Извлекать квадратный корень из больших чисел. Квадратный корень

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Корнем n -ой степени натурального числа a называется такое число, n -ая степень которого равна a . Корень обозначается так: . Символ √ называется знаком корня или знаком радикала , число a - подкоренное число , n - показатель корня .

Действие, посредством которого находится корень данной степени, называется извлечением корня .

Так как, согласно определению понятия о корне n -ой степени

то извлечение корня - действие, обратное возведению в степень , при помощи которого по данной степени и по данному показателю степени находят основание степени.

Квадратный корень

Квадратным корнем из числа a называется число, квадрат которого равен a .

Действие, с помощью которого вычисляется квадратный корень, называется извлечением квадратного корня.

Извлечение квадратного корня - действие обратное возведению в квадрат (или возведению числа во вторую степень). При возведении в квадрат известно число, требуется найти его квадрат. При извлечении квадратного корня известен квадрат числа, требуется по нему найти само число.

Поэтому для проверки правильности проведённого действия, можно найденный корень возвести во вторую степень и, если степень будет равна подкоренному числу, значит корень был найден правильно.

Рассмотрим извлечение квадратного корня и его проверку на примере. Вычислим или (показатель корня со значением 2 обычно не пишут, так как 2 - это самый маленький показатель и следует помнить, что если над знаком корня нет показателя, то подразумевается показатель 2), для этого нам нужно найти число, при возведении которого во вторую степень получится 49. Очевидно, что таким числом является 7, так как

7 · 7 = 7 2 = 49.

Вычисление квадратного корня

Если данное число равно 100 или меньше, то квадратный корень из него можно вычислить с помощью таблицы умножения . Например квадратный корень из 25 - это 5, потому что 5 · 5 = 25.

Теперь рассмотрим способ нахождения квадратного корня из любого числа без использования калькулятора. Для примера возьмём число 4489 и начнём поэтапно вычислять.

  1. Определим, из каких разрядов должен состоять искомый корень. Так как 10 2 = 10 · 10 = 100, а 100 2 = 100 · 100 = 10000, то становится ясно, что искомый корень должен быть больше 10 и меньше 100, т.е. состоять из десятков и единиц.
  2. Находим число десятков корня. От перемножения десятков получаются сотни, в нашем числе их 44, поэтому корень должен содержать столько десятков, чтобы квадрат десятков давал приблизительно 44 сотни. Следовательно в корне должно быть 6 десятков, потому что 60 2 = 3600, а 70 2 = 4900 (это слишком много). Таким образом мы выяснили, что наш корень содержит 6 десятков и несколько единиц, так как он находится в в диапазоне от 60 до 70.
  3. Определить число единиц в корне поможет таблица умножения. Посмотрев на число 4489, мы видим, что последняя цифра в нём 9. Теперь смотрим в таблицу умножения и видим что 9 единиц может получится только при возведении в квадрат чисел 3 и 7. Значит корень числа будет равен 63 или 67.
  4. Проверяем полученные нами числа 63 и 67 возводя их в квадрат: 63 2 = 3969, 67 2 = 4489.

А у вас есть зависимость от калькулятора ? Или вы считаете, что кроме как с калькулятором или при помощи таблицы квадратов очень сложно вычислить, например, .

Случается, школьники привязаны к калькулятору и даже 0,7 на 0,5 умножают, нажимая на заветные кнопочки. Говорят, ну я все равно знаю как посчитать, а сейчас сэкономлю время… Вот будет экзамен… тогда и напрягусь…

Так дело в том, что на экзамене и так будет предостаточно «напряжных моментов»… Как говорится, вода камень точит. Вот и на экзамене мелочи, если их много, способны подкосить…

Давайте минимизируем количество возможных неприятностей.

Извлекаем квадратный корень из большого числа

Мы будем говорить сейчас только о случае, когда результат извлечения корня квадратного – целое число.

Случай 1.

Итак, пусть нам во что-бы то ни стало (например, при вычислении дискриминанта) нужно вычислить корень квадратный из 86436.

