Какая связь животных 1 гликоген. Гликоген: энергетические резервы человека — почему важно знать о них, чтобы похудеть? Восполнение гликогена после тренировки

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Текст: Татьяна Котова

Если оставить в стороне описание физиологических процессов и язык химических формул, и попытаться в нескольких словах объяснить, что такое гликоген, то получится примерно следующее: гликоген - это наш запасной углевод и хранилище энергии. Функции гликогена, зачем нужен гликоген в печени и сколько гликогена в мышцах – на эти вопросы мы постараемся ответить.

Синтез гликогена

Гликоген – это быстромобилизуемый энергетический резерв. В гликогене хранится глюкоза. После еды организм забирает из питательных веществ столько глюкозы, сколько ему необходимо для обеспечения физической активности и умственной деятельности, а остальное сохраняет в виде гликогена в печени и мышцах . Их он будет использовать тогда, когда придет время. Этот процесс называется синтез гликогена или просто - сахарообразование. Когда вы начинаете активную физическую деятельность, например, занятия спортом, организм начинает использовать свои запасы гликогена. Причем делает это по-умному. Он – организм – знает, что не может полностью использовать то, что образовалось в результате синтеза гликогена, ведь в противном случае ему будет нечего использовать для быстрого восполнения энергии (представьте себе, что вы просто не в состоянии ходить или бегать, потому что у вашего тела не осталось энергии, чтобы двигаться).

Через несколько часов «без дозаправки» в виде продуктов питания, запасы гликогена оказываются исчерпаны, но нервная система продолжает настойчиво требовать его для себя. Именно поэтому возникают вялые психические и физические реакции, человеку становится трудно сосредотачиваться и реагировать на какие-либо внешние раздражители.

Есть два сценария, по которым наш организм запускает синтез гликогена. После еды, особенно продуктов с высоким содержанием углеводов , уровень глюкозы в крови повышается. В ответ инсулин попадает в кровоток и облегчает доставку глюкозы в клетки, а также помогает синтезу гликогена. Второй механизм запускается в периоды крайнего голода или активной физической деятельности. В обоих случаях организм истощает запас гликогена в клетках, подавая мозгу сигналы о необходимости «дозаправки».

Функции гликогена

Главная функция гликогена – хранение энергии. Основные запасы гликогена находятся в мышцах и печени, где он одновременно и производится (из глюкозы, содержащейся в крови), и используется. Кроме того, гликоген хранится также и в красных кровяных клетках. Функция гликогена печени – обеспечивать глюкозой весь организм, функции гликогена в мышцах – обеспечивать энергией физическую активность.

Когда уровень сахара в крови снижается, вырабатывается гормон глюкагон, который превращает гликоген в источник топлива. Когда мышцы сокращаются, функция гликогена – расщепиться до глюкозы, которая будет использоваться в качестве энергии. После физической активности организм восполнит растраченные запасы гликогена, как только вы что-нибудь съедите. Если запасы гликогена и жира истощаются, организм начинает расщеплять белки и использовать их в качестве источника топлива. При этом человек может столкнуться с опасностью возникновения анорексии. Сердечная мышца очень богата гликогеном и для ежедневной работы получает около 25% своего топлива из глюкозы. Без достаточного потребления продуктов, содержащих глюкозу, страдать будет, в том числе, и сердце. По этой причине у многих больных анорексией и булимией есть проблемы с сердцем.

Что происходит, если в организме слишком много глюкозы? Если все хранилища гликогена заполнены, начинается превращение глюкозы в жир. С этой точки зрения очень важно следить за вашей диетой и не потреблять очень много сладких продуктов, углеводы которых могут быть преобразованы в глюкозу. Как только избыток сахара сохраняется в виде жира, организму требуется гораздо больше времени, чтобы сжечь его. Любая диета, учитывающая соотношение белков, жиров и углеводов (например, умная диета для похудения), всегда крайне скупа на сахар и быстрые углеводы.

Зачем нужен гликоген в печени?

Печень - это второй по величине орган человеческого тела после кожи. Это самая тяжелая железа, у среднего взрослого человека она весит около полутора килограмм. Печень ответственна за множество жизненно важных функций, в том числе и за углеводный обмен. Печень, по сути, является огромным фильтром, через который из желудочно-кишечного тракта проходит богатая питательными веществами кровь. И особенно сложная и важная задача этого фильтра - поддержание оптимальной концентрации глюкозы в крови. А гликоген в печени является хранилищем глюкозы.

