Кто создал первую теорию электричества. Когда появилось электричество в мире: кто его изобрел

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент - источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ - двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый - американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие - было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Содержание:

Совершенно невозможно представить жизнь современных людей без электричества. Однако так было далеко не всегда. Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Поэтому вопрос, когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны. Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих , которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление , и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

ЭЛЕКТРИЧЕСТВО

ЭЛЕКТРИЧЕСТВО , форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между зарядами описаны ЗАКОНОМ КУЛОНА. Когда заряды движутся в магнитном поле, они испытывают воздействие магнитной силы и в свою очередь создают противоположно направленное магнитное поле (ЗАКОНЫ ФАРАДЕЯ). Электричество и МАГНЕТИЗМ представляют собою различные аспекты одного и того же явления, ЭЛЕКТРОМАГНЕТИЗМА. Поток зарядов образует ЭЛЕКТРИЧЕСКