Как решать дроби. Решение дробей

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Условимся считать, что под "действиями с дробями" на нашем уроке будут пониматься действия с обыкновенными дробями. Обыкновенная дробь - это дробь, обладающая такими атрибутами, как числитель, дробная черта и знаменатель. Это отличает обыкновенную дробь от десятичной, которая получается из обыкновенной путём приведения знаменателя к числу, кратному 10. Десятичная дробь записывается с запятой, отделяющей целую часть от дробной. У нас пойдёт речь о действиях с обыкновенными дробями, так как именно они вызывают наибольшие затруднения у студентов, позабывших основы этой темы, пройденной в первой половине школьного курса математики. Вместе с тем при преобразованиях выражений в высшей математике используются в основном именно действия с обыкновенными дробями. Одни сокращения дробей чего стоят! Десятичные же дроби особых затруднений не вызывают. Итак, вперёд!

Две дроби и называются равными, если .

Например, , так как

Равными также являются дроби и (так как ), и (так как ).

Очевидно, равными являются и дроби и . Это означает, что если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной: .

Это свойство называется основным свойством дроби.

Основное свойство дроби можно использовать для перемены знаков у числителя и знаменателя дроби. Если числитель и знаменатель дроби умножить на -1, то получим . Это означает, что значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свой знак:

Сокращение дробей

Пользуясь основным свойством дроби, можно заменить данную дробь другой дробью, равной данной, но с меньшим числителем и знаменателем. Такую замену называют сокращением дроби.

Пусть, например, дана дробь . Числа 36 и 48 имеют наибольший общий делитель 12. Тогда

.

В общем случае сокращение дроби возможно всегда, если числитель и знаменатель не являются взаимно простыми числами. Если числитель и знаменатель - взаимно простые числа, то дробь называется несократимой.

Итак, сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Всё вышесказанное применимо и к дробным выражениям, содержащим переменные.

Пример 1. Сократить дробь

Решение. Для разложения числителя на множители, представив предварительно одночлен - 5xy в виде суммы - 2xy - 3xy , получим

Для разложения знаменателя на множители используем формулу разности квадратов:

В результате

.

Приведение дробей к общему знаменателю

Пусть даны две дроби и . Они имеют разные знаменатели: 5 и 7. Пользуясь основным свойством дроби, можно заменить эти дроби другими, равными им, причём такими, что у полученных дробей будут одинаковые знаменатели. Умножив числитель и знаменатель дроби на 7, получим

Умножив числитель и знаменатель дроби на 5, получим

Итак, дроби приведены к общему знаменателю:

.

Но это не единственное решение поставленной задачи: например, данные дроби можно привести также к общему знаменателю 70:

,

и вообще к любому знаменателю, делящемуся одновременно на 5 и 7.

Рассмотрим ещё один пример: приведём к общему знаменателю дроби и . Рассуждая, как в предыдущем примере, получим

,

.

Но в данном случае можно привести дроби к общему знаменателю, меньшему, чем произведение знаменателей этих дробей. Найдём наименьшее общее кратное чисел 24 и 30: НОК(24, 30) = 120 .

Так как 120:4=5, то чтобы записать дробь со знаменателем 120, надо и числитель, и знаменатель умножить на 5, это число называется дополнительным множителем. Значит .

Далее, получаем 120:30=4. Умножив числитель и знаменатель дроби на дополнительный множитель 4, получим .

Итак, данные дроби приведены к общему знаменателю.

Наименьшее общее кратное знаменателей этих дробей является наименьшим возможным общим знаменателем.

Для дробных выражений, в которые входят переменные, общим знаменателем является многочлен, который делится на знаменатель каждой дроби.

Пример 2. Найти общий знаменатель дробей и .

Решение. Общим знаменателем данных дробей является многочлен , так как он делится и на , и на . Однако этот многочлен не единственный, который может быть общим знаменателем данных дробей. Им может быть также многочлен , и многочлен , и многочлен и т.д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на выбранный без остатка. Такой знаменатель называется наименьшим общим знаменателем.

В нашем примере наименьший общий знаменатель равен . Получили:

;

.

Нам удалось привести дроби к наименьшему общему знаменателю. Это произошло путём умножения числителя и знаменателя первой дроби на , а числителя и знаменателя второй дроби - на . Многочлены и называются дополнительными множителями, соответственно для первой и для второй дроби.

Сложение и вычитание дробей

Сложение дробей определяется следующим образом:

.

Например,

.

Если b = d , то

.

