ + 2КСl

СаСl 2 + 2NaF = СаF 2 ↓+ 2NаСl

СаСl 2(ж) → Са + Сl 2 (электролиз,800°С)

Получение:

СаСО 3 + 2НСl = СаСl 2 + СO 3 + Н 2 O

Хлорид алюминия АlСl 3 . Бескислородная соль. Белый, легкоплавкий,сильнолетучий. В паре состоит из ковалентных мономеров АlСl 3 (треугольное строение,sр 2 гибридизация, преобладают при 440-800 °С) и димеров Аl 2 Сl 6 (точнее, Сl 2 АlСl 2 АlСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 183-440 °С). Гигроскопичен, па воздухе «дымит». Образует кристаллогидрат, разлагающийся при нагревании. Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, создает в растворе сильнокислотную среду вследствие гидролиза. Реагирует со щелочами, гидратом аммиака. Восстанавливается при электролизе расплава. Вступает в реакции ионного обмена.

Качественная реакция на ион Аl 3+ — образование осадка АlРO 4 , который переводится в раствор концентрированной серной кислотой.

Применяется как сырье в производстве алюминия, катализатор в органическом синтезе и при крекинге нефти, переносчик хлора в органических реакциях. Уравнения важнейших реакций:

АlСl 3 . 6Н 2 O →АlСl(ОН) 2 (100-200°С, — HCl , H 2 O ) →Аl 2 O 3 (250-450°С, -HCl,H2O)

АlСl 3(т) + 2Н 2 O (влага) = АlСl(ОН) 2(т) + 2НСl (белый «дым»)

АlCl 3 + ЗNаОН (разб.) = Аl(OН) 3 (аморф.) ↓ + ЗNаСl

АlСl 3 + 4NаОН (конц.) = Nа[Аl(ОН) 4 ] + ЗNаСl

АlСl 3 + 3(NН 3 . Н 2 O) (конц.) = Аl(ОН) 3(аморф.) + ЗNН 4 Сl

АlCl 3 + 3(NН 3 Н 2 O) (конц.) =Аl(ОН)↓ + ЗNН 4 Сl + Н 2 O (100°С)

2Аl 3+ + 3Н 2 O + ЗСО 2- 3 = 2Аl(ОН) 3 ↓ + ЗСO 2 (80°С)

2Аl 3+ =6Н 2 O+ 3S 2- = 2Аl(ОН) 3 ↓+ 3Н 2 S

Аl 3+ + 2НРО 4 2- — АlРO 4 ↓ + Н 2 РO 4 —

2АlСl 3 →2Аl + 3Сl 2 (электролиз,800 °С ,в расплаве N аС l )

Получение АlСl в промышленност и — хлорирование каолина, глинозёма или боксита в присутствии кокса:

Аl 2 O 3 + 3С (кокс) + 3Сl 2 = 2АlСl 3 + 3СО (900 °С)

Хлорид железа( II ) F еС l 2 . Бескислородная соль. Белый (гидрат голубовато-зеленый), гигроскопичный. Плавится и кипит без разложения. При сильном нагревании летуч в потоке НСl. Связи Fе — Сl преимущественно ковалентные, пар состоит из мономеров FеСl 2 (линейное строение, sр-гибридизация) и димеров Fе 2 Сl 4 . Чувствителен к кислороду воздуха (темнеет). Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, слабо гидролизуется по катиону. При кипячении раствора разлагается. Реагирует с кислотами, щелочами, гидратом аммиака. Типичный восстановитель. Вступает в реакции ионного обмена и комплексообразования.

Применяется для синтеза FеСl и Fе 2 О 3 , как катализатор в органическом синтезе, компонент лекарственных средств против анемии.

Уравнения важнейших реакций:

FеСl 2 4Н 2 O = FеСl 2 + 4Н 2 O (220 °С, в атм. N 2 )

FеСl 2 (конц.) + Н 2 O=FеСl(ОН)↓ + НСl (кипячение)

FеСl 2(т) + Н 2 SO 4 (конц.) = FеSO 4 + 2НСl (кипячение)

FеСl 2(т) + 4HNO 3 (конц.) = Fе(NO 3) 3 + NO 2 + 2НСl + Н 2 O

FеСl 2 + 2NаОН (разб.) = Fе(ОН) 2 ↓+ 2NaСl (в атм. N 2 )

FеСl 2 + 2(NН 3 . Н 2 O) (конц.) = Fе(ОН) 2 ↓ + 2NН 4 Cl (80 °С)

FеСl 2 + Н 2 = 2НСl + Fе (особо чистое,выше 500 °С)

4FеСl 2 + O 2 (воздух) → 2Fе(Сl)O + 2FеСl 3 (t )