Мы будем раскладывать число 86436 на простые множители. Делим на 2, – получаем 43218; снова делим на 2, – получаем 21609. На 2 больше нацело число не делится. Но так как сумма цифр делится на 3, то и само число делится на 3 (вообще говоря, видно, что оно и на 9 делится). . Еще раз делим на 3, – получаем 2401. 2401 на 3 нацело не делится. На пять не делится (не оканчивается цифрой 0 или 5).

Подозреваем делимость на 7. Действительно, а ,

Итак, Полный порядок!

Случай 2.

Пусть нам нужно вычислить . Действовать так же, как описано выше, неудобно. Пытаемся разложить на простые множители…

На 2 число 1849 нацело не делится (не является четным)…

На 3 нацело не делится (сумма цифр не кратна 3)…

На 5 нацело не делится (последняя цифра – не 5 и не 0)…

На 7 нацело не делится, на 11 не делится, на 13 не делится… Ну и долго нам так перебирать все простые числа?

Будем рассуждать несколько иначе.

Мы понимаем, что

Мы сузили круг поиска. Теперь перебираем числа от 41 до 49. Причем ясно, что раз последняя цифра числа – 9, то останавливаться стоит на вариантах 43 или 47, – только эти числа при возведении в квадрат дадут последнюю цифру 9.

Ну и тут уже, конечно, мы останавливаемся на 43. Действительно,

P.S. А как, ксатати, мы умножаем 0,7 на 0,5?

Следует умножить 5 на 7, не обращая внимание на нули и знаки, а потом отделить, идя справа налево, два знака запятой. Получаем 0,35.

Что такое квадратный корень?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение - есть и вычитание. Есть умножение - есть и деление. Есть возведение в квадрат... Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня ) в математике обозначается вот таким значком:

Сам значок называется красивым словом "радикал ".

Как извлечь корень? Это лучше рассмотреть на примерах .

Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т.е:

А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:

Уловили, что такое квадратный корень? Тогда считаем примеры :

Ответы (в беспорядке): 6; 1; 4; 9; 5.

Решили? Действительно, уж куда проще-то?!

Но... Что делает человек, когда видит какое-нибудь задание с корнями?

Тосковать начинает человек... Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень ...

Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах...

Пунктик первый. Корни надо узнавать в лицо!

Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию - возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться...

В этом и есть сложность извлечения корней . Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком - да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.

Этот сложный творческий процесс - подбор ответа - сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 - вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да...

Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый - выучить таблицу квадратов. Это здорово поможет решать примеры. Второй - решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.

И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно...

Итак, что такое квадратный корень и как извлекать корни - думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.

Пунктик второй. Корень, я тебя не знаю!

Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.

Попробуем вычислить вот такой корень:

Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.

Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот... Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт - сами узнаете.

Такая же история будет с любым отрицательным числом. Отсюда вывод:

Выражение, в котором под знаком квадратного корня стоит отрицательное число - не имеет смысла ! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:

Квадратные корни из отрицательных чисел извлечь нельзя!

Зато из всех остальных - можно. Например, вполне можно вычислить

На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить... Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!

Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:

Ничего страшного. Всё то же самое. Корень квадратный из двух - это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное... Вот оно:

Что интересно, эта дробь не кончается никогда... Такие числа называются иррациональными. В квадратных корнях это - самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными . Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:

Если при решении примера у вас получилось что-то неизвлекаемое, типа:

то так и оставляем. Это и будет ответ.

Нужно чётко понимать, что под значками

Конечно, если корень из числа извлекается ровно , вы обязаны это сделать. Ответ задания в виде, например

вполне себе полноценный ответ.

И, конечно, надо знать на память приблизительные значения:

Это знание здорово помогает оценить ситуацию в сложных заданиях.

Пунктик третий. Самый хитрый.

Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах... Разберёмся с этим пунктиком как следует!

Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!

Какое число даст в квадрате 4? Ну два, два - слышу недовольные ответы...

Верно. Два. Но ведь и минус два даст в квадрате 4... А между тем, ответ

правильный, а ответ

грубейшая ошибка. Вот так.

Так в чём же дело?

Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит... Это тоже корень квадратный из четырёх.

Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: из числа а - это неотрицательное число, квадрат которого равен а . Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни - арифметические . Хотя особо об этом не упоминается.

Ну ладно, это понятно. Это даже и лучше - не возиться с отрицательными результатами... Это ещё не путаница.

Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.