Это значит, что для сложения дробей с одинаковым знаменателем достаточно сложить числители, а знаменатель оставить прежним. Например,

.

Если же складываются дроби с разными знаменателями, то обычно приводят дроби к наименьшему общему знаменателю, а потом складывают числители. Например,

.

Теперь рассмотрим пример сложения дробных выражений с переменными.

Пример 3. Преобразовать в одну дробь выражение

.

Решение. Найдём наименьший общий знаменатель. Для этого сначала разложим знаменатели на множители.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Арифметические действия с обыкновенными дробями

1. Сложение.

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же.

Пример. .

Чтобы сложить дроби с разными знаменателями, надо привести их к наименьшему общему знаменателю, а затем сложить полученные числители и под суммой подписать общий знаменатель.

Пример.

Короче записывают так:

Чтобы сложить смешанные числа, нужно отдельно найти сумму целых и сумму дробных частей. Действие записывается так:

2. Вычитание.

Чтобы вычесть дроби с одинаковыми знаменателями, нужно вычесть числитель вычитаемого из числителя уменьшаемого и оставить прежний знаменатель. Действие записывают так:

Чтобы вычесть дроби с разными знаменателями, нужно сначала привести их к наименьшему общему знаменателю, затем из числителя уменьшаемого вычесть числитель вычитаемого и под их разностью подписать общий знаменатель. Действие записывают так:

Если нужно вычесть одно смешанное число из другого смешанного числа, то, если можно, вычитают дробь из дроби, а целое из целого. Действие записывают так:

Если же дробь вычитаемого больше дроби уменьшаемого, то берут одну единицу из целого числа уменьшаемого, раздробляют ее в надлежащие доли и прибавляют к дроби уменьшаемого, после чего поступают, как описано выше. Действие записывают так:

Аналогично поступают, когда надо вычесть из целого числа дробное.

Пример. .

3. Распространение свойств сложения и вычитания на дробные числа. Все законы и свойства сложения и вычитания натуральных чисел справедливы и для дробных чисел. Их применение во многих случаях значительно упрощает процесс вычисления.

4. Умножение.

Чтобы умножить дробь на дробь, нужно умножить числитель на числитель, а знаменатель на знаменатель и первое произведение сделать числителем, а второе - знаменателем.

При умножении следует делать (если возможно) сокращение.

Пример. .

Если учесть, что целое число представляет собой дробь со знаменателем 1, то умножение дроби на целое число и целого числа на дробь можно выполнять поэтому же правилу.

Примеры.

5. Умножение смешанных чисел.

Чтобы перемножить смешанные числа, нужно предварительно обратить их в неправильные дроби и потом перемножать по правилу умножения дробей.

Пример. .

6. Деление дроби на дробь.

Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой на числитель второй и первое произведение записать числителем, а второе - знаменателем.

Пример. .

По этому же правилу можно выполнять деление дроби на целое число и целого на дробь, если представить целое число в виде дроби со знаменателем 1.

Примеры.

7. Деление смешанных чисел.

Чтобы выполнить деление смешанных чисел, их предварительно обращают в неправильные дроби и затем делят по правилу деления дробей.

Пример. .

8. Замена деления умножением.

Если в какой-нибудь дроби поменять местами числитель и знаменатель, получится новая дробь, обратная данной. Например, для дроби обратная дробь будет .

Очевидно, что произведение двух взаимно обратных дробей равно 1.

  1. Нахождение дроби от числа.

Существует много задач, в которых требуется найти часть или дробь данного числа. Такие задачи решают умножением.

Задача. Хозяйка имела 20 руб.; их она израсходовала на покупки. Сколько стоят покупки?

Здесь требуется найти числа 20. Сделать это можно так:

Ответ. Хозяйка израсходовала 8 руб.

Примеры. Найти от 30. Решение. .

Найти от . Решение. .

  1. Нахождение числа по известной величине его дроби.

Иногда требуется по известной части числа и дроби, выражающей эту часть, определить все число. Такие задачи решаются делением.

Задача. В классе 12 комсомольцев, что составляет части всех учащихся класса. Сколько всех учащихся в классе?

Решение. .

Ответ. 20 учащихся.

Пример. Найти число, которого составляет 34.

Решение. .

Ответ. Искомое число равно .

  1. Нахождение отношения двух чисел.

Рассмотрим задачу: Рабочий изготовил за день 40 деталей. Какую часть месячного задания выполнил рабочий, если месячный план составляет 400 деталей?