2FеСl 2(р) + Сl 2 (изб.) = 2FеСl 3(р)

5Fе 2+ + 8Н + + МnО — 4 = 5Fе 3+ + Мn 2+ + 4Н 2 O

6Fе 2+ + 14Н + + Сr 2 O 7 2- = 6Fе 3+ + 2Сr 3+ +7Н 2 O

Fе 2+ + S 2- (разб.) = FеS↓

2Fе 2+ + Н 2 O + 2СО 3 2- (разб.) = Fе 2 СO 3 (OН) 2 ↓+ СO 2

FеСl 2 →Fе↓ + Сl 2 (90°С, в разб. НСl, электролиз)

Получени е: взаимодействие Fе с соляной кислотой:

Fе + 2НСl = FеСl 2 + Н 2

промышленности используют хлороводород и ведут процесс при 500 °С).

Хлорид железа( III ) F еС l 3 . Бескислородная соль. Черно-коричневый (темно-красный в проходящем свете, зеленый в отраженном), гидрат темно-желтый. При плавлении переходит в красную жидкость. Весьма летуч, при сильном нагревании разлагается. Связи Fе — Сl преимущественно ковалентные. Пар состоит из мономеров FеСl 3 (треугольное строение, sр 2 -гибридизация, преобладают выше 750 °С) и димеров Fе 2 Сl 6 (точнее, Сl 2 FеСl 2 FеСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 316-750 °С). Кристаллогидрат FеСl . 6Н 2 O имеет строение Сl 2Н 2 O. Хорошо растворим в воде, раствор окрашен в желтый цвет; сильно гидролизован по катиону. Разлагается в горячей воде, реагирует со щелочами. Слабый окислитель и восстановитель.

Применяется как хлорагент, катализатор в органическом синтезе, протрава при крашении тканей, коагулянт при очистке питьевой воды, травитель медных пластин в гальванопластике, компонент кровоостанавливающих препаратов.

Уравнения важнейших реакций:

FеСl 3 6Н 2 O=Сl + 2Н 2 O (37 °С)

2(FеСl 8 6Н 2 O)=Fе 2 O 3 + 6НСl + 9Н 2 O (выше 250 °С)

FеСl 3 (10%) + 4Н 2 O = Сl — + + (желт.)

2FеСl3 (конц.) + 4Н 2 O = + (желт.) + — (бц.)

FеСl 3 (разб., конц.) + 2Н 2 O →FеСl(ОН) 2 ↓ + 2НСl (100 °С)

FеСl 3 + 3NaОН (разб.) = FеО(ОН)↓ + Н 2 O + 3NаСl (50 °С)

FеСl 3 + 3(NН 3 Н 2 O) (конц, гор.) =FeO(OH)↓+H 2 O+3NH 4 Cl

4FеСl 3 + 3O 2 (воздух) =2Fе 2 O 3 + 3Сl 2 (350-500 °С)

2FеСl 3(р) + Сu→ 2FеСl 2 + СuСl 2

Хлорид аммония N Н 4 Сl . Бескислородная соль, техническое название нашатырь. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эндо-эффектом, Q = -16 кДж), гидролизуется по катиону. Разлагается щелочами при кипячении раствора, переводит в раствор магний и гидроксид магния. Вступает в реакцию кон мутации с нитратами.

Качественная реакция на ион NН 4 + — выделение NН 3 при кипячении со щелочами или при нагревании с гашёной известью.

Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий.

Уравнения важнейших реакций:

NH 4 Cl (т) ⇌ NH 3(г) + HCl (г) (выше337,8 °С)

NН 4 Сl + NаОН (насыщ.) = NаСl + NН 3 + Н 2 O (100 °С)

2NН 4 Сl (Т) + Са(ОН) 2(т) = 2NН 3 + СаСl 2 + 2Н 2 O (200°С)

2NН 4 Сl (конц.) +Mg= Н 2 + МgСl 2 + 2NН 3 (80°С)

2NН 4 Сl (конц., гор.) + Мg(ОН) 2 = MgСl 2 + 2NН 3 + 2Н 2 O

NH + (насыщ.) + NO — 2 (насыщ.) =N 2 + 2Н 2 O (100°С)

NН 4 Сl + КNO 3 = N 2 O + 2Н 2 O + КСl (230-300 °С)

Получение : взаимодействие NH 3 с НСl в газовой фазе или NН 3 Н 2 О с НСl в растворе.

Гипохлорит кальция Са(С l О) 2 . Соль хлорноватистой кислоты НСlO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (образуется бесцветный раствор), гидролизуется по аниону. Реакционноспособный, полностью разлагается горячей водой, кислотами. Сильный окислитель. При стоянии раствор поглощает углекислый газ из воздуха. Является активной составной частью хлорной (белильной) извести — смеси неопределенного состава с СаСl 2 и Са(ОН) 2 . Уравнения важнейших реакций:

Са(СlO) 2 = СаСl 2 + O 2 (180 °С)

Са(СlO) 2(т) + 4НСl (конц.) = СаСl + 2Сl 2 + 2Н 2 O (80 °С)

Са(СlO) 2 + Н 2 O + СO 2 = СаСО 3 ↓ + 2НСlO (на холоду)

Са(СlO) 2 + 2Н 2 O 2 (разб.) = СаСl 2 + 2Н 2 O + 2O 2

Получение:

2Са(ОН) 2 (суспензия) + 2Сl 2(г) = Са(СlO) 2 + СаСl 2 + 2Н 2 O

Хлорат калия КС lO 3 . Соль хлорноватой кислоты НСlO 3 , наиболее известная соль кислородсодержащих кислот хлора. Техническое название — бертоллетова соль (по имени ее первооткрывателя К.-Л. Бертолле, 1786). Белый, плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (образуется бесцветный раствор), гидролиза нет. Разлагается концентрированными кислотами. Сильный окислитель при сплавлении.

Применяется как компонент взрывчатых и пиротехнических смесей, головок спичек, в лаборатории — твердый источник кислорода.

Уравнения важнейших реакций:

4КСlO 3 = ЗКСlO 4 + КСl (400 °С)

2КСlO 3 = 2КСl + 3O 2 (150-300 °С, кат. Мп O 2 )

КСlO 3(Т) + 6НСl (конц.) = КСl + 3Сl 2 + ЗН 2 O (50-80 °С)

3КСlO 3(Т) + 2Н 2 SO 4 (конц., гор.) = 2СlO 2 + КСlO 4 + Н 2 O + 2КНSO 4

(диоксид хлора на свету взрывается: 2С lO 2(Г) = Сl 2 + 2 O 2 )

2КСlO 3 + Е 2(изб.) = 2КЕO 3 + Сl 2 (в разб. Н NO 3 , Е = В r , I )

KClO 3 +H 2 O→H 2 +KClO 4 (Электролиз)

Получение КСlO 3 в промышленности — электролиз горячего раствора КСl (продукт КСlO 3 выделяется на аноде):

КСl + 3Н 2 O →Н 2 + КСlO 3 (40-60 °С,Электролиз)

Бромид калия КВ r . Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, чем

Качественная реакция на ион Вr — вытеснение брома из раствора КВr хлором и экстракция брома в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в бурый цвет).

Применяется как компонент травителей при гравировке по металлам, составная часть фотоэмульсий, лекарственное средство.

Уравнения важнейших реакций:

2КВr (т) + 2Н 2 SO 4 (КОНЦ., гор,) + МnO 2(т) =Вr 2 + МnSO 4 + 2Н 2 O + К 2 SO 4

5Вr — + 6Н + + ВrО 3 — = 3Вr 2 + 3Н 2 O

Вr — + Аg + =АgВr↓

2КВr (р) +Сl 2(Г) =2КСl + Вг 2(р)

КВr + 3Н 2 O→3Н 2 + КВrО 3 (60-80 °С, электролиз)

Получение:

К 2 СO 3 + 2НВr = 2КВ r + СO 2 + Н 2 O

Иодид калия К I . Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор КI хорошо растворяет I 2 за счет комплексообразования.

Качественная реакция на ион I — вытеснение иода из раствора КI недостатком хлора и экстракция иода в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в фиолетовый цвет).

Уравнения важнейших реакций:

10I — + 16Н + + 2МnO 4 — = 5I 2 ↓ + 2Мn 2+ + 8Н 2 O

6I — + 14Н + + Сr 2 O 7 2- =3I 2 ↓ + 2Сr 3+ + 7Н 2 O

2I — + 2Н + + Н 2 O 2 (3%) = I 2 ↓+ 2Н 2 O

2I — + 4Н + + 2NO 2 — = I 2 ↓ + 2NO + 2Н 2 O

5I — + 6Н + + IO 3 — = 3I 2 + 3Н 2 O

I — + Аg + = АgI (желт .)

2КI (р) + Сl 2(р) (нед.) =2КСl + I 2 ↓

КI + 3Н 2 O + 3Сl 2(р) (изб.) = КIO 3 + 6НСl (80°С)

КI (Р) + I 2(т) =K) (Р) (кор.) («йодная вода»)

КI + 3Н 2 O→ 3Н 2 + КIO 3 (электролиз,50-60 °С)

Получение:

К 2 СO 3 + 2НI = 2 К I + СO 2 + Н 2 O




← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»