Основные механизмы, с помощью которых организм, обеспечивая оптимальный уровень сахара в крови, обрабатывает гликоген в печени – это липогенез, распад гликогена, глюконеогенез и превращение других сахаров в глюкозу.

Печень выступает в роли своеобразного буфера глюкозы, то есть она помогает поддерживать концентрацию глюкозы в крови близко к нормальному диапазону от 80 до 120 мг/дл (миллиграмм глюкозы на децилитр крови). Это делает печень критически важным органом, потому что как гипергликемия (повышенное содержание сахара в крови), так и гипогликемия (низкий уровень сахара в крови) могут быть опасны для организма.

Зачем нужен гликоген в мышцах

Гликоген в мышцах нужен для хранения энергии. Если добиться того, чтобы наш организм мог сохранять больше гликогена в мышцах, то в распоряжении мышц было бы больше энергии, готовой к немедленному использованию. Это одна из задач предсезонной подготовки спортсменов. Для них важно, чтобы перед тренировкой обеспечивалось полное восстановление мышц. Поэтому их программы питания строятся таким образом, чтобы «хранилище» гликогена в мышцах было забито до отказа.

Медицинские исследования показывают, что ключ к быстрому восстановлению гликогена в мышцах – это употребление в течение получаса после тренировки пищи и напитков с соотношением углеводы/белки примерно 4 к 1. Тогда пищеварительные ферменты наиболее активны и приток крови к мышцам будет максимальным. Спортсмены, которые не забывают «дозаправить» гликоген в мышцах сразу после тренировки, прежде чем пойти в душ, могут сохранить в три раза больше гликогена, чем те, кто ждет два или более часов.

Мобилизация гликогена (гликогенолиз)

Роль ферментов в расщеплении гликогена.


Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки - длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

  1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) - расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы;
  2. α(1,4)-α(1,4)-Глюкантрансфераза - фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь;
  3. Амило-α1,6-глюкозидаза, («деветвящий» фермент) - гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах.

Накопление гликогена в мышцах отмечается в период восстановления после работы, особенно при приеме богатой углеводами пищи.

В печени гликоген накапливается только после еды, при гипергликемии. Такие отличия печени и мышц обусловлены наличием различных изоферментов гексокиназы, фосфорилирующей глюкозу в глюкозо-6-фосфат. Для печени характерен изофермент (гексокиназа IV), получивший собственное название - глюкокиназа. Отличиями этого фермента от других гексокиназ являются:

  • низкое сродство к глюкозе (в 1000 раз меньше), что ведет к захвату глюкозы печенью только при ее высокой концентрации в крови (после еды),
  • продукт реакции (глюкозо-6-фосфат) не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию. Это позволяет гепатоциту в единицу времени захватывать глюкозы больше, чем он может сразу же утилизовать.

Благодаря особенностям глюкокиназы гепатоцит эффективно захватывает глюкозу после еды и впоследствии метаболизирует ее в любом направлении. При нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

Фосфоглюкомутаза

Фосфоглюкомутаза - превращает глюкозо-6-фосфат в глюкозо-1-фосфат.

Глюкозо-1-фосфат-уридилтрансфераза

Реакции синтеза УДФ-глюкозы.


Глюкозо-1-фосфат-уридилтрансфераза - фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата.

Гликогенсинтаза


Гликогенсинтаза - образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена.

Амило-α1,4-α1,6-гликозилтрансфераза

Роль гликогенсинтазы и гликозилтрансферазы в синтезе гликогена.


Амило-α1,4-α1,6-гликозилтрансфераза, «гликоген-ветвящий» фермент - переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

Синтез и распад гликогена реципрокны

Активность обмена гликогена в зависимости от условий

Изменение активности ферментов обмена гликогена в зависимости от условий.


Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты - они активны либо в фосфорилированной, либо в дефосфорилированной форме.

Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфора является АТФ:

  • фосфорилаза гликогена активируется после присоединения фосфатной группы;
  • синтаза гликогена после присоединения фосфата инактивируется.

Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина , глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

Например,

  • во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения;
  • при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

Способы активации синтазы гликогена

Аллостерическая активация гликогенсинтазы осуществляется глюкозо-6-фосфатом.