Решение. .

Ответ. Рабочий выполнил часть месячного плана.

В данном случае часть (40 деталей) выражено в долях целого (400 деталей). Говорят также, что найдено отношение числа изготовленных за день деталей к месячному плану.

  1. Превращение десятичной дроби в обыкновенную.

Чтобы преобразовать десятичную дробь в обыкновенную, ее записывают со знаменателем и, если возможно, сокращают:

Примеры.

  1. Превращение обыкновенной дроби в десятичную.

Существует несколько способов превращения обыкновенной дроби в десятичную.

Первый способ. Чтобы обратить обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.

Примеры. .

Второй способ. Чтобы превратить обыкновенную дробь в десятичную, нужно помножить числитель и знаменатель данной дроби на такое число, чтобы в знаменателе получилась единица с нулями (если это возможно).

Пример.

  1. Сравнение десятичных дробей по величине . Чтобы выяснить, какая из двух десятичных дробей больше, надо сравнить их целые части, десятые, сотые и т.д. При равенстве целых частей больше та дробь, у которой десятых частей больше; при равенстве целых и десятичных - та больше, у которой больше сотых, и т.д.

Пример. Из трех дробей 2,432; 2,41 и 2,4098 наибольшая первая, так как в ней сотых наибольше, а целые и десятые во всех дробях одинаковы.

Действия с десятичными дробями

  1. Умножение и деление десятичной дроби на 10, 100, 1000 и т.д.

Чтобы умножить десятичную дробь на 10, 100, 1000 и т.д. надо перенести запятую соответственно на один, два, три и т.д. знака вправо. Если при этом не хватает знаков у числа, то приписывают нули.

Пример. 15,45 · 10 = 154,5; 32,3 · 100 = 3230.

Чтобы разделить десятичную дробь на 10, 100, 1000 и т.д., надо перенести запятую соответственно на один, два, три и т.д. знака влево. Если для перенесения запятой не хватает знаков, их число дополняют соответствующим числом нулей слева.

Примеры. 184,35: 100 = 1,8435; 3,5: 100 = 0,035.

  1. Сложение и вычитание десятичных дробей.

Десятичные дроби складывают и вычитают почти так же, как складывают и вычитают натуральные числа. Разряд записывается под разрядом, запятая - под запятой

Примеры.

  1. Умножение десятичных дробей.

Чтобы перемножить две десятичные дроби, достаточно, не обращая внимания на запятые, перемножить их как целые числа и в произведении отделить запятой справа столько десятичных знаков, сколько их было во множимом и множителе вместе.

Пример 1. 2,064 · 0,05.

Перемножаем целые числа 2064 · 5 = 10320. В первом сомножителе было три знака после запятой, во втором - два. В произведении число десятичных знаков должно быть пять. Отделяем их справа и получаем 0,10320. Нуль, стоящий в конце, можно отбросить: 2,064 · 0,05 = 0,1032.

Пример 2. 1,125 · 0,08; 1125 · 8 = 9000.

Число знаков после запятой должно быть 3 + 2 = 5. Приписываем к 9000 нули слева (009000) и отделяем справа пять знаков. Получаем 1,125 · 0,08 = 0,09000 = 0,09.

  1. Деление десятичных дробей.

Рассматривается два случая деления десятичных дробей без остатка: 1) деление десятичной дроби на целое число; 2) деление числа (целого или дробного) на десятичную дробь.

Деление десятичной дроби на целое число выполняется так же, как и деление целых чисел; получаемые остатки раздробляют последовательно в меньшие десятичные части и продолжают деление до тех пор, пока в остатке будет нуль.

Примеры.

Деление числа (целого или дробного) на десятичную дробь во всех случаях приводят к делению на целое число. Для этого увеличивают делитель в 10, 100, 1000 и т.д. раз, а чтобы частное не изменилось, в то же число раз увеличивают и делимое, после чего делят на целое число (как в первом случае).

Пример. 47,04: 0,0084 = 470400: 84 = 5600;

  1. Примеры на совместные действия с обыкновенными и десятичными дробями.

Рассмотрим сначала пример на все действия с десятичными дробями.

Пример 1. Вычислить:

Здесь пользуются приведением делимого и делителя к целому числу с учетом того, что частное при этом не изменяется. Тогда имеем:

При решении примеров на совместные действия с обыкновенными и десятичными дробями часть действий можно выполнять в десятичных дробях, а часть - в обыкновенных. Надо иметь в виду, что не всегда обыкновенная дробь может быть превращена в конечную десятичную дробь. Поэтому записывать десятичной дробью можно только тогда, когда проверено, что такое преобразование возможно.

Пример 2. Вычислить:

Проценты

Понятие о проценте. Процентом какого-либо числа называется сотая часть этого числа. Например, вместо того, чтобы сказать "54 сотых всех жителей нашей страны составляют женщины", можно сказать "54 процента всех жителей нашей страны составляют женщины". Вместо слова "процент" пишут также значок %, например 35% - значит 35 процентов.

Так как процент есть сотая часть, то отсюда следует, что процент есть дробь со знаменателем 100. Поэтому дробь 0,49, или , можно прочитать как 49 процентов и записать без знаменателя в виде 49%. Вообще, определив, сколько в данной десятичной дроби сотых частей, ее легко записать в процентах. Для этого пользуются правилом: чтобы записать десятичную дробь в процентах, надо перенести в этой дроби запятую на два знака вправо.

Примеры. 0,33 = 33%; 1,25 = 125%; 0,002 = 0,2%; 21 = 2100%.

И наоборот: 7% = 0,07; 24,5% = 0,245; 0,1% = 0,001; 200% = 2.

1. Нахождение процентов данного числа

Задача. Бригада трактористов по плану должна израсходовать 9 т горючего. Трактористы взяли соцобязательство сэкономить 20% горючего. Определить экономию горючего в тоннах.

Если в этой задаче вместо 20% написать равное ему число 0,2, получим задачу, на нахождение дроби числа. А такие задачи решают умножением. Отсюда вытекает способ решения:

20% = 0,2; 9 · 0,2 = 1,8 ( m ).

Вычисления можно записать и так:

( m )

Чтобы найти несколько процентов данного числа, достаточно данное число разделить на 100 и умножить результат на число процентов.

Задача. Рабочий в 1963 г. получал в месяц 90 руб., а в 1964 г. стал получать на 30% больше. Сколько получал он в 1964 г.?

Решение (первый способ).

1) На сколько рублей больше стал получать рабочий?

(руб.)

90 + 27 = 117 (руб).

Второй способ.

1) Сколько процентов прежнего заработка стал получать рабочий в 1964 г.?

100% + 30% = 130%.

2) Какова была месячная зарплата рабочего в 1964 г.?

(руб.)

2. Нахождение числа по данной величине его процентов.

Задача. В колхозе посеяли кукурузу на площади 280 га, что составляет 14% всей посевной площади. Определить посевную площадь колхоза.

Если в этой задаче вместо 14% написать 0,14 или , то получим задачу на нахождение числа по известной величине его дроби. А такие задачи решают делением.

Решение. 14% = 0,14; 280: 0,14 = 2000 (га). Можно это решение оформить и так:

(га)

Чтобы найти число по данной величине нескольких процентов его, достаточно эту величину разделить на число процентов и результат умножить на 100.

Задача. В марте завод выплавил 125,4 т металла, перевыполнив план на 4,5%. Сколько тонн металла завод должен был выплавить в марте по плану?

Решение.

1) На сколько процентов завод выполнил план в марте?

100% + 4,5% = 104,5%.

2) Сколько тонн металла завод должен был выплавить?

(га)

  1. Нахождение процентного отношения двух чисел.

Задача. Нужно вспахать 300 га земли. В первый день вспахали 120 га. Сколько процентов к заданию вспахали в первый день?

Решение.

Первый способ. 300 га составляет 100%, значит, на 1% приходится 3 га. Определив, сколько раз 3 га, составляющие 1%, содержатся в 120 га, мы узнаем сколько процентов к заданию вспахали земли в первый день

120: 3 = 40(%).

Второй способ. Определив, какую часть земли вспахали в первый день, выразим эту дробь в процентах.

Записываем вычисление:

Чтобы вычислить процентное отношение числа а к числу b , нужно найти отношение а к b и умножить его на 100.


Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» - сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

Как вычесть дроби, знаменатели которых одинаковые

Дроби - это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

  • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m - b/m = (k-b)/m.

Примеры вычитания дробей, знаменатели которых одинаковы

7/19 - 3/19 = (7 - 3)/19 = 4/19.

От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби - «19».

На картинке ниже приведено еще несколько подобных примеров.

Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 - 3 - 8 - 2 - 7)/47 = 9/47.

От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей - «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, - «47».

Сложение дробей, имеющих одинаковый знаменатель

Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

  • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число - числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

Рассмотрим, как это выглядит на примере:

1/4 + 2/4 = 3/4.

К числителю первой слагаемой дроби - «1» - добавляем числитель второй слагаемой дроби - «2». Результат - «3» - записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, - «4».

Дроби с различными знаменателями и их вычитание

Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

    Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

    О том, как это сделать, мы поговорим подробнее.

    Свойство дроби

    Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

    Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

    2/3 = 4/6 = 6/9 = 8/12…

    Как привести несколько дробей к одному и тому же знаменателю

    Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

    Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

    Рассмотрим первую дробь - 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:
    1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

    Аналогично производим действия с оставшимися дробями.

    • 2/3 - в знаменателе не хватает одной тройки и одной двойки:
      2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
    • 7/9 или 7/(3 х 3) - в знаменателе не хватает двойки:
      7/9 = (7 х 2)/(9 х 2) = 14/18.
    • 5/6 или 5/(2 х 3) - в знаменателе не хватает тройки:
      5/6 = (5 х 3)/(6 х 3) = 15/18.

    Все вместе это выглядит так:

    Как вычесть и сложить дроби, имеющие различные знаменатели

    Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

    Рассмотрим это на примере: 4/18 - 3/15.

    Находим кратное чисел 18 и 15:

    • Число 18 состоит из 3 х 2 х 3.
    • Число 15 состоит из 5 х 3.
    • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

    После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

    • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
    • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

    Следующий этап нашего решения - приведение каждой дроби к знаменателю «90».

    Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

    (4 х 5)/(18 х 5) - (3 х 6)/(15 х 6) = 20/90 - 18/90 = 2/90 = 1/45.

    Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

    Аналогично производится и имеющих различные знаменатели.

    Вычитание и имеющих целые части

    Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

    • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, - числитель неправильной дроби. Знаменатель же остается неизменным.
    • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
    • Произвести сложение или вычитание с одинаковыми знаменателями.
    • При получении неправильной дроби выделить целую часть.

    Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

    Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

    Вычитание дробей из целого числа

    Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

    7 - 4/9 = (7 х 9)/9 - 4/9 = 53/9 - 4/9 = 49/9.

    Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

В математике различные типы чисел изучаются с самого своего зарождения. Существует большое количество множеств и подмножеств чисел. Среди них выделяют целые числа, рациональные, иррациональные, натуральные, четные, нечетные, комплексные и дробные. Сегодня разберем информацию о последнем множестве - дробных числах.

Определение дробей

Дроби - это числа, состоящие из целой части и долей единицы. Также, как и целых чисел, существует бесконечное множество дробных, между двумя целыми. В математике действия с дробями выполняются, так как с целыми и натуральными числами. Это довольно просто и научиться этому можно за пару занятий.

В статье представлено два вида

Обыкновенные дроби

Обыкновенные дроби представляют собой целую часть a и два числа записанных через дробную черту b/c. Обыкновенные дроби могут быть крайне удобны, если дробную часть нельзя представить в рациональном десятичном виде. Кроме того, арифметические операции удобнее производить через дробную черту. Верхняя часть называется числитель, нижняя - знаменатель.

Действия с обыкновенными дробями: примеры

Основное свойство дроби. При умножении числителя и знаменателя на одно и то же число, не являющееся нулем, в результате получается число равное данному. Это свойство дроби отлично помогает привести знаменатель для сложения (об этом будет рассказано ниже) или сократить дробь, сделать ее удобнее для счета. a/b = a*c/b*c. К примеру, 36/24 = 6/4 или 9/13 = 18/26

Приведение к общему знаменателю. Чтобы привести знаменатель дроби необходимо представить знаменатель в виде множителей, а затем помножить на недостающие числа. Например, 7/15 и 12/30; 7/5*3 и 12/5*3*2. Видим, что знаменатели отличаются двойкой, поэтому умножаем числитель и знаменатель первой дроби на 2. Получаем: 14/30 и 12/30.

Составные дроби - обыкновенные дроби с выделенной целой частью. (A b/c) Чтобы представить составную дробь в виде обыкновенной, необходимо умножить число, стоящее перед дробью на знаменатель, а затем сложить с числителем: (A*c + b)/c.

Арифметические действия с дробями

Не лишним будет рассмотреть известные арифметические действия только при работе с дробными числами.