Уравнение простое, пишем ответ (как учили):

Такой ответ (совершенно правильный, кстати) - это просто сокращённая запись двух ответов:

Стоп-стоп! Чуть выше я написал, что квадратный корень - число всегда неотрицательное! А здесь один из ответов - отрицательный ! Непорядок. Это первая (но не последняя) проблемка, которая вызывает недоверие к корням... Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:

Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня . Теперь наглядно видно, что сам корень (в скобках) - число всё равно неотрицательное! А знаки - это результат решения уравнения . Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.

Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:

Потому, что это - арифметический квадратный корень .

Но если вы решаете какое-нибудь квадратное уравнение, типа:

то всегда получается два ответа (с плюсом и минусом):

Потому, что это - решение уравнения.

Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор... извините, камни!)

Всё это - в следующих уроках.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

На кружке показала, как в столбик можно извлекать квадратные корни. Вычислить корень можно с произвольной точностью, найти сколько угодно цифр в его десятичной записи, даже если он получается иррациональным. Алгоритм запомнился, а вопросы остались. Непонятно было, откуда взялся метод и почему он дает верный результат. В книжках этого не было, а может, просто не в тех книжках искала. В итоге, как и многое из того, что на сегодняшний день знаю и умею, вывела сама. Делюсь своим знанием здесь. Кстати сказать, до сих пор не знаю, где приведено обоснование алгоритма)))

Итак, сначала на примере рассказываю, “как работает система”, а потом объясняю, почему она на самом деле работает.

Возьмем число (число взято “с потолка”, только что в голову пришло).

1. Разбиваем его цифры на пары: те, что стоят слева от десятичной запятой, группируем по две справа налево, а те, что правее – по две слева направо. Получаем .

2. Извлекаем квадратный корень из первой группы цифр слева — в нашем случае это (ясно, что точно корень может не извлекаться, берем число, квадрат которого максимально близок к нашему числу, образованному первой группой цифр, но не превосходит его). В нашем случае это будет число . Записываем в ответ — это старшая цифра корня.

3. Возводим число, которое стоит уже в ответе — это — в квадрат и вычитаем из первой слева группы цифр — из числа . В нашем случае остается .

4. Приписываем справа следующую группу из двух цифр: . Число , которое уже стоит в ответе, умножаем на , получаем .

5. Теперь следите внимательно. Нам нужно к числу справа приписать одну цифру , и число умножить на , то есть на ту же самую приписанную цифру. Результат должен быть как можно ближе к , но опять-таки не больше этого числа. В нашем случае это будет цифра , ее записываем в ответ рядом с , справа. Это следующая цифра в десятичной записи нашего квадратного корня.

6. Из вычитаем произведение , получаем .

7. Далее повторяем знакомые операции: приписываем к справа следующую группу цифр , умножаем на , к полученному числу > приписываем справа одну цифру, такую, чтобы при умножении на нее получилось число, меньшее , но наиболее близкое к нему –– это цифра –– следующая цифра в десятичной записи корня.

Вычисления запишутся следующим образом:

А теперь обещанное объяснение. Алгоритм основан на формуле

Комментариев: 50

  1. 2 Антон:

    Слишком сумбурно и запутано. Разложите всё по пунктам и пронумеруйте их. Плюс: объясните откуда в каждом действии мы подставляем нужные значения. Никогда раньше не вычислял корень в столбик – разобрался с трудом.

  2. 5 Юлия:

  3. 6 :

    Юлия, 23 на данный момент записано справа, это две первые (слева) уже полученные цифры корня, стоящие в ответе. Умножаем на 2 согласно алгоритму. Повторяем действия, описанные в пункте 4.

  4. 7 zzz:

    ошибка в “6. Из 167 вычитаем произведение 43 * 3 = 123 (129 нада), получаем 38.”
    непонятно как после запятой получилось 08…

  5. 9 Федотов Александр:

    А ещё в докалькуляторную эпоху нас в школе учили не только квадратный, но и кубический корень в столбик извлекать, но это более нудная и кропотливая работа. Проще было таблицами Брадиса воспользоваться или логарифмической линейкой, которую мы уже в старших классах изучали.

  6. 10 :

    Александр, Вы правы, можно извлекать в столбик и корни больших степеней. Я собираюсь написать как раз о том, как находить кубический корень.

  7. 12 Сергей Валентинович:

    Уважаемая Елизавета Александровна! Мной в конце 70-х разработана схема автоматического (т.е. не подбором) вычисления квадр. корня на арифмометре “Феликс”. Если заинтересуетесь, могу выслать описание.

  8. 14 Vlad aus Engelsstadt:

    (((Извлечение квадратного корня в столбик)))
    Алгоритм упрощается, если использовать 2-ную систему счисления, которую изучают в информатике, но полезно и в математике. А.Н. Колмогоров в популярных лекциях для школьников приводил этот алгоритм. Его статью можно найти в “Чебышёвском сборнике” (Математический журнал, ищите ссылку на него в интернете)
    К случаю сказать:
    Г.Лейбниц в свое время носился с идеей о переходе от 10-ной системы счисления к двоичной из-за ее простоты и доступности для начинающих (младших школьников). Но устоявшиеся традиции ломать это все равно что лбом ломать крепостные ворота: можно, но бесполезно. Вот и получается как по наиболее цитируемому в былые времена бородатому философу: традиции всех мертвых поколений подавляют сознание живых.

    До следующих встреч.

  9. 15 Vlad aus Engelsstadt:

    ))Сергей Валентинович, да, мне интересно…((

    Бьюсь об заклад, что это вариация под “Феликс” Вавилонского метода извлечения коня квадратного методом последовательных приближений. Этот алгоритм был перекрыт методом Ньютона (метод касательных)

    Интересно, не ошибся ли я в прогнозе?

  10. 18 :

    2Vlad aus Engelsstadt

    Да, алгоритм в двоичной системе должен быть проще, это довольно очевидно.

    О методе Ньютона. Может, оно и так, но все равно интересно

  11. 20 Кирилл:

    Спасибо большое. А алгоритма так и нету, неизвестно откуда он взялся, но результат правильный получается. СПАСИБО БОЛЬШОЕ! Долго искал это)

  12. 21 Александр:

    А каким образом пойдёт извлечение корня из числа, где вторая слева-направо группа весьма мала? к примеру, любимое всеми число 4 398 046 511 104 . после первого вычитания не получается продолжить всё по алгоритму. Объясните пожалуйста.

  13. 22 Алексей:

    Да, знаю этот способ. Я, помню, вычитал его в книге “Алгебра” какого-то старого издания. Тогда еще по аналогии сам вывел, как так же в столбик извлекать кубический корень. Но там уже сложнее: каждая цифра определяется уже не в одно (как для квадратного), а в два вычитания, да еще там каждый раз надо перемножать длинные числа.

  14. 23 Артем:

    В примере извлечения квадратного корня в столбик из 56789,321 имеются опечатки. Группа цифр 32 приписана дважды к числам 145 и 243, в числе 2388025 вторую 8 необходимо заменить на 3. Тогда последнее вычитание следует записать так: 2431000 – 2383025 = 47975.
    Дополнительно, при делении остатка на увеличенное в два раза значение ответа (без учета запятой), получим добавочное количество значащих цифр (47975/(2*238305) = 0.100658819…), которые следует дописать к ответу (√56789,321 = 238,305… = 238,305100659).

  15. 24 Сергей:

    По всей видимости алгоритм пришел из книги Исаака Ньютона “Всеобщая арифметика или книга о арифметических синтезе и анализе”. Вот выдержка из неё:

    ОБ ИЗВЛЕЧЕНИИ КОРНЕЙ

    Чтобы извлечь из числа квадратный корень, прежде всего следует поставить над его цифрами через одну, начиная с единиц, точки. Затем следует в частном или в корне написать цифру, квадрат которой равен или ближайший по недостатку к цифрам или цифре, предшествующим первой точке. После вычитания этого квадрата остальные цифры корня будут последовательно найдены посредством деления остатка на удвоенную величину уже извлеченной части корня и вычитания всякий раз из остатка квадрата последней найденной цифры и ее удесятеренного произведения на названный делитель.

  16. 25 Сергей:

    Поправьте ещё название книги “Всеобщая арифметика или книга оБ арифметических синтезе и анализе”

  17. 26 Александр:

    Спасибо за интересный материал. Но мне этот метод представляется несколько более сложным, чем нужно, например, школьнику. Я применяю более просто метод, основанный на разложении квадратичной функции с помощью первых двух производных. Формула его такая:
    sqrt(x)= A1+A2-A3, где
    А1 – целое число, квадрат которого ближе всего к х;
    А2 – дробь, в числителе х-А1, в знаменателе 2*А1.
    Для большинства чисел, встречающихся в школьном курсе, этого достаточно, чтобы получить результат с точностью до сотых.
    Если нужен более точный результат, берем
    А3 – дробь, в числителе А2 в квадрате, в знаменателе 2*А1+1.
    Конечно, для применения нужна таблица квадратов целых чисел, но это в школе не проблема. Запомнить эту формулу достаточно просто.
    Меня, правда, смущает, что А3 я получил опытным путем в результате экспериментов с электронной таблицей и не вполне понимаю, почему этот член имеет такой вид. Может, подскажете?

  18. 27 Александр:

    Да, я тоже рассматривал эти соображения, но дьявол кроется в деталях. Вы пишете:
    “поскольку a2 и b отличаются уже довольно мало”. Вопрос именно стоит, насколько мало.
    Эта формула хорошо работает на числах второго десятка и гораздо хуже (не до сотых, только до десятых) на числах первого десятка. Почему так происходит уже трудно понять без привлечения производных.

  19. 28 Александр:

    Я уточню, в чем я вижу преимущество предложенной мной формулы. Она не требует не вполне естественного разбиения чисел на пары цифр, которое, как показывает опыт, часто выполняется с ошибками. Смысл ее очевиден, а для человека, знакомого с анализом, тривиален. Хорошо работает на числах от 100 до 1000, наиболее часто встречающихся в школе.

  20. 29 Александр:

    Кстати, я немного покопался и нашел точное выражение для А3 в моей формуле:
    А3= А22 /2(A1+A2)

  21. 30 vasil stryzhak:

    В наше время, повсеместного использования вычислительной техники, вопрос извлечения квадратного коня из числа с практической точки зрения не стоит. Но для любителей математики, несомненно, представляют интерес различные варианты решения данной задачи. В школьной программе способ данного вычисления без привлечения дополнительных средств должен иметь место наравне с умножением и делением в столбик. Алгоритм вычисления должен быть не только запоминаемым, но и понятным. Классический метод, предоставленный в данном материале для обсуждения с раскрытием сущности, в полной мере соответствует вышеназванным критериям.
    Существенным недостатком предлагаемого Александром способа является использование таблицы квадратов целых чисел. Каким большинством чисел встречающихся в школьном курсе она ограничена автор умалчивает. Что касается формулы, то в целом она мне импонирует в виду относительно высокой точностью вычисления.

  22. 31 Александр:

    для 30 vasil stryzhak
    Я ни о чем не умолчал. Таблица квадратов предполагается до 1000. В мое время в школе ее просто заучивали наизусть и она была во всех учебниках математики. Я в явном виде назвал этот интервал.
    Что до вычислительной техники, то она не применяется, в основном, на уроках математики, если только не идет специально тема применения калькулятора. Калькуляторы сейчас встроены в устройства, запрещенные к применению на ЕГЭ.

  23. 32 vasil stryzhak:

    Александр, спасибо за разъяснение!Я считал,что для предлагаемого метода теоретически необходимо помнить или пользоваться таблицей квадратов всех двузначных чисел.Тогда для подкоренных чисел не входящих в интервал от 100 до 10000 можно использовать прием их увеличения или уменьшения на необходимое количество порядков переносом запятой.

  24. 33 vasil stryzhak:

  25. 39 АЛЕКСАНДР:

    МОЯ ПЕРВАЯ ПРОГРАММА НА ЯЗЫКЕ “ЯМБ” НА СОВЕТСКОЙ МАШИНЕ “ИСКРА 555″ БЫЛА НАПИСАНА ДЛЯ ИЗВЛЕЧЕНИЯ КВАДРАТНОГО КОРНЯ ИЗ ЧИСЛА ПО АЛГОРИТМУ ИЗВЛЕЧЕНИЯ В СТОЛБИК! а сейчас забыл как извлекать в ручную!



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»