Еще одним способом изменения ее активности является химическая (ковалентная) модификация. При присоединении фосфата гликогенсинтаза прекращает работу, то есть она активна в дефосфорилированном виде. Удаление фосфата от ферментов осуществляют протеинфосфатазы. Активатором протеинфосфатаз выступает инсулин - в результате он повышает синтез гликогена.

Вместе с этим, инсулин и глюкокортикоиды ускоряют синтез гликогена, увеличивая количество молекул гликогенсинтазы.

Способы активации фосфорилазы гликогена

Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться тремя способами:

  • ковалентная модификация;
  • кальций-зависимая активация;
  • аллостерическая активация с помощью АМФ.

Ковалентная модификация фосфорилазы

Аденилатциклазный способ активации фосфорилазы гликогена.


При действии некоторых гормонов на клетку происходит активация фермента через аденилатциклазный механизм , который является так называемым каскадным регулированием. Последовательность событий в данном механизме включает:

  1. Молекула гормона (адреналин, глюкагон) взаимодействует со своим рецептором;
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок;
  3. G-белок активирует фермент аденилатциклазу;
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) - вторичный посредник (мессенджер);
  5. цАМФ аллостерически активирует фермент протеинкиназу А;
  6. Протеинкиназа А фосфорилирует различные внутриклеточные белки:
    • одним из этих белков является синтаза гликогена, ее активность угнетается,
    • другим белком - киназа фосфорилазы, которая при фосфорилировании активируется;
  7. Киназа фосфорилазы фосфорилирует фосфорилазу «b» гликогена, последняя в результате превращается в активную фосфорилазу «а»;
  8. Активная фосфорилаза «а» гликогена расщепляет α-1,4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные способы регуляции этого механизма. Например, после воздействия инсулина активируется фермент фосфодиэстераза, которая гидролизует цАМФ и, следовательно, снижает активность гликоген-фосфорилазы.

Активация ионами кальция заключается в активации киназы фосфорилазы не протеинкиназой, а ионами Ca 2+ и кальмодулином. Этот путь работает при инициации кальций-фосфолипидного механизма. Такой способ оправдывает себя, например, при мышечной нагрузке, если гормональные влияния через аденилатциклазу недостаточны, но в цитоплазму под влиянием нервных импульсов поступают ионы Ca 2+ .

Регистрационный номер: П №015125/01

Торговое название:
ГлюкаГен® 1 мг ГипоКит (GlucaGen ® 1 mg HypoKit)

Международное непатентованное название (мНн):
Глюкагон

Лекарственная форма
Лиофилизат для приготовления раствора для инъекций

Состав:

Активное вещество: глюкагона гидрохлорид генно-инженерный - 1 мг (соответствует 1 МЕ).

Вспомогательные вещества
лактозы моногидрат, вода для инъекций. (В состав могут также входить кислота хлористоводородная и/или натрия гидроксид, используемые при производстве препарата для подбора рН).

Описание
Лиофилизированный порошок или пористая масса белого цвета. При растворении в прилагаемом растворителе в течение 1 мин образуется прозрачный бесцветный раствор.

Фармакотерапевтическая группа
Средство для лечения гипогликемии.

Код АТХ : Н04АА01.

Фармакологические свойства

ГлюкаГен® 1 мг ГипоКит содержит генно-инженерный человеческий глюкагон -белково-пептидный гормон, физиологический антагонист инсулина, участвующий в регуляции углеводного обмена. Глюкагон усиливает расщепление гликогена в печени до глюкозо-6-фосфата (глюкогенолиз), в результате чего повышается концентрация глюкозы в крови. Глюкагон не эффективен при лечении пациентов, в печени которых запасы гликогена истощены. По этой причине глюкагон малоэффективен или не эффективен вовсе при лечении пациентов натощак или пациентов с надпочечниковой недостаточностью, хронической гипогликемией или гипогликемией, вызванной приемом алкоголя. В отличие от адреналина, глюкагон не оказывает воздействия на мышечную фосфорилазу и поэтому не может содействовать переносу углеводов из более богатых запасами гликогена скелетных мышц.

Глюкагон стимулирует выделение катехоламинов. При наличии феохромоцитомы глюкагон может спровоцировать выделение опухолью большого количества катехоламинов, которые вызывают резкое повышение АД. Глюкагон снижает сократительную способность гладкой мускулатуры желудочно-кишечного тракта. Действие препарата начинается через 1 минуту после внутривенной инъекции, длительность действия препарата составляет 5-20 минут в зависимости от дозы и органа.

При лечении тяжелой гипогликемии действие глюкагона на содержание глюкозы в крови обычно наблюдается в течение 10 минут.

Фармакокинетика. Скорость метаболического клиренса глюкагона у человека составляет приблизительно 10 мл/кг/мин. Глюкагон метаболизируется ферментативным путем в плазме крови и в органах, в которых он распределен. Основные места метаболизма глюкагона -печень и почки, вклад каждого органа в общую скорость метаболического клиренса составляет приблизительно 30 %. Период полувыведения глюкагона составляет 3-6 минут.

Показания к применению

Тяжелые гипогликемические состояния (низкий уровень глюкозы в крови), возникающие у больных сахарным диабетом после инъекции инсулина или приема таблетированных гипогликемических препаратов.

Противопоказания:

Повышенная индивидуальная чувствительность к глюкагону или любому другому компоненту препарата; гипергликемия; феохромоцитома

Применение в период беременности и кормления грудью

ГлюкаГен не проходит через человеческий плацентарный барьер и может использоваться для лечения тяжелой гипогликемии во время беременности. При назначении препарата в период грудного вскармливания какого-либо риска для ребенка не отмечено.

Способ применения и дозы

Для приготовления инъекционного раствора 1 мг (1 ME) лиофилизата растворяют в 1 мл растворителя. Полученный раствор может вводиться подкожно, внутримышечно или внутривенно. В данной лекарственной форме препарат ГлюкаГен 1 мг ГипоКит вводят подкожно или внутримышечно. Введение препарата медицинским персоналом

Вводят 1 мг (взрослым и детям с массой тела более 25 кг или 6-8 лет) или 0.5 мг (детям с массой тела менее 25 кг или младше 6-8 лет) подкожно, внутримышечно или внутривенно. Пациент обычно приходит в сознание в течение 10 минут после введения препарата. После того, как пациент придет в сознание, ему необходимо дать пищу, богатую углеводами, для предотвращения повторного развития гипогликемии. Если в течение 10 минут больной не придет в сознание, ему необходимо ввести внутривенно глюкозу. Введение препарата пациенту родственником(ами) Родственники или близкие друзья больного сахарным диабетом должны знать, что в случае развития у него тяжелой гипогликемической реакции, ему необходимо оказание медицинской помощи. Если у больного сахарным диабетом развилась тяжелая гипогликемия, и он не способен съесть сахар, родственники или друзья должны сделать ему инъекцию препарата ГлюкаГен 1 мг ГипоКит. Вводят 1 мг (взрослым и детям с массой тела более 25 кг) или 0.5 мг (детям с массой тела менее 25 кг или младше 6-8 лет) подкожно или в верхнюю наружную часть мышц бедра. Пациент обычно приходит в сознание в течение 10 минут после введения препарата. После того, как пациент придет в сознание, ему необходимо дать сахар для предотвращения повторного развития гипогликемии. Всем пациентам с тяжелой формой гипогликемии необходима медицинская помощь.

Приготовление раствора:

1.Снять оранжевый колпачек с флакона и защитный наконечник иглы со шприца;

2. Проколоть иглой резиновую пробку флакона, содержащего лиофилизат ГлюкаГен, и ввести во флакон всю жидкость, находящуюся в шприце.

3. Не вынимая иглы из флакона, осторожно встряхивать флакон до полного растворения препарата ГлюкаГен и образования прозрачного раствора.

4. Необходимо убедиться, что поршень полностью задвинут вперед. Набрать весь раствор в шприц. Следует следить за
тем, чтобы поршень не вышел из шприца.

5. Выпустить из шприца воздух и сделать инъекцию.

Побочное действие

Тяжелые побочные эффекты очень редки. Со стороны системы органов пищеварения: Иногда могут появляться тошнота и рвота, особенно при введении дозы более 1 мг, или при быстром введении препарата (в течение менее 1 минуты). Со стороны сердечно-сосудистой системы: кратковременная тахикардия, транзиторное повышение АД.

Со стороны иммунной системы: повышенная чувствительность, включая анафилактический шок.

Побочные эффекты, указывающие на токсичность препарата ГлюкаГен, не зарегистрированы. Если у пациента возникли какие-либо побочные реакции, в том числе и не перечисленные выше, но по его мнению вызванные применением препарата ГлюкаГен 1 мг ГипоКит, он должен сообщить об этом своему врачу.

Передозировка:

При передозировке препарата ГлюкаГен 1 мг ГипоКит возможно появление тошноты, рвоты, диареи, гипокалиемии, тахикардии, повышение АД. Лечение симптоматическое. Необходим постоянный контроль уровня калия и, при необходимости, его коррекция. Применение форсированного диуреза и гемодиализа - малоэффективно. В случае появления рвоты - регидратация и восполнение потерь калия.

Взаимодействие с другими лекарственными средствами

На фоне бета-адреноблокаторов введение препарата ГлюкаГен 1 мг ГипоКит может привести к выраженной тахикардии и повышению АД. Инсулин: Действие глюкагона противоположно действию инсулина (инсулин антагонист глюкагона). Индометацин: при совместном применении глюкагон может утратить способность повышать содержание глюкозы в крови и даже вызвать гипогликемию. Варфарин: при совместном применении глюкагон может усилить действие антикоагулянта варфарина.

Особые указания

После введения препарата ГлюкаГен 1 мг ГипоКит необходимо контролировать содержание глюкозы в плазме крови.

ГлюкаГен 1 мг ГипоКит оказывает гипергликемический эффект только при наличии гликогена в печени, поэтому он будет неэффективен у голодающих пациентов, у больных с надпочечниковой недостаточностью и хронической гипогликемией, а также если гипогликемия вызвана чрезмерным употреблением алкоголя.

Следует соблюдать осторожность при применении препарата ГлюкаГен 1 мг ГипоКит у больных с инсулиномой или глюкагономой.

Больной сахарным диабетом должен строго придерживаться врачебных рекомендаций, направленных на предупреждение гипогликемических состояний. Нельзя использовать раствор, если он выглядит как гель, или если порошок растворился не полностью. Флакон имеет защитный, термоустойчивый пластмассовый колпачок с цветовым кодом. Для того чтобы растворить порошок препарата ГлюкаГен 1 мг ГипоКит, Вы должны снять пластиковый колпачок. Если он потерян или отсутствует при приобретении флакона, верните его в аптеку.

Форма выпуска:

Лиофилизат для приготовления раствора для инъекций 1 мг во флаконах в комплекте с растворителем в одноразовых шприцах по 1 мл.
1 флакон с лиофилизированным порошком (лиофилизатом) и 1 шприц с растворителем в пластиковом пенале.

Условия хранения:

Список Б. ГлюкаГен (в виде порошка) должен храниться при температуре не выше 25°С.

Не замораживать во избежание повреждения шприца. Флакон с препаратом ГлюкаГен должен храниться в защищенном от света месте. Готовый раствор препарата ГлюкаГен 1 мг ГипоКит должен использоваться немедленно после приготовления. Не хранить готовый раствор для последующего использования. Хранить в недоступном для детей месте.

Срок годности:

2 года. Не использовать препарат после истечения срока годности, указанного на упаковке.

Гликоген представляет собой многоразветвленный полисахарид глюкозы, который служит в качестве формы хранения энергии у людей, животных, грибов и бактерий. Полисахаридная структура представляет собой основную форму хранения глюкозы в организме. У людей, гликоген производится и хранится, в основном, в клетках печени и мышцах, гидратированных тремя или четырьмя частями воды. Гликоген функционирует как вторичное долговременное хранилище энергии, причем первичные запасы энергии являются жирами, содержащимися в жировой ткани. Мышечный гликоген превращается в глюкозу мышечными клетками, а гликоген печени превращается в глюкозу для использования по всему телу, включая центральную нервную систему. Гликоген является аналогом крахмала, глюкозного полимера, который функционирует как хранилище энергии в растениях. Он имеет структуру, похожую на амилопектин (компонент крахмала), но более интенсивно разветвленную и компактную, чем крахмал. Оба являются белыми порошками в сухом состоянии. Гликоген встречается в виде гранул в цитозоле / цитоплазме во многих типах клеток и играет важную роль в цикле глюкозы. Гликоген образует запас энергии, который можно быстро мобилизовать для удовлетворения внезапной потребности в глюкозе, но менее компактен, чем энергетические запасы триглицеридов (липидов). В печени, гликоген может составлять от 5 до 6% от массы тела (100-120 г у взрослого человека). Только гликоген, хранящийся в печени, может быть доступен другим органам. В мышцах, гликоген находится в низкой концентрации (1-2% от массы мышц). Количество гликогена, хранящегося в организме, особенно в мышцах, печени и красных кровяных клетках , в основном, зависит от тренировок, базового метаболизма и привычек в еде. Небольшое количество гликогена находится в почках и даже меньшее количество – в некоторых глиальных клетках мозга и лейкоцитов. Матка также хранит гликоген во время беременности, чтобы питать эмбрион.

Структура

Гликоген представляет собой разветвленный биополимер, состоящий из линейных цепей глюкозных остатков с дальнейшими цепями, разветвляющимися каждые 8-12 глюкоз или около того. Глюкозы связаны линейно с помощью α (1 → 4) гликозидных связей от одной глюкозы к следующей. Ветви связаны с цепями, от которых они отделяются гликозидными связями α (1 → 6) между первой глюкозой новой ветви и глюкозой в цепочке стволовых клеток . Из-за того, как синтезируется гликоген, каждая гликогенная гранула имеет в своем составе гликогениновый белок. Гликоген в мышцах, печени и жировых клетках хранится в гидратированной форме, состоящей из трех или четырех частей воды на часть гликогена, связанной с 0,45 миллимолями калия на грамм гликогена.

Функции

Печень

Поскольку еда, содержащая углеводы или белок, съедается и переваривается, уровень глюкозы в крови повышается, а поджелудочная железа выделяет инсулин. Кровь глюкозы из воротной вены поступает в клетки печени (гепатоциты). Инсулин воздействует на гепатоциты, чтобы стимулировать действие нескольких ферментов, включая гликогенсинтазу. Молекулы глюкозы добавляются к цепям гликогена до тех пор, пока как инсулин, так и глюкоза остаются обильными. В этом постпрандиальном или «сытом» состоянии печень берет больше глюкозы из крови, чем высвобождает. После того, как еда была переварена и уровень глюкозы начинает падать, секреция инсулина снижается, и синтез гликогена прекращается. Когда это необходимо для энергии, гликоген разрушается и снова превращается в глюкозу. Гликогенфосфорилаза является основным ферментом распада гликогена. В течение следующих 8-12 часов, глюкоза, полученная из гликогена печени, является основным источником глюкозы в крови, используемой остальной частью организма для получения топлива. Глюкагон, еще один гормон, вырабатываемый поджелудочной железой, во многом служит противодействующим сигналом к инсулину. В ответ на уровень инсулина ниже нормы (когда уровень глюкозы в крови начинает падать ниже нормального диапазона), глюкагон секретируется в возрастающих количествах и стимулирует как гликогенолиз (распад гликогена), так и глюконеогенез (производство глюкозы из других источников).

Мышцы

Гликоген мышечной клетки, по-видимому, функционирует как непосредственный резервный источник доступной глюкозы для мышечных клеток. Другие ячейки, которые содержат небольшие количества, также используют его локально. Поскольку мышечным клеткам не хватает глюкозо-6-фосфатазы, которая требуется для приема глюкозы в кровь, гликоген, который они хранят, доступен исключительно для внутреннего использования и не распространяется на другие клетки. Это контрастирует с клетками печени, которые по требованию легко разрушают свой сохраненный гликоген в глюкозу и отправляют его через кровоток в качестве топлива для других органов.

История

Гликоген был обнаружен Клодом Бернардом. Его эксперименты показали, что в печени содержится вещество, которое может привести к восстановлению сахара под действием «фермента» в печени. К 1857 году он описал выделение вещества, которое он назвал «la matière glycogène», или «сахарообразующее вещество». Вскоре после открытия гликогена в печени, А. Сансон обнаружил, что мышечная ткань также содержит гликоген. Эмпирическая формула для гликогена (C6H10О5)n был установлен Кекуле в 1858 году.

Метаболизм

Синтез

Синтез гликогена, в отличие от его разрушения, является эндергоническим – он требует ввода энергии. Энергия для синтеза гликогена приходит из уридин трифосфата (УТФ), который реагирует с глюкозо-1-фосфатом, образуя УДФ-глюкозу, в реакции, катализируемой УТФ-глюкозо-1-фосфатной уридилтрансферазой. Гликоген синтезируется из мономеров УДФ-глюкозы изначально белком гликогенином, который имеет два тирозиновых анкера для восстанавливающего конца гликогена, поскольку гликогенин является гомодимером. После того, как к тирозиновому остатку добавляется около восьми молекул глюкозы, фермент гликогенсинтаза постепенно удлиняет гликогенную цепь с использованием УДФ-глюкозы, добавляя α (1 → 4) -связанную глюкозу. Фермент гликогена катализирует перенос концевого фрагмента из шести или семи остатков глюкозы из нередуцирующего конца в гидроксильную группу С-6 глюкозного остатка глубже во внутреннюю часть молекулы гликогена. Разветвляющийся фермент может действовать только на ветку, имеющую, по меньшей мере, 11 остатков, и фермент может переноситься в одну и ту же цепь глюкозы или соседние цепи глюкозы.