Сложение и вычитание. Складывать и вычитать обыкновенные дроби точно так же легко, как и целые числа, за исключением одной трудности - наличия дробной черты. Складывая дроби с одинаковым знаменателем, необходимо сложить лишь числители обеих дробей, знаменатели остаются без изменения. Например: 5/7 + 1/7 = (5+1)/7 = 6/7

Если же знаменатели двух дробей представляют собой разные числа сначала нужно привести их к общему (как это сделать было рассмотрено выше). 1/8 + 3/2 = 1/2*2*2 + 3/2 = 1/8 + 3*4/2*4 = 1/8 + 12/8 = 13/8. Вычитание происходит по точно такому же принципу: 8/9 - 2/3 = 8/9 - 6/9 = 2/9.

Умножение и деление. Действия с дробями по умножению происходят по следующему принципу: отдельно перемножаются числители и знаменатели. В общем виде формула умножения выглядит так: a/b *c/d = a*c/b*d. Кроме того, по мере умножения можно сократить дробь, исключая одинаковые множители из числителя и знаменателя. Выражаясь другим языком, числитель и знаменатель делится на одно и то же число: 4/16 = 4/4*4 = 1/4.

Для деления одной обыкновенной дроби на другую, нужно поменять числитель и знаменатель делителя и выполнить умножение двух дробей, по принципу, рассмотренному ранее: 5/11: 25/11 = 5/11 * 11/25 = 5*11/11*25 = 1/5

Десятичные дроби

Десятичные дроби являются более популярной и часто используемой версией дробных чисел. Их проще записать в строчку или представить на компьютере. Структура десятичной дроби такая: сначала записывается целое число, а затем, после запятой, записывается дробная часть. По своей сути десятичные дроби - это составные обыкновенные дроби, однако их дробная часть представлена числом, деленным на кратное цифре 10. Отсюда и произошло их название. Действия с дробями десятичными аналогичны действиям с целыми числами, так как они так же записаны в десятичной системе счисления. Также в отличие от обыкновенных дробей, десятичные могут быть иррациональными. Это значит, что они могут быть бесконечны. Записываются они так 7,(3). Читается такая запись: семь целых, три десятых в периоде.

Основные действия с десятичными числами

Сложение и вычитание десятичных дробей. Выполнить действия с дробями не сложнее, чем с целыми натуральными числами. Правила абсолютно аналогичны с теми, что используют при сложении или вычитании натуральных чисел. Их точно так же можно считать столбиком, однако при необходимости заменять недостающие места нулями. Например: 5,5697 - 1,12. Для того чтобы выполнить вычитание столбиком нужно уравнять количество чисел после запятой: (5,5697 - 1,1200). Так, числовое значение не измениться и можно будет считать в столбик.

Действия с десятичными дробями нельзя производить, если одно из них имеет иррациональный вид. Для этого нужно перевести оба числа в обыкновенные дроби, а затем пользоваться приемами, описанными ранее.

Умножение и деление. Умножение десятичных дробей аналогично умножению натуральных. Их также можно умножать столбиком, просто, не обращая внимания на запятую, а затем отделить запятой в итоговом значении такое же количество знаков, сколько в сумме после запятой было в двух десятичных дробях. К примеру, 1,5 * 2,23 = 3,345. Все очень просто, и не должно вызвать затруднений, если вы уже овладели умножением натуральных чисел.

Деление также совпадает с делением натуральных чисел, но с небольшим отступлением. Чтобы разделить на десятичное число столбиком необходимо отбросить запятую в делителе, и умножить делимое на число знаков, стоявших после запятой в делителе. После чего выполнять деление как с натуральными числами. При неполном делении можно добавлять нули к делимому справа, также прибавляя ноль в ответ после запятой.

Примеры действий с десятичными дробями. Десятичные дроби - очень удобный инструмент для арифметического счета. Они сочетают в себе удобство натуральных, целых чисел и точность обыкновенных дробей. К тому же довольно просто перевести одни дроби в другие. Действия с дробями не отличаются от действий с натуральными числами.

  1. Сложение: 1,5 + 2,7 = 4,2
  2. Вычитание: 3,1 - 1,6 = 1,5
  3. Умножение: 1,7 * 2,3 = 3,91
  4. Деление: 3,6: 0,6 = 6

Кроме того, десятичные дроби подходят для представления процентов. Так, 100 % = 1; 60 % = 0,6; и наоборот: 0,659 = 65,9 %.

Вот и все, что нужно знать о дробях. В статье было рассмотрено два вида дробей - обыкновенные и десятичные. Оба довольно простые в вычислении, и если вы полностью овладели натуральными числами и действиями с ними, можете смело приступать к изучению дробных.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»