Из чего состоит электричество. Кто изобрёл электричество

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент - источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ - двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый - американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие - было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Отправить

Что такое электричество?

Электричество - это совокупность физических явлений, связанных с наличием электрического заряда. Хотя изначально электричество рассматривалось как явление, отдельное от магнетизма, но с разработкой уравнений Максвелла оба эти явления были признаны частью единого явления: электромагнетизма. Различные распространенные явления связаны с электричеством, такие как молнии, статическое электричество, электрическое отопление, электрические разряды и многие другие. Кроме того, электричество лежит в основе многих современных технологий.

Наличие электрического заряда, который может быть либо положительным, либо отрицательным, порождает электрическое поле. С другой стороны, движение электрических зарядов, которое называется электрическим током, создает магнитное поле.

Когда заряд помещается в точку с ненулевым электрическим полем, на него действует сила. Величина этой силы определяется законом Кулона. Таким образом, если бы этот заряд был перемещен, электрическое поле выполнило бы работу по перемещению (торможению) электрического заряда. Таким образом, можно говорить об электрическом потенциале в определенной точке пространства, равному работе, выполняемой внешним агентом при переносе единицы положительного заряда из произвольно выбранной точки отсчета до этой точки без какого-либо ускорения и, как правило, измеряемому в вольтах.

В электротехнике, электричество используется для:

  • подачи электроэнергии туда, где электрический ток используется для питания оборудования;
  • в электронике, имеющей дело с электрическими цепями, которые включают активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральные схемы, и связанные с ними пассивные элементы.

Электрические явления изучались с античных времен, хотя прогресс в теоретическом понимании начался в XVII и XVIII веках. Даже тогда практическое применение электричества было редкостью, и инженеры смогли использовать его в промышленных и жилых целях только в конце XIX века. Быстрое расширение электрических технологий в это время трансформировало промышленность и общество. Универсальность электричества заключается в том, что оно может использоваться почти в безграничном множестве отраслей, таких как транспорт, отопление, освещение, коммуникации и вычисления. Электроэнергия в настоящее время является основой современного индустриального общества.

История электричества

Задолго до того, как зародились какие-либо знания об электричестве, люди уже знали об ударах током электрической рыбы. Древнеегипетские тексты, датируемые 2750 годом до н. э., называли этих рыб "Громовержцы Нила" и описывали их как "защитников" всех других рыб. Свидетельства об электрических рыбах снова появляются тысячелетиями позже от древнегреческих, римских и арабских естествоиспытателей и врачей. Несколько древних писателей, такие, как Плиний Старший и Скрибониус Ларгус, свидетельствуют об онемении, как эффекте поражения электрическим током, производимым сомиками и электрическими скатами, а также они знали, что такие удары могут передаваться через проводящие ток предметы. Пациентам, страдающим от заболеваний, таких как подагра или головная боль прописывались прикосновения к таким рыбам с надеждой, что мощный электроудар может вылечить их. Возможно, что самое раннее и ближайшее приближение к открытию идентичности молнии и электричества из любого другого источника, было совершено арабами, у которых до 15-го века в языке слово "молния" (раад) применялось к электрическим скатам.

Древние культуры Средиземноморья знали, что если некоторые предметы, такие как янтарные палочки, потереть кошачьим мехом, то он нанёт притягивать легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества примерно в 600 г. до н.э., из которых он вывел, что для того, чтобы сделать янтарь способным притягивать предметы необходимо трение, в отличие от минералов, таких как магнетит, которым трение было не нужно. Фалес ошибался, полагая, что притяжение янтаря было связано с магнитным эффектом, но позже наука доказала связь между магнетизмом и электричеством. Согласно спорной теории, основанной на обнаружении Багдадской батареи в 1936 году, которая напоминает гальваническую ячейку, хотя неясно, был ли артефакт электрическим по своей природе, парфяне, возможно, знали о гальванотехнике.

Электричество продолжало вызывать не более, чем интеллектуальное любопытство на протяжении тысячелетий до 1600 года, когда английский ученый Уильям Гилберт провел тщательное изучение электричества и магнетизма, и выявил отличая "магнетитного" эффекта от статического электричества, производимого путем трения янтаря. Он придумал новое латинское слово electricus ("янтарный" или "как янтарь", от ἤλεκτρον, Elektron, с греческого: «янтарь») для обозначения свойства предметов притягивать мелкие предметы после натирания. Эта лингвистическая ассоциация породила английские слова «электрический» и «электричество», которые впервые появились в печати в работе Томаса Брауна "Pseudodoxia Epidemica" в 1646 году.

Дальнейшую работу проводили Отто фон Герике, Роберт Бойль, Стивен Грей и Шарль Франсуа Дюфе. В 18 веке Бенджамин Франклин провел обширные исследования в области электричества, продав свои владения для финансирования своей работы. В июне 1752 года он, как известно, прикрепил металлический ключ к нижней части нити воздушного змея и запустил змея в грозовое небо. Последовательность искр, соскакивающих с ключа на тыльную сторону ладони показала, что молния действительно имеет электрическую природу. Он также объяснил кажущее парадоксальным поведение лейденской банки в качестве устройства для хранения большого количества электрического заряда с точки зрения электричества, состоящего из положительных и отрицательных зарядов.

В 1791 году Луиджи Гальвани объявил о своем открытии биоэлектромагнетизма, демонстрируя, что электричество является средством, с помощью которого нейроны передают сигналы к мышцам. Аккумуляторная батарея Алессандро Вольта или гальванический столб 1800-х годов изготавливались из чередующихся слоев цинка и меди. Для ученых это был более надежный источник электрической энергии, чем электростатические машины, используемые ранее. Понимание электромагнетизма как единства электрических и магнитных явлений произошло благодаря Эрстеду и Андре-Мари Амперу в 1819-1820 годах. Майкл Фарадей изобрел электрический двигатель в 1821 году, а Георг Ом математически проанализировал электрическую цепь в 1827году. Электричество и магнетизм (и свет) были окончательно связаны Джеймсом Максвеллом, в частности, в его работе «О физических силовых линиях» в 1861 и 1862 годах.

В то время как в начале 19-го века мир стал свидетелем стремительного прогресса в науке об электричестве, в конце 19 века наибольший прогресс случился в области электротехники. С помощью таких людей, как Александр Грэхем Белл, Отто Титус Блати, Томас Эдисон, Галилео Феррарис, Оливер Хевисайда, Аньош Иштван Йедлик, Уильям Томсон, 1-й барон Кельвин, Чарльз Алджернон Парсонс, Вернер фон Сименс, Джозеф Уилсон Суон, Реджинальд Фессенден, Никола Тесла и Джордж Вестингауз, электричество превратилась из научного любопытства в незаменимый инструмент для современной жизни, став движущей силой второй промышленной революции.

В 1887 году Генрих Герц обнаружил, что электроды освещенные ультрафиолетовым светом, создают электрические искры более легко, чем не освещенные. В 1905 году Альберт Эйнштейн опубликовал статью, в которой были объяснены экспериментальные данные фотоэлектрического эффекта как результат переноса световой энергии дискретными квантованными пакетами, возбуждающими электроны. Это открытие привело к квантовой революции. Эйнштейн был удостоен Нобелевской премии по физике в 1921 году за "открытие закона фотоэлектрического эффекта". Фотоэлектрический эффект также используется в фотоэлементах таких, какие можно найти в панелях солнечных батарей, и это часто используется для выработки электроэнергии в коммерческих целях.

Первым полупроводниковым устройством стал детектор "кошачий ус", который был первым в использовании в радиоприемниках в 1900-х годах. Усоподобная проволочка приводится в легкое контактное прикосновение с твердым кристаллом (например, кристаллом германия) для того, чтобы продетектировать радиосигнал посредством контактно-переходного эффекта. В полупроводниковом узле, ток подается в полупроводниковые элементы и соединения, сконструированные специально для переключения и усиления тока. Электрический ток может представляться в двух формах: в виде отрицательно заряженных электронов, а также положительно заряженными вакансиями электронов (незаполненными электронами местами в атоме полупроводника), называемыми дырками. Эти заряды и дырки понимаются с позиции квантовой физики. Строительным материалом чаще всего является кристаллический полупроводник.

Развитие полупроводниковых устройств началось с изобретением транзистора в 1947 году. Распространенными полупроводниковыми устройствами являются транзисторы, микропроцессорные чипы и чипы оперативной памяти. Специализированный тип памяти, называемый флэш-памятью используется в USB флэш-накопителях, и совсем недавно полупроводниковыми накопителями стали заменять и накопители на механически вращающихся жестких магнитных дисках. Полупроводниковые устройства стали распространенными в 1950-х и 1960-х годах, в период перехода от вакуумных ламп к полупроводниковым диодам, транзисторам, интегральным схемам (ИС) и светодиодам (LED).