Гликогенолиз

Гликоген расщепляется от нередуцирующих концов цепи ферментом гликогенфосфорилазы с получением мономеров глюкозо-1-фосфата. In vivo, фосфорилиз протекает в направлении распада гликогена, поскольку соотношение фосфата и глюкозо-1-фосфата обычно больше 100. Затем глюкозо-1-фосфат превращается в 6-фосфат глюкозы (G6P) фосфоглюкомтазой. Для удаления α (1-6) ветвей в разветвленном гликоге необходим специальный ферментационный фермент, преобразующий цепочку в линейный полимер. Полученные мономеры G6P имеют три возможных судьбы: G6P может продолжаться по пути гликолиза и использоваться в качестве топлива. G6P может проникать через пентозофосфатный путь через фермент глюкозо-6-фосфатдегидрогеназу для получения НАДФН и 5-углеродных сахаров. В печени и почках, G6P можно дефосфорилировать обратно в глюкозу ферментом глюкозо-6-фосфатазой. Это последний шаг в пути глюконеогенеза.

Клиническая значимость

Нарушения метаболизма гликогена

Наиболее распространенным заболеванием, при котором метаболизм гликогена становится ненормальным, является , при котором из-за аномальных количеств гликоген печени может аномально накапливаться или истощаться. Восстановление нормального метаболизма глюкозы обычно нормализует метаболизм гликогена. При гипогликемии, вызванной чрезмерным уровнем инсулина, количества гликогена в печени высоки, но высокие уровни инсулина предотвращают гликогенолиз, необходимый для поддержания нормального уровня сахара в крови. Глюкагон является распространенным методом лечения этого типа гипогликемии. Различные врожденные ошибки метаболизма вызваны недостатками ферментов, необходимых для синтеза или расщепления гликогена. Они также называются заболеваниями, связанными с хранением гликогена.

Эффект истощения гликогена и выносливость

Спортсмены, бегающие на длинные дистанции, такие как марафонские бегуны, лыжники и велосипедисты, часто испытывают истощение гликогена, когда почти все запасы гликогена в организме спортсмена истощаются после длительных нагрузок без достаточного потребления углеводов. Истощение гликогена может быть предотвращено тремя возможными способами. Во-первых, во время упражнения углеводы с максимально возможной скоростью преобразования в глюкозу крови (высокий гликемический индекс) поступают непрерывно. Наилучший результат этой стратегии заменяет около 35% глюкозы, потребляемой при сердечных ритмах, выше примерно 80% от максимума. Во-вторых, благодаря адаптационным тренировкам на выносливость и специализированным схемам (например, тренировки с низкой степенью выносливости плюс диета), организм может определять мышечные волокна типа I для улучшения эффективности использования топлива и рабочей нагрузки для увеличения процента жирных кислот, используемых в качестве топлива, чтобы сберечь углеводы. В-третьих, при потреблении больших количеств углеводов после истощения запасов гликогена в результате физических упражнений или диеты, организм может увеличить емкость хранилищ внутримышечных гликогенов. Этот процесс известен как «углеводная нагрузка». В общем, гликемический индекс источника углеводов не имеет значения, поскольку чувствительность мышечного инсулина в результате временного истощения гликогена увеличивается.

Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень , в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

Роль фосфорилазы при мобилизации гликогена

2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь.

3. Амило-α1,6-глюкозидаза , ("деветвящий " фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Роль ферментов в расщеплении гликогена

Синтез гликогена

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах. Накопление гликогена в мышцах отмечается в период восстановления после нагрузки, особенно при приеме богатой углеводами пищи. В печени синтез гликогена происходит только после еды, при гипергликемии. Это объясняется особенностями печеночной гексокиназы (глюкокиназы ), которая имеет низкое сродство к глюкозе и может работать только при ее высоких концентрациях, при нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

Реакции синтеза УДФ-глюкозы

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена;



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»