Основные понятия электричества

Электрический заряд

Наличие заряда порождает электростатическую силу: заряды оказывают друг на друга силовое действие, этот эффект был известен в древности, хотя и не был тогда понятен. Легкий шарик, подвешенный на веревочке может быть заряжен прикосновением к нему стеклянной палочкой, которая сама до этого была заряжена при трении о ткань. Подобный шар, заряженный тем же стеклянным стержнем будет отталкиваться от первого: заряд заставляет два шара отделяться друг от друга. Два шара, которые заряжаются от натертого янтарного стержня также отталкиваются друг от друга. Тем не менее, если один шар заряжается от стеклянной палочки, а другой - от янтарного стержня, то оба шара начинают притягиваются друг к другу. Эти явления были исследованы в конце восемнадцатого века Шарлем Огюстеном де Кулоном, который сделал вывод, что заряд проявляется в двух противоположных формах. Это открытие привело к известной аксиоме: одинаково заряженные объекты отталкиваются, а противоположно заряженные объекты притягиваются.

Сила действует на сами заряженные частицы, следовательно, заряд имеет тенденцию к как можно более равномерному распространению по проводящей поверхности. Величина электромагнитной силы, будь то притяжение или отталкивание, определяется законом Кулона, который гласит, что электростатическая сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Электромагнитное взаимодействие является очень сильным, оно уступает по силе только сильному взаимодействию, но в отличие от последнего, оно действует на любых расстояниях. По сравнению с гораздо более слабым гравитационным взаимодействием, электромагнитная сила, расталкивает два электрона в 1042 раз сильнее, чем гравитационная сила притягивает их.

Исследование показало, что источником заряда являются определенные типы субатомных частиц, которые обладают свойством электрического заряда. Электрический заряд порождает электромагнитную силу, которая является одной из четырех фундаментальных сил природы, и взаимодействует с ней. Наиболее известными носителями электрического заряда являются электрон и протон. Эксперимент показал, что заряд - сохраняющаяся величина, то есть, суммарный заряд внутри изолированной системы всегда будет оставаться постоянным вне зависимости от каких-либо изменений, которые происходят в пределах этой системы. В системе заряд может передаваться между телами либо прямым контактом, либо путем передачи по проводящему материалу, например проводу. Неофициальный термин "статическое электричество" означает чистое присутствие заряда (или "дисбаланс" зарядов) на теле, обычно вызываемое тем, что разнородные материалы, будучи потертыми друг о друга, передают заряд от один другому.

Заряды электронов и протонов противоположны по знаку, следовательно, суммарный заряд может быть как положительным, так и отрицательным. По соглашению, заряд переносимый электронами, считается отрицательным, а переносимый протонами - положительным, по традиции, заложенной работами Бенджамина Франклина. Величина заряда (количество электричества) обычно обозначается символом Q и выражается в кулонах; каждый электрон несет один и тот же заряд, приблизительно -1,6022 × 10-19 кулона. Протон имеет заряд, равный по значению и противоположный по знаку, и, таким образом, + 1,6022 × 10-19 Кулона. Зарядом обладает не только вещество, но и антивещество, каждая античастица несет равный заряд, но противоположный по знаку к заряду его соответствующей частицы.

Заряд можно измерить несколькими способами: ранний прибор-электроскоп с золотыми лепестками, который, хотя все еще используется для учебных демонстраций, в настоящее время вместо него применяется электронный электрометр.

Электрический ток

Движение электрических зарядов называется электрическим током, интенсивность его обычно измеряется в амперах. Ток может создаваться какими-либо движущимися заряженными частицами; чаще всего это электроны, но в принципе любой заряд приведенный в движение представляет собой ток.

По исторически сложившейся договоренности положительный ток определяется направлением движения положительных зарядов, перетекающих из более положительной части цепи в более отрицательную часть. Ток, определенный таким образом, называется условным током. Одной из наиболее известной формой тока является движение отрицательно заряженных электронов по цепи, и таким образом, положительное направление тока сориентировано в противоположном движению электронов направлении. Тем не менее, в зависимости от условий, электрический ток может состоять из потока заряженных частиц движущегося в любом направлении, и даже в обоих направлениях одновременно. Договоренность считать положительным направлением тока направление движения положительных зарядов широко используется для упрощения этой ситуации.

Процесс, при котором электрический ток проходит через материал, называется электрической проводимостью, и её природа изменяется в зависимости от того, какими заряженными частицами она осуществляется и от материала, через который они перемещаются. В качестве примеров электрических токов можно привести металлическую проводимость, осуществляемую потоком электронов через проводник, такой как металл, и электролиз, осуществляемый потоком ионов (заряженных атомов) через жидкость или плазму, как в электрических искрах. В то время как сами частицы могут двигаться очень медленно, иногда со средней скоростью дрейфа только доли миллиметра в секунду, электрическое поле, что приводит их в движение распространяется со скоростью близкой к скорости света, позволяя электрическим сигналам быстро проходить по проводам.

Ток вызывает ряд наблюдаемых эффектов, которые исторически являлись признаком его присутствия. Возможность разложения воды под действием тока от гальванического столба была обнаружена Николсоном и Карлайлом в 1800 году. Этот процесс теперь называется электролиз. Их работа была значительно расширена Майклом Фарадеем в 1833 году. Ток, протекая через сопротивление, вызывает локализованный нагрев. Данный эффект Джеймс Джоуль описал математически в 1840 году. Одно из наиболее важных открытий, касающихся тока было сделано случайно Эрстедом в 1820 году, когда при подготовке лекции, он обнаружил, что ток, протекающий по проводу, вызвал поворот стрелки магнитного компаса. Так он открыл электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных выбросов, генерируемых электрической дугой, достаточно высок для получения электромагнитных помех, которые могут нанести ущерб работе смежного оборудования.Он обнаружил электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных излучений, генерируемых электрической дугой достаточно высок, чтобы производить электромагнитные помехи, которые могут вызвать помехи в работе находящегося поблизости оборудования.

Для технического или бытового применения ток часто характеризуется как либо постоянный (DC), либо переменный (AC). Эти термины относятся к тому, как ток изменяется во времени. Постоянный ток, производимый, например, батареей и требуемый для большинства электронных устройств, является однонаправленным потоком от положительного потенциала цепи к отрицательному. Если этот поток, что чаще случается, переносится электронами, они будут перемещаться в противоположном направлении. Переменным током называется любой ток, который непрерывно меняет направление, он почти всегда имеет форму синусоиды. Переменный ток пульсирует назад и вперед внутри проводника без перемещения заряда на какое-нибудь конечное расстояние за длительный промежуток времени. Усредненное по времени значение переменного тока равно нулю, но он доставляет энергию сначала в одном направлении, а затем в обратном. Переменный ток зависит от электрических свойств, которые не проявляют себя при стационарном режиме постоянного тока, например, от индуктивности и емкости. Эти свойства, однако, могут проявить себя, когда схема подвергается переходным процессам, например, при первоначальной подаче энергии.

Электрическое поле

Понятие электрического поля было введено Майклом Фарадеем. Электрическое поле создается заряженным телом в пространстве, которое окружает тело, и приводит к силе, действующей на любые другие заряды, расположенные в поле. Электрическое поле действует между двумя зарядами аналогично гравитационному полю, действующему между двумя массами, и также простирается до бесконечности и обратно пропорционально квадрату расстояния между телами. Тем не менее, есть существенная разница. Сила тяжести всегда притягивает, заставляя соединиться две массы, в то время как электрическое поле может привести либо притяжению, либо к отталкиванию. Так как крупные тела, такие как планеты в целом имеют нулевой суммарный заряд, их электрическое поле на расстоянии обычно равно нулю. Таким образом, сила тяжести является доминирующей силой на больших расстояниях во Вселенной, несмотря на то, что сама она гораздо слабее.

Электрическое поле, как правило, различается в различных точках пространства, а его напряженность в любой точке определяется как сила (отнесенная к единице заряда), которую будет испытывать неподвижный, ничтожно малый заряд, если его поместить в эту точку. Абстрактный заряд, называемый "пробным зарядом", должен иметь исчезающе малое значение, чтобы его собственным электрическим полем, нарушающим основное поле, можно было пренебречь, а также должен быть стационарным (неподвижным), чтобы предотвратить влияние магнитных полей. Поскольку электрическое поле определяется в терминах силы, а сила является вектором, то электрическое поле также является вектором, имеющим как величину, так и направление. А если конкретнее, то электрическое поле является векторным полем.

Учение о электрических полях, создаваемых неподвижными зарядами, называется электростатикой. Поле может быть визуализировано с помощью набора воображаемых линий, направление которых в любой точке пространства совпадает с направлением поля. Это понятие было введено Фарадеем, и термин «силовые линии» до сих пор иногда встречается. Линии поля - это пути, по которым точечный положительный заряд будет совершать движение под действием поля. Они, однако, являются абстрактным, а не физическим объектом, а поле пронизывает всё промежуточное пространство между линиями. Линии поля, исходящие из стационарных зарядов, имеют несколько ключевых свойств: во-первых, они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах; во-вторых, они должны входить в любой идеальный проводник под прямым углом (нормально), и в-третьих, они никогда не пересекаются и не замыкаются сами на себя.

Полое проводящее тело содержит весь свой заряд на своей внешней поверхности. Поэтому поле равно нулю во всех местах внутри тела. На этом принципе работает клетка Фарадея - металлическая оболочка, которая изолирует свое внутреннее пространтсво от внешних электрических воздействий.

Принципы электростатики имеют важное значение при проектировании элементов высоковольтного оборудования. Существует конечный предел напряженности электрического поля, которая может быть выдержана любом материалом. Выше этого значения происходит электрический пробой, который вызывает электрическую дугу между заряженными частями. Например, в воздухе электрический пробой наступает при небольших зазорах при напряженности электрического поля, превышающем 30 кВ на сантиметр. При увеличении зазора предельная напряженность пробоя снижается, примерно, до 1 кВ на сантиметр. Наиболее заметное подобное естественное явление - это молния. Она возникает, когда заряды разделяются в облаках восходящими колоннами воздуха, и электрическое поле в воздухе начинает превышать значение пробоя. Напряжение большого грозового облака может достигать 100 МВ и иметь величину энергии разряда 250 кВт-час.

На величину напряженности поля сильно влияют находящиеся поблизости проводящие объекты, и напряженность особенно велика, когда полю приходится огибать заостренные объекты. Этот принцип используется в громоотводах, острые шпили которых принуждают молнии разряжаться в них, а не в здания, которые они защищают.

Электрический потенциал

Понятие электрического потенциала тесно связано с электрическим полем. Небольшой заряд, помещенный в электрическое поле, испытывает силу, и для того, чтобы переместить заряд против этой силы, требуется совершить работу. Электрический потенциал в любой точке определяется как энергия, которую необходимо затратить, чтобы крайне медленно переместить единичный пробный заряд с бесконечности до этой точки. Потенциал обычно измеряется в вольтах, и потенциал в один вольт - это потенциал, при котором необходимо затратить один джоуль работы, чтобы переместить заряд в один кулон из бесконечности. Это формальное определение потенциала имеет небольшое практическое применение, и более полезным является понятие электрической разности потенциалов, то есть энергия, необходимая для перемещения единицы заряда между двумя заданными точками. Электрическое поле имеет одну особенность, оно является консервативным, что означает, что путь, пройденный пробным зарядом не имеет никакого значения: на прохождение всевозможных путей между двумя заданными точками всегда будет затрачена одна и та же энергия, и, таким образом, существует единственное значение разности потенциалов между двумя положениями. Вольт настолько сильно закрепился в качестве единицы измерения и описания разности электрических потенциалов, что термин вольтаж используется широко и повседневно.

Для практических целей полезно определить общую точку отсчета, относительно которой потенциалы могут быть выражены и сравниваться. Хотя, она может находиться и на бесконечности, гораздо более практично использовать в качестве нулевого потенциала саму Землю, которая во всех местах, как предполагается, имеет один и тот же потенциал. Эту точка отсчета, естественно, обозначают как "земля" (ground). Земля является бесконечным источником равного количества положительных и отрицательных зарядов и, следовательно, она электрически нейтральна и незаряжаема.

Электрический потенциал является скалярной величиной, то есть, он имеет только значение и не имеет направления. Его можно рассматривать как аналог высоты: подобно тому, как выпущенный объект будет падать посредством разности высот, вызванной гравитационным полем, так и заряд будет "падать" посредством напряжения, вызванного электрическим полем. Как на картах обозначается рельеф посредством контурных линий, соединяющих точки одинаковой высоты, так и набор линий, соединяющих точки равного потенциала (известные как эквипотенциали) могут быть прорисованы вокруг электростатически заряженного объекта. Эквипотенциали пересекают все силовые линии под прямым углом. Они также должны лежать параллельно поверхности проводника, в противном случае будет производиться сила, перемещающая носители зарядов по эквипотенциальной поверхности проводника.

Электрическое поле формально определяется как сила, оказываемая на единицу заряда, но понятие потенциала предоставляет более полезное и эквивалентное определение: электрическое поле - это локальный градиент электрического потенциала. Как правило, оно выражается в вольтах на метр, а направление вектора поля является линией наибольшего изменения потенциала, то есть в направлении ближайшего расположения другой эквипотенциали.

Электромагниты

Открытие Эрстедом в 1821 году того факта, что магнитное поле существует вокруг всех сторон провода, несущего электрический ток, показало, что существует прямая связь между электричеством и магнетизмом. Более того, взаимодействие казалось отличающимся от гравитационных и электростатических сил, двух сил природы, тогда известных. Сила действовала на стрелку компаса, не направляя ее к проводу с током или от него, а действовала под прямым углом к нему. Немного неясными словами "электрический конфликт имеет вращающее поведение" Эрстед выразил своё наблюдение. Эта сила также зависела от направления тока, ибо, если ток менял направление, то магнитная сила меняла его тоже.

Эрстед не в полной мере смог понять свое открытие, но наблюдаемый им эффект был взаимным: ток оказывает силовое воздействие на магнит, и магнитное поле оказывает силовое воздействие на ток. Феномен был в дальнейшем изучен Ампером, который обнаружил, что два параллельных провода с током, оказывают силовое действие друг на друга: два провода, с протекающими по ним токами в одном и том же направлении, притягиваются друг к другу, в то время как провода, содержащие токи в противоположных направлениях друг от друга, отталкиваются. Это взаимодействие происходит посредством магнитного поля, которое каждый ток создает, и на основе этого явления определяется единица измерения тока - Ампер в международной системе единиц.

Эта связь между магнитными полями и токами является чрезвычайно важной, поскольку она привела к изобретению Майклом Фарадеем электродвигателя в 1821 году. Его униполярный двигатель состоял из постоянного магнита, помещенного в сосуд с ртутью. Ток пропускался по проводу, подвешенному на шарнирном подвесе над магнитом и погруженному в ртуть. Магнит оказывал тангенциальную силу на провод, что заставляло последний вращаться вокруг магнита до тех пор, пока в проводе поддерживался ток.

Эксперимент, проведенный Фарадеем в 1831 году, показал, что провод, движущийся перпендикулярно магнитному полю, создавал разность потенциалов на концах. Дальнейший анализ этого процесса, известного как электромагнитная индукция, позволил ему сформулировать принцип, теперь известный как закон индукции Фарадея, что разность потенциалов, наведенная в замкнутом контуре пропорциональна скорости изменения магнитного потока пронизывающего контур. Разработка этого открытия позволили Фарадею изобрести первый электрический генератор, в 1831 году, в котором преобразуется механическая энергия вращающегося медного диска в электрическую энергию. Диск Фарадея был неэффективным и не использовался в качестве практического генератора, но он показал возможность выработки электроэнергии с использованием магнетизма, и эта возможность была взята на вооружение теми, кто последовал за его разработками.

Способность химических реакций производить электроэнергию, и, обратная способность электроэнергии производить химические реакцие имеет широкий спектр применений.

Электрохимия всегда была важной частью учения о электричестве. Из первоначального изобретения вольтова столба, гальванические элементы эволюционировали в самые разнообразные типы батарей, гальванические и электролизные элементы. Алюминий получают в огромных количествах электролизным способом, и во многих портативных электронных устройствах используются перезаряжаемые источники электроэнергии.

Электрические схемы

Электрическая цепь представляет собой соединение электрических компонентов таким образом, что электрический заряд, вынужденный проходить по замкнутой траектории (контуру), обычно выполняет ряд некоторых полезных задач.

Компоненты в электрической цепи могут принимать различные формы, выступая в роли таких элементов, как резисторы, конденсаторы, выключатели, трансформаторы и электронные компоненты. Электронные схемы содержат активные компоненты, такие как полупроводники, которые обычно работают в нелинейном режиме и требуют применения к ним комплексного анализа. Наиболее простыми электрическими компонентами являются те, которые называются пассивными и линейными: хотя они могут временно хранить энергию, они не содержат ее источников и работают в линейном режиме.

Резистор, пожалуй, самый простой из пассивных элементов схемы: как предполагает его название, он сопротивляется току, протекающему через него, рассеивая электроэнергию в виде тепла. Сопротивление является следствием движения заряда через проводник: в металлах, например, сопротивление в первую очередь связано со столкновениями электронов и ионов. Закон Ома является основным законом теории цепей, и гласит, что ток, проходящий через сопротивление прямо пропорционален разности потенциалов на нем. Сопротивление большинства материалов относительно постоянно в широком диапазоне температур и токов; материалы, удовлетворяющие этим условиям, известны как "омические". Ом - единица сопротивления, была названа в честь Георга Ома и обозначается греческой буквой Ω. 1 ом - это сопротивление, которое создает разность потенциалов в один вольт при пропускании через него тока величиной в один ампер.

Конденсатор является модернизацией лейденской банки и представляет собой устройство, которое может хранить заряд, и тем самым накапливать электрическую энергию в создающемся поле. Он состоит из двух проводящих пластин, разделенных тонким изолирующим слоем диэлектрика; на практике это пара тонких полосок металлической фольги, смотанных вместе, для увеличения площади поверхности в единице объема и, следовательно, емкости. Единицей емкости является фарад, названный в честь Майкла Фарадея и обозначается символом F: один фарад является емкость, которая создает разность потенциалов в один вольт, при хранении заряда в один кулон. Через конденсатор, подключенный к источнику питания вначале протекает ток, так как в конденсаторе происходит накопление заряда; этот ток будет, однако уменьшаться по мере того, как конденсатор будет заряжаться, и в конце концов станет равным нулю. Конденсатор поэтому не пропускает постоянный ток, а блокирует его.

Индуктивность является проводником, как правило, мотком провода, которая хранит энергию в магнитном поле, возникающем при прохождении тока через неё. При изменении тока, магнитное поле также изменяется, создавая напряжение между концами проводника. Индуцированное напряжение пропорционально скорости изменения тока. Коэффициент пропорциональности называется индуктивностью. Единица индуктивности - генри, названна в честь Джозефа Генри, современника Фарадея. Индуктивность в один генри - это индуктивность, которая вызывает разность потенциалов в один вольт, при скорости изменения тока, проходящего через неё, в один ампер в секунду. Поведение индуктивности противоположенное поведению конденсатора: она будет свободно пропускать постоянный и блокировать быстро меняющийся ток.

Электрическая мощность

Электрическая мощность - это скорость, с которой электрическая энергия передается электрической цепью. Единица СИ мощности - ватт, равный одному джоулю в секунду.

Электрическая мощность как и механическая является скоростью выполнения работы, измеряется в ваттах и обозначается буквой P. Термин потребляемая мощность, используемый в просторечии, означает "электрическую мощность в ваттах." Электрическая мощность в ваттах, производимая электрическим током I, равным прохождению заряда Q кулон каждые t секунд через электрическую разность потенциалов (напряжение) V равна

P = QV/t = IV

  • Q - электрический заряд в кулонах
  • t - время в секундах
  • I - электрический ток в амперах
  • V - электрический потенциал или напряжение в вольтах

Генерация электроэнергии часто производится с помощью электрогенераторов, но также может производиться химическими источниками, такими как электрические батареи или другими способами с помощью самых разнообразных источников энергии. Электрическая мощность, как правило, поставляется на предприятия и в дома электроэнергетическими компаниями. Оплата за электроэнергию обычно происходит за киловатт-час (3,6 МДж), который является произведенной мощностью в киловаттах, умноженной на время работы в часах. В электроэнергетике измерения мощности производят с использованием счетчиков электроэнергии, которые запоминают количество общей электрической энергии, отдаваемой клиенту. В отличие от ископаемого топлива, электроэнергия является низкоэнтропийной формой энергии и может быть преобразована в энергию движения или многие другие виды энергии с высокой эффективностью.

Электроника

Электроника имеет дело с электрическими цепями, которые включают в себя активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральных схемы, и связанные с ними пассивные элементы и элементы коммутации. Нелинейное поведение активных компонентов и их способность контролировать потоки электронов позволяет усиливать слабые сигналы и широко использовать электронику в обработке информации, телекоммуникации и обработке сигналов. Способность электронных устройств работать в качестве переключателей позволяет проводить цифровую обработку информации. Элементы коммутации, такие как печатные платы, технологии компоновки и другие разнообразные формы коммуникационной инфраструктуры дополняют функциональные возможности схемы и превращают разнородные компоненты в обычную рабочую систему.

Сегодня большинство электронных устройств используют полупроводниковые компоненты для осуществления электронного управления. Изучение полупроводниковых приборов и связанных с ними технологий рассматривается как отрасль физики твердого тела, тогда как проектирование и конструирование электронных схем для решения практических задач относятся к области электроники.

Электромагнитные волны

Работы Фарадея и Ампера показали, что изменяющееся во времени магнитное поле порождало электрическое поле, а изменяющееся во времени электрическое поле являлось источником магнитного поля. Таким образом, когда одно поле меняется во времени, то всегда индуцируется другое поле. Такое явление обладает волновым свойствами и естественно называется электромагнитной волной. Электромагнитные волны были теоретически проанализированы Джеймсом Максвеллом в 1864 году. Максвелл разработал ряд уравнений, которые могли однозначно описать взаимосвязь между электрическим полем, магнитным полем, электрическим зарядом и электрическим током. Он смог к тому же доказать, что такая волна обязательно распространяется со скоростью света, и, таким образом, и свет сам является формой электромагнитного излучения. Разработка законов Максвелла, которые объединяют свет, поля и заряд, является одним из важнейших этапов в истории теоретической физики.

Таким образом, работа многих исследователей позволила использовать электронику для преобразования сигналов в высокочастотные колебательные токи, а через соответствующим образом сформированные проводники электричество позволяет передавать и принимать эти сигналы посредством радиоволн на очень большие расстояния.

Производство и использование электрической энергии

Генерация и передача электрического тока

В 6 веке до н. э. греческий философ Фалес Милетский экспериментировал с янтарными стержнями, и эти эксперименты стали первыми исследованиями в области производства электрической энергии. Пока этот метод, теперь известный как трибоэлектрический эффект, мог только поднимать легкие предметы и генерировать искры, он был крайне неэффективен. С изобретением вольтова столба в восемнадцатом веке жизнеспособный источник электроэнергии стал доступным. Вольтов столб и его современный потомок - электрическая батарея, хранит энергию в химическом виде и выдает её в виде электрической энергии по требованию. Батарея является универсальным и очень распространенным источником питания, который идеально подходит для многих применений, но энергия, хранящаяся в ней, конечна, и как только она расходуется, батарею необходимо утилизировать или заряжать. Для больших потребностей электрическая энергия должна генерироваться и передаваться непрерывно по проводящим линиям электропередачи.

Электроэнергия обычно генерируется электромеханическими генераторами, приводимыми в движение паром, получаемым от сжигания ископаемого топлива, или теплом, выделяемым в ядерных реакциях; или из других источников, таких как кинетическая энергия, извлеченная из ветра или проточной воды. Современная паровая турбина, разработанная сэром Чарльзом Парсонсом в 1884 году, сегодня производит около 80 процентов электроэнергии в мире с использованием различных источников тепла. Такие генераторы не имеют никакого сходства с униполярным генератором - диском Фарадея 1831 года, но они по-прежнему полагаться на его электромагнитный принцип, согласно которому проводник, сцепляясь с изменяющимся магнитным полем, индуцирует разность потенциалов на своих концах. Изобретение в конце ХIХ века трансформатора означало, что электрическая энергия может передаваться более эффективно при более высоком напряжении, но более низком токе. Эффективная электрическая передача означает, в свою очередь, что электроэнергия может производиться на централизованных электростанциях с выгодой от масштабной экономии, а затем передаваться на относительно большие расстояния туда, где в ней есть необходимость.

Поскольку электрическая энергия не может быть легко сохранена в количествах, достаточных для удовлетворения потребностей в национальном масштабе, её должно производиться в любое время столько, сколько в данный момент её требуется. Это обязывает энергокомпании тщательно прогнозировать свои электрические нагрузки и постоянно согласовывать эти данные с электростанциями. Некоторое количество генерирующих мощностей должно всегда храниться в запасе в качестве подушки безопасности для электросетей на случай резкого повышения спроса на электроэнергию.

Спрос на электроэнергию растет с большой скоростью по мере модернизации страны и развития ее экономики. Соединенные Штаты демонстрировали 12-процентный рост спроса в течение каждого года первых трех десятилетий ХХ века. Такой темп роста в настоящее время наблюдается в странах с формирующейся экономикой, таких как Индия или Китай. Исторически темпы роста спроса на электроэнергию опережают темпы роста спроса на другие виды энергии.

Экологические проблемы, связанные с производством электроэнергии, привели к усилению внимания к производству электроэнергии из возобновляемых источников, в частности на ветряных и гидроэлектростанциях. Несмотря на то, что можно ожидать продолжения дебатов о воздействии на окружающую среду различных средств производства электроэнергии, её окончательная форма относительно чистая.

Способы применения электричества

Передача электричества является весьма удобным способом передачи энергии, и она была адаптирована к огромному, и продолжающему расти, количеству применений. Изобретение практической лампы накаливания в 1870-х годах привело к тому, что освещение стало одним из первых массово доступных применений электроэнергии. Несмотря на то, что электрификация подразумевала собой определенные риски, замена открытого пламени газового освещения значительно снизила опасность возгорания внутри домов и фабрик. Во многих городах были созданы коммунальные предприятия, ориентированные на растущий рынок электрического освещения.

Нагревающий резистивный эффект Джоуля используется в нитях ламп накаливания и также находит более непосредственное применение в системах электрического отопления. Хотя этот метод отопления универсальный и управляемый, его можно считать расточительным, поскольку для большинства способов электрогенерации уже потребовалось производство тепловой энергии на электростанции. В ряде стран, таких как Дания, выпустили законы, ограничивающие или запрещающие применение резистивного электрического нагрева в новых зданиях. Электричество, однако, до сих пор остается весьма практичным источником энергии для отопления и охлаждения, причем кондиционеры или тепловые насосы представляют собой растущий сектор спроса на электроэнергию для отопления и охлаждения, последствия которого коммунальные предприятия все в большей степени обязаны учитывать.

Электричество используется в сфере телекоммуникаций, и на самом деле электрический телеграф, коммерческое использование которого было продемонстрировано в 1837 году Куком и Уитстоном, было одним из самых ранних электрических телекоммуникационных применений. При строительстве первых межконтинентальных, а затем трансатлантической, телеграфных систем в 1860-х годах, электричество позволило обеспечивать связь в течение нескольких минут со всем земном шаром. Оптоволоконная и спутниковая связь заняли часть рынка систем связи, однако можно ожидать, что электроэнергия будет оставаться важной частью этого процесса.

Наиболее очевидное использование эффектов электромагнетизма происходит в электродвигателе, который представляет собой чистое и эффективное средство движущей силы. Стационарный двигатель, такой как лебедка, легко обеспечить электропитанием, но двигателю для мобильного применения, такого как электрическое транспортное средство, необходимо либо перемещать вместе с собой источники питания, такие как батареи, либо собирать ток скользящим контактом, известным как пантограф.

Электронные устройства используют транзистор, пожалуй, одно из важнейших изобретений ХХ века, который является фундаментальным строительным блоком всех современных схем. Современная интегральная схема может содержать несколько миллиардов миниатюризованных транзисторов на площади всего несколько квадратных сантиметров.

Электричество также используется в качестве источника топлива для общественного транспорта, в том числе в электрических автобусах и поездах.

Влияние электричества на живые организмы

Действие электрического тока на организм человека

Напряжение, приложенное к человеческому телу, вызывает прохождение электрического тока через ткани, и хотя это отношение нелинейно, но чем большее напряжение приложено, тем больший оно вызывает ток. Порог восприятия варьируется в зависимости от частоты питания и местом прохождения тока, он составляет приблизительно от 0,1 мА до 1 мА для электричества сетевой частоты, хотя и ток, настолько малый, как один микроампер, может быть обнаружен как эффект электровибрации при определенных условиях. Если ток достаточно большой, то он может вызвать сокращение мышц, аритмию сердца, а также ожоги тканей. Отсутствие каких-либо видимых признаков того, что проводник находится под напряжением, делает электричество особенно опасным. Боль, вызванная электрическим током может быть интенсивной, что приводит к тому, что электричество иногда используют в качестве метода пытки. Смертная казнь, приведенная в исполнение поражением электрическим током, называется казнью на электрическом стуле (electrocution). Казнь на электрическом стуле до сих пор остается средством судебного наказания в некоторых странах, хотя его использование стало более редким в последнее время.

Электрические явления в природе

Электричество не является изобретением человека, оно может наблюдаться в нескольких формах в природе, заметным проявлением которого является молния. Многие взаимодействия, знакомые на макроскопическом уровне, такие как прикосновение, трение или химическая связь, обусловлены взаимодействиями между электрическими полями на атомном уровне. Магнитное поле Земли, как полагают, возникает из-за естественного производства циркулирующих токов в ядре планеты. Некоторые кристаллы, такие как кварц, или даже сахар, способны создавать разность потенциалов на своих поверхностях, когда подвергаются внешнему давлению. Это явление, известное как пьезоэлектричество, от греческого piezein (πιέζειν), что означает "нажать", было обнаружено в 1880 году Пьером и Жаком Кюри. Этот эффект обратим, и когда пьезоэлектрический материал подвергается воздействию электрического поля, происходит небольшое изменение его физических размеров.

Некоторые организмы, такие как акулы, способны обнаруживать и реагировать на изменения электрических полей, эта способность известна как электрорецепция. В то же время другие организмы, именуемые электрогенными, способны генерировать напряжения сами, что служит им в качестве оборонительного или хищного оружия. Рыбы отряда гимнотообразных, самым известным представителем которого является электрический угорь, могут обнаруживать или оглушать свою добычу с помощью высокого напряжения, генерируемого видоизмененными мышечными клетками, называемыми электричесикими клетками (electrocytes). Все животные передают информацию по клеточным мембранам импульсами напряжения, называемыми потенциалами действия, в чью функцию входит обеспечение нервной системы связью между нейронами и мышцами. Поражение электрическим током стимулирует эту систему, и вызывает сокращение мышц. Потенциалы действия также отвечают за координацию деятельности определенных растений.

В 1850 году Уильям Гладстон спросил ученого Майкла Фарадея, в чем ценность электричества. Фарадей ответил: "В один прекрасный день, сэр, вы сможете обложить его налогом».

В 19-м и начале 20-го века, электричество не было частью повседневной жизни многих людей, даже в промышленно развитом западном мире. Популярная культура того времени, соответственно, часто изображала его как таинственную, квази-магическую силу, которая может умертвлять живых, воскрешать мертвых или иным образом изменять законы природы. Такой взгляд начал царить с опытов Гальвани 1771 года, в которых демонстрировались ноги мертвых лягушек дергающимися при применении животного электричества. Об "оживлении" или реанимации очевидно мертвых или утопленников было сообщено в медицинской литературе вскоре после работы Гальвани. Об этих сообщениях стало известно Мэри Шелли, когда она принялась за написание Франкенштейна (1819), хотя она и не указывает на такой метод оживления монстра. Оживление монстров с помощью электричества стало актуальной темой фильмов ужасов позже.

По мере того, как углублялось общественное знакомство с электричеством, как источником жизненной силы второй промышленной революции, его обладатели чаще показывались в положительном свете, например, электромонтажники, про которых сказано "смерть сквозь перчатки им леденит пальцы, сплетающие провода" в стихотворении Редьярда Киплинга 1907 года "Сыновья Марфы". Разнообразные транспортные средства с электрическим приводом заняли видное место в приключенческих рассказах Жюля Верна и Тома Свифта. Специалисты в области электроэнергетики, будь то вымышленные или реальные - в том числе ученые, такие как Томас Эдисон, Чарльз Штайнмец или Никола Тесла - широко воспринимались как кудесники, наделенные волшебными полномочиями.

По мере того, как электричество переставало быть новинкой и становилось необходимостью в повседневной жизни во второй половине 20-го века, оно обратило к себе особое внимание со стороны популярной культуры только тогда, когда оно переставало поступать, что являлось событием, которое обычно сигнализирует о бедствии. Люди, которые поддерживают его поступление, такие как безымянный герой песни Джимми Уэбба "Монтер из Уичито" (1968), все чаще представлялись в качестве героических и волшебных персонажей.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

В четверг 14 февраля 2019 года в России отмечают замечательный праздник - День всех влюбленных. Государственные лотереи не могут остаться в стороне от столь яркого события, и проводят специально посвященный Дню всех влюбленных праздничный розыгрыш под номером 1271 .

В связи с этим хочется пожелать: влюбленные - любите, любящие - храните, купившие билет Русского лото - выигрывайте!

Днем выхода передачи в эфир на канале "НТВ" традиционно является воскресенье. Начиная с октября 17 года, трансляция начинается в 14:00 по московскому времени.

Трансляция 1271 тиража Русского лото по телевизору, посвященная Дню влюбленных, также будет проходить в воскресенье 17 февраля 2019 года, начиная с 14:00 мск на телеканале "НТВ" .

Что будет разыгрываться 17 февраля 2019 года:

В 1271 тираже Всероссийская гос. лотерея разыграет множество вещевых и денежных призов, 100 романтических путешествий и Джекпот в размере 500 миллионов рублей .

Как выглядит билет:

Билет тиража 1271 имеет розовую окантовку. На фоне голубого неба летит воздушный шар в виде сердца, слева от него размещена надпись "С Днём всех влюблённых!", а ниже - "Джекпот 500 000 000 руб." Слева снизу написано "1271 тираж". Внизу на белом фоне имеется надпись "100 романтических путешествий".

Напомним, что короткий день в пятницу 22.02.2019 будет единственным "подарком" российскии защитникам в плане отдыха, т.к. выходной день с субботы переносится не на ближайший понедельник, а на пятницу 10 мая 2019 года.

Вырастить хорошую рассаду помидоров в 2019 году на подоконнике в квартире - это целое искусство. Знание сроков своевременной посадки семян, пикировки рассады и соблюдение правил ухода за ней дают в результате крепкие и здоровые растения. Опытные огородники советуют также не пренебрегать календарем фаз луны, которые, по их мнению, оказывают огромное влияние на развитие томатов. Ниже рассказываем о том, когда сажать помидоры в 2019 году на рассаду и в грунт с учетом лунного календаря.


Даты посева семян томатов на рассаду в 2019 году:

В 2019 году лучшие сроки посадки семян на рассаду в домашних условиях для средней полосы России наступают спустя сутки после новолуния 6 марта 2019 г . Однако, наиболее благоприятными являются дни с 10 по 12 марта 2019 года, а также 15 и 16 марта 2019 года . Поздние сроки посева рассады помидор 2019 наступают после полнолуния 21 марта 2019 г . На убывающей луне оптимальными днями будут 23 и 24 марта 2019 года .

Напомним, что семена перед посадкой следует продезинфицировать (например, в 1% растворе марганцовки), а затем хорошо промыть. Советуем для повышения будущего урожая замочить семена на сутки в слабом растворе борной кислоты (0,1 г на 0,5 л воды). Сеют обсушенные семена в мелкие (7-8 см.) лоточки с землей на глубину не более 1-1,5 см., поливают и закрывают пленкой. Температура прорастания семян +22-25 град., поэтому их держат подальше от холодного подоконника. Как только покажутся первые всходы, пленку снимают и лотки выставляют на подоконник. Поливать рассаду следует только теплой (+20+-22 град.) водой.

Даты пикировка рассады томатов в 2019 году:

Когда между семядольными листиками появляется первый настоящий резной лист, сеянцы можно пикировать в отдельные горшочки или в ящики с землей высотой 12-15 см. В любом случае, расстояние между соседними растениями должно быть 10-12 см. При этом ростки заглубляют в землю по самые семядоли.

В марте 2019 г. - с 23 по 27 марта ; в апреле 2019 г. - 2, 3, 7, 8, 11, 12, 16, 17 апреля . 5 апреля 2019 новолуние, поэтому пикировка на растущей луне с 7 по 17 апреля 2019 года наиболее предпочтительна.

Сроки ухода за рассадой томатов в 2019 году (полив, подкормка, закалка):

Чтобы рассада помидор не вытягивалась, нужно обеспечить ей достаточно света и снизить температуру воздуха днем от +18 до 24 град., а ночью от +12 до 16 град.

Необходимо также вносить подкормки . Первую подкормку дают через 7-10 дней после пикировки, когда растение образует новые корни, и далее через каждые 8-12 дней. Для подкормки в воде для полива растворяют минеральные удобрения или древесную золу.

В апреле 2019 наилучшими для подкормки будут любые дни с 7 по 18, с 20 по 26, 29 и 30 апреля . В мае 2019 подкармливать можно с 1 по 4, с 7 по 18, 21-23, 26-31 мая .

За 15-20 дней до высадки в грунт рассаду нужно закалять . Лучше всего вынести ее на лоджию или балкон, открыть окно.

В течение последней декады до посадки рассада помидор сильно вытягивается, особенно если стоит теплая погода. Задержать рост можно прекращением полива, а поливать только при подвядании листьев в середине дня.

Сроки высадки рассады помидор 2019 в грунт:

Рассаду томатов высаживают в грунт в возрасте 60-70 дней от всходов , когда температура воздуха ночью превышает +12 град. За один-два дня до посадки растения нужно хорошо полить водой с подкормкой, чтобы обеспечить сохранение корней и питание растений после высадки в грунт.

В мае 2019 рассаду можно высаживать под дуги с укрывным материалом уже 17-18 мая на растущей луне . Напомним, что 19 мая 2019 года - полнолуние, и работы лучше прервать. Лучшими днями в мае 2019 на убывающей луне будут 26-28 и 31 мая . В июне 2019 уже можно сажать в открытый грунт 1 и 2, 5 и 6 июня . 3 июня 2019 новолуние и деятельность в огороде нежелательна.

Напомним оптимальные сроки посадки и ухода за помидорной рассадой в 2019 году:
* посев семян - с 10 по 12, 15 и 16, 23 и 24 марта 2019 г.;
* пикировка рассады - с 23 по 27 марта; 2 ,3, 7, 8, 11, 12, 16, 17 апреля 2019 г.;
* подкормки рассады каждые 8-12 дней - с 7 по 18, с 20 по 26, 29 и 30 апреля, с 1 по 4, с 7 по 18, 21-23, 26-31 мая 2019 г.;
* высадка рассады в грунт - 17, 18, 26-28, 31 мая, 1, 2, 5, 6 июня 2019 г.

Также читаем:
*

Дата Песаха привязана к лунно-солнечному еврейскому календарю, и поэтому по календарю григорианскому число празднования ежегодно меняется. Начинается еврейская Пасха 2019 года с наступлением сумерек 14 дня весеннего месяца нисан (с вечера 19 апреля 2019 года ), и длится 7 дней в Израиле - с 15 по 21 нисана (с 20 апреля 2019 года по 26 апреля 2019 года ), и 8 дней за его пределами, в том числе в России - по 22 нисана (по 27 апреля 2019 года).

Согласно древней традиции, каждый иудейский праздник начинается накануне вечером, после захода солнца. Поэтому праздновать Песах 2019 также начинают вечером 19 апреля 2019 года с праздничного седара (ночной пасхальной трапезы). А сам день 14 нисана также называют Днём подготовки к празднику.

Таким образом, дата еврейской Пасхи в 2019 году будет следующая:
* Начало - 19 апреля 2019 г. (вечером, с наступлением сумерек).
* Первый день - 20 апреля 2019 г.
* Последний день - 26 апреля 2019 г. в Израиле (27 апреля 2019 г. вне Израиля).

Также читаем:

В первый и последний день Песаха 2019 запрещено работать, поэтому 15 нисана (20 апреля 2019 года) и 21 нисана (26 апреля 2019 года) объявлены в Израиле нерабочими днями. Кроме того 20 апреля в 2019 году выпадает на субботу - нерабочий день при пятидневной рабочей неделе в ряде стран, в том числе и в России.

Одной из традиций праздника Песах является употребление в пищу "плоского пресного хлеба" - мацы. Объясняется эта традиция тем, что когда фараон освободил израильтян от рабства, они покидали Египет в спешке, при которой не могли ждать когда поднимется хлебное тесто на дрожжах. Поэтому во время еврейской Пасхи не едят заквашенного хлеба.

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком. Оно помогало развиваться нашей цивилизации с самого начала своего появления....

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком . Оно помогало развиваться нашей цивилизации с самого начала своего появления. Это самый экологический вид энергии на планете, и вероятно, что именно электричество сможет заменить все сырьевые ресурсы, если оных более не останется на Земле.

Термин пошел от греч. «электрон», и означает «янтарь». Ещё в VII веке до нашей эры древнегреческий философ Фалес заметил, что янтарь имеет свойство притягивать к себе волосы и легкие материалы, например, пробковую стружку. Таким образом, он стал первооткрывателем электричества . Но только лишь к средине XVII века наблюдения Фалеса были подробно изучены Отто фон Герике. Этот немецкий физик создал первый в мире электроприбор. Это был вращающийся шар из серы, зафиксированный на металлическом штифте и был похож на янтарь имеющий силу притяжения и отталкивания.

Фалес — первооткрыватель электричества

За пару столетий «электрическую машину» Герике заметно усовершенствовали такие немецкие ученые, как Бозе, Винклер, а также англичанин Хоксби. Эксперименты с электрической машиной дали толчок к новым открытиям в XVIII столетии : в 1707 году физик дю Фей родом из Франции, выявил разницу между электричеством, которое мы получаем от трения стеклянного круга, и которое мы получаем от трения круга из древесной смолы. В 1729 году английские ученые Грей и Уилер выявили, что некоторые тела могут пропускать через себя электричество, и они были первыми, кто сделал акцент на том, что тела можно разделять на два типа: проводники и непроводники электричества.

Очень значительное открытие было изложено в 1729 году голландским физиком Мушенбруком, который родился в Лейдене. Этот профессор философии и математики был первым, кто выявил, что стеклянная банка, залепленная с двух сторон листками станиоля, может скапливать электричество. Так как опыты проводились в городе Лейдене, прибор так и назвали – лейденская банка .

Ученый и общественный деятель Бенджамин Франклин привел одну теорию в которой он говорил, что существует как положительное, так и отрицательное электричество. Ученый смог объяснить сам процесс заряда и разряда стеклянной банки и привел доказательства того, что обкладки лейденской банки можно непринужденно электризовать разными зарядами электричества.

Бенджамин Франклин, более чем достаточно уделил внимания познанию атмосферного электричества, как и русские ученые Г. Рихман, а также М.В. Ломоносов. Ученый изобрел громоотвод , с помощью которого обосновал, что сама молния возникает от разности электрических потенциалов.

В 1785 году был выведен закон Кулона, который описывал между точечными зарядами электрическое взаимодействие. Закон был открыт Ш. Кулоном ученым из Франции, который создал его на основе многократных экспериментов со стальными шариками.

Одним из великих открытий, которое обнаружил итальянский ученый Луиджи Гальвани в 1791 году, было то, что электричество могло появляться при соприкосновении двух неоднородных металлов с телом препарированной лягушки.

В 1800 году итальянский ученый Алессандро Вольта изобрел химическую батарею. Это открытие было важным в изучении электричества . Этот гальванический элемент состоял из серебряных пластинок круглой формы, между пластинками были смоченные предварительно в соленой воде куски бумаги. Благодаря химическим реакциям химическая батарея регулярно получала электрический ток.

В 1831 году известный ученый Майкл Фарадей обнаружил электромагнитную индукцию и на этом базисе изобрел первый в мире электрогенератор. Открыл такие понятия, как магнитное и электрическое поле и изобрел элементарный электродвигатель .

Человек, который вложил огромный вклад в изучение магнетизма и электричества, и применял свои исследования на практике, был изобретатель Никола Тесла. Бытовые и электроприборы, которые создал ученый – незаменимы. Этого человека можно назвать одним из великих изобретателей XX ст.

Кто первым открыл электричество?

Отыскать людей, которые не знали бы, что такое электроэнергия, сложно. А вот кто открыл электричество? Об этом имеет представление далеко не каждый. Нужно разобраться, что же это за явление, кто первым его открыл и в каком году все произошло.

Пара слов об электричестве и его открытии

История открытия электричества довольно обширна. Впервые это произошло в далеком 700 году до н.э. Пытливый философ из Греции по имени Фалес обратил внимание, что янтарь способен притягивать маленькие предметы, когда происходит трение с шерстью. Правда, после этого все наблюдения на долгое время закончились. Но именно он считается первооткрывателем статического электричества.

Дальнейшее развитие произошло значительно позднее — через несколько веков. Врач Уильям Гильберт, которому были интересны основы физики, стал основоположником науки об электричестве. Он изобрел нечто похожее на электроскоп, назвав его версор. Благодаря ему Гильберт понял, что множество минералов притягивают маленькие предметы. Среди них алмазы, стекло, опалы, аметисты и сапфиры.

При помощи версора Гильберт сделал пару любопытных наблюдений:

  • пламя влияет на электрические свойства тел, возникающие при трении;
  • молния с громом — это явления электрической природы.

Слово «электричество» появилось в 16 столетии. В 60-х годах XVII века бургомистр Отто фон Герике создал специальную машину для опытов. Благодаря ей он наблюдал за эффектами притяжения и отталкивания.

После этого исследования продолжились. Использовали даже электростатические машины. В начале 30-х годов XVIII века Стивен Грей преобразовал конструкцию Герике. Он поменял серный шарик на стеклянный. Стивен продолжил эксперименты и обнаружил такое явление, как электропроводность. Несколько позднее Шарль Дюфе обнаружил два вида зарядов — от смол и стекла.

В 40-м году XVIII века Клейст и Мушенбрук придумали «лейденскую банку», ставшую первым конденсатором на Земле. Бенджамин Франклин говорил, что заряд накапливает стекло. Благодаря ему появились обозначения «плюс» и «минус» для электрических зарядов, а также «проводник», «заряд» и «конденсатор».

Бенджамин Франклин вел насыщенную событиями жизнь. Удивительно то, что у него вообще хватало времени на изучение электричества. Однако именно Бенджамин Франклин изобрел первый громоотвод.

В конце XVIII столетия Гальвани выпустил «Трактат о силе электричества при движении мышц». В начале XIX века изобретатель из Италии Вольта придумал новейший источник тока, назвав его Гальванический элемент. Эта конструкция выглядит как столб из серебряных и цинковых колец. Они разделены бумагами, которые смочили в соленой воде. Так и произошло открытие гальванического электричества. Через 2 года изобретатель из России Василий Петров открыл Вольтову дугу.

Примерно в тот же временной период Жан Антуан Нолле сконструировал электроскоп. Он зарегистрировал быстрое «стекание» электричества с тел острой формы. На основе этого появилась теория о том, что ток влияет на живые существа. Благодаря обнаруженному эффекту появился медицинский электрокардиограф.

С 1809 году в сфере электричества случилась революция. Изобретатель из Англии Деларю придумал лампочку накаливания. Спустя век были созданы приборы с вольфрамовой спиралью, которые заполняли инертным газом. Ирвинг Ленгмюр стал их основоположником.

Прочие открытия

В XVIII столетии знаменитый в дальнейшем Майкл Фарадей придумал учение об электромагнитных полях.

Электромагнитное взаимодействие обнаружил во время своих экспериментов ученый из Дании по имени Эрстед в 1820 году. В 1821 году физик Ампер в собственном трактате связал электричество и магнетизм. Благодаря этим исследованиям зародилась электротехника.

В 1826 году Георг Симон Ом провел опыты и обозначил главный закон электрической цепи. После этого возникли специализированные термины:

  • электродвижущая сила;
  • проводимость;
  • падение напряжения в сети.

Андре-Мари Ампер позднее придумал правило, как определять направление тока на магнитную стрелку. У него было множество названий, но больше всего прижилось «правило правой руки». Именно Ампер сконструировал усилитель электромагнитного поля — катушки с множеством витков. Они сделаны из медных проводов, в которых с установлены железные сердечники. В 30-х годах XIX века был изобретен электромагнитный телеграф на основании вышеописанного правила.

В 20-х годах XX века в Советском Союзе правительство начало глобальную электрификацию. В этот период возник термин «лампочка Ильича».

Волшебное электричество

Дети должны знать, что такое электричество. Но обучать нужно в игровой форме, чтобы полученные знания не наскучили в первые же минуты. Для этого можно посетить открытое занятие «Волшебное электричество». В него входят следующие образовательные задачи:

  • обобщение у детей информации про электричество;
  • расширить знания о том, где обитает электричество и чем оно может помочь людям;
  • познакомить ребенка с причинами возникновения статического электричества;
  • объяснить правила безопасности в обращении с бытовыми электроприборами.

Также ставятся и иные задачи:

  • у ребенка формируется желание открывать что-то новое;
  • дети учатся взаимодействовать с окружающим миром и его объектами;
  • развивается мышление, наблюдение, способности к анализу и умение делать правильные выводы;
  • осуществляется активная подготовка к школе.

Занятие необходимо и в воспитательных целях. Во время его проведения:

  • подкрепляется интерес к изучению окружающего мира;
  • появляется удовлетворение от открытий, которые получились в результате проведенных экспериментов;
  • воспитывается умение работать в коллективе.

В качестве материала предоставляются:

  • игрушки с батарейками;
  • пластмассовые палочки по числу присутствующих;
  • шерстяная и шелковая ткани;
  • обучающая игрушка «Собери предмет»;
  • карточки «Правила по использованию бытовых электроприборов»;
  • цветные шарики.

Для ребенка это будет отличным занятием на лето.

Заключение

Мы не можем точно утверждать, кто на самом деле первым открыл электричество. Есть все основания полагать, что о нем знали еще до Фалеса. Но большинство ученых (Уильям Гилберт, Отто фон Герике, Вольт Ом, Ампер) в полной мере внесли собственный вклад в развитие электричества.

Альтернативная версия истории открытия электричества

Науке не известно, когда произошло открытие электричества. Еще древние люди наблюдали молнии. Позже они заметили, что некоторые тела, если их потереть друг о друга, могут притягиваться или отталкиваться. Свойство притягивать или отталкивать небольшие предметы хорошо проявлялось у янтаря.
В 1600 г. появился первый термин, связанный с электричеством, — электрон. Ввел его Уильям Гилберт, заимствовавший это слово из греческого языка, где оно обозначало янтарь. Позже такие свойства были обнаружены у алмаза, опала, аметиста, сапфира. Эти материалы он назвал электриками, а само явление — электричеством.
Отто фон Герике продолжил исследования Гилберта. Он изобрел электростатическую машину — первый прибор для изучения электрических явлений. Она представляла собой вращающийся металлический стержень с шаром, сделанным из серы. При вращении шар терся о шерсть и приобретал значительный заряд статического электричества.

В 1729 г. англичанин Стивен Грей усовершенствовал машину Герике, заменив в ней серный шар на стеклянный.

В 1745 г. Юрген Клейст и Питер Мушенбрук изобрели лейденскую банку, представляющую собой стеклянную емкость с водой, способную накопить значительный заряд. Она стала прототипом современных конденсаторов. Ученые ошибочно полагали, что накопителем заряда является вода, а не стекло. Позже вместо воды стали использовать ртуть.
Бенджамин Франклин расширил набор терминов для описания электрических явлений. Он ввел понятия: заряд, два рода зарядов, плюс и минус для их обозначения. Ему принадлежат термины конденсатор, проводник.
Множество проведенных в 17 веке экспериментов носило описательный характер. Практического применения они не получили, но послужили фундаментом для развития теоретических и практических основ электричества.

Первые научные эксперименты с электричеством

Научные исследования электричества начались в 18 веке.

В 1791 г. итальянский врач Луиджи Гальвани обнаружил, что ток, протекающий по мышцам препарированных лягушек, вызывает их сокращение. Свое открытие он назвал животным электричеством. Но Луиджи Гальвани не смог полностью объяснить полученные результаты.

Открытие животного электричества заинтересовало итальянца Александро Вольта. Известный ученый повторил опыты Гальвани. Он повторно доказал, что живые клетки вырабатывают электрический потенциал, но причина его появления химическая, а не животная. Так произошло открытие гальванического электричества.
Продолжая свои опыты, Александро Вольта сконструировал устройство, вырабатывающее напряжение без электростатической машины. Это была стопка чередующихся медных и цинковых пластин, разделенных смоченными в растворе соли кусочками бумаги. Устройство получило название вольтового столба. Оно стало прототипом современных гальванических элементов, служащих для выработки электроэнергии.
Важно отметить, что Наполеон Бонапарт очень заинтересовался изобретением Вольта, и в 1801 г. пожаловал ему титул графа. А позже знаменитые физики решили в его честь назвать единицу измерения напряжения 1 В (вольт).

Луиджи Гальвани и Александро Вольта — великие экспериментаторы в области электричества. Но в 18 в. объяснить суть явлений они не могли. Построение теории электричества и магнетизма началось в 19 в.

Научные исследования электричества в 19 веке

Русский изобретатель Василий Петров, продолжая эксперименты Вольта, в 1802 г. открыл вольтову дугу. В его опытах использовались угольные электроды, которые вначале сдвигались, за счет протекания тока раскалялись, а затем раздвигались. Между ними возникала устойчивая дуга, способная гореть при напряжении всего в 40-50 вольт. При этом выделялось значительное количество тепла. Опыты Петрова впервые показали возможности практического применения электричества, способствовали изобретению лампы накаливания и электросварки. Для своих опытов В. Петров сконструировал батарею длиною 12 м. Она была способна создать напряжение 1700 вольт.

Недостатками вольтовой дуги были быстрое сгорание углей, выделение углекислого газа и копоти. За усовершенствование источника света взялись несколько величайших изобретателей того времени, каждый из которых внес свой вклад в развитие электрического освещения. Все они считали, что источник тепла и света должен находиться в стеклянной колбе, из которой выкачан воздух.
Идею использования металлической нити накаливания еще в 1809 г. предложил английский физик Деларю. Но в течение многих лет продолжались эксперименты с угольными стержнями и нитями.
В американских учебниках по электричеству утверждается, что отцом лампы накаливания является их соотечественник Томас Эдисон. Он внес огромный вклад в историю открытия электричества. Но опыты Эдисона по усовершенствованию ламп накаливания закончились в конце 1870-х гг., когда он отказался от металлической нити накала и вернулся к угольным стержням. Его лампы могли бесперебойно гореть около 40 часов.

Спустя 20 лет русский изобретатель Александр Николаевич Лодыгин изобрел лампу, в которой использовалась проволочная нить накала из тугоплавкого металла, скрученная в спираль. Из колбы был выкачан воздух, из-за которого происходило окисление нити и ее перегорание.
Крупнейшая компания мира по производству электротехнической продукции General Electric выкупила у Лодыгина патент на производство ламп с вольфрамовой нитью. Это позволяет считать, что отцом лампы накаливания является наш соотечественник.
Над усовершенствованием лампы накаливания работали химики и физики, и их открытия, изобретения и усовершенствования позволили создать лампу накаливания, которой люди пользуются сегодня.

В 19 в. электричество стало применяться не только для освещения.
В 1807 г. английскому химику Хэмфри Дэви электролитическим способом удалось выделить из раствора щелочные металлы натрий и калий. Других способов получения этих металлов в то время не было.
Его соотечественник Уильям Стэрджен в 1825 г. изобрел электромагнит. Продолжая исследования, он создал первую модель электродвигателя, работу которого продемонстрировал в 1832 г.

Становление теоретических основ электричества

Кроме изобретений, получивших практическое применение, в 19 в. началось построение теоретических основ электричества, открытие и формулировка основных законов.

В 1826 г. немецкий физик, математик, философ Георг Ом экспериментально установил и теоретически обосновал свой знаменитый закон, описывающий зависимость тока в проводнике от его сопротивления и напряжения. Ом расширил набор терминов, используемых в электричестве. Он ввел понятия электродвижущей силы, проводимости, падения напряжения.
Благодаря нашумевшим в научном мире публикациям Г. Ома, теория электричества стала бурно развиваться, но сам автор подвергся гонениям со стороны начальства и был уволен с должности школьного учителя математики.

Огромный вклад в развитие теории электричества внес французский философ, биолог, математик, химик Андре-Мари Ампер. По причине бедности родителей он вынужден был заниматься самообразованием. В возрасте 13 лет он уже овладел интегральным и дифференциальным исчислением. Это позволило ему получить математические уравнения, описывающие взаимодействия круговых токов. Благодаря трудам Ампера в электричестве появились 2 смежные области: электродинамика и электростатика. По неизвестным причинам Ампер в зрелом возрасте перестал заниматься электричеством и увлекся биологией.

Над развитием теории электричества трудились многие физики разных национальностей. Изучив их труды, выдающийся английский физик Джеймс-Клерк Максвелл построил единую теорию электрических и магнитных взаимодействий. Электродинамика Максвелла предусматривает наличие особой формы материи — электромагнитного поля. Свой труд, посвященной этой проблеме, он опубликовал в 1862 г. Теория Максвелла позволила описать уже известные электромагнитные явления и предсказать неизвестные.

История развития электрических средств связи

Как только у древних людей возникла потребность в общении, появилась необходимость в организации обмена сообщениями. История развития средств связи до открытия электричества многогранна и у каждого народа своя.

Когда люди оценили возможности электричества, встал вопрос о передаче информации с его помощью.
Первые попытки передачи электрических сигналов были предприняты сразу после опытов Гальвани. Источником энергии служил вольтов столб, приемником — лягушечьи лапки. Так появился первый телеграф, который долгое время усовершенствовался и модернизировался.

Для передачи информации ее сначала нужно было кодировать, а после приема раскодировать. Для кодирования информации американский художник Самюэл Морзе в 1838 г. придумал специальную азбуку, состоящую из комбинаций точек и тире, разделенных промежутками. Известна точная дата первой телеграфной передачи — 27 мая 1844 г. Связь была установлена между Балтимором и Вашингтоном, расположенных на расстоянии 64 км.

Средства связи такого рода умели передавать сообщения на большие расстояния, сохранять их на бумажной ленте, но имели и ряд недостатков. На кодирование и декодирование сообщений тратилось много времени, приемник и передатчик должны были обязательно соединяться проводами.

В 1895 г. русскому изобретателю Александру Попову удалось продемонстрировать работу первого беспроводного передатчика и приемника. В качестве приемного элемента использовалась антенна (или вибратор Герца), а в качестве регистрирующего элемента — когерер. Для питания прибора использовалась батарея постоянного тока с напряжением в несколько вольт.
В изобретении когерера велика заслуга французского физика Эдварта Бранли, открывшего возможность изменять сопротивление металлического порошка за счет воздействия на него электромагнитных волн.
Средства связи, построенные на основе передатчика и приемника Попова, служат и в настоящее время.

Сенсационное сообщение о своих открытиях в области передачи электромагнитных волн в 1891 г. сделал сербский ученый Никола Тесла. Но человечество не было готово принять его идеи и понять, как на практике применить изобретения Тесла. Через много десятилетий они легли в основу сегодняшних средств электронных коммуникаций: радио, телевидения, сотовой и космической связи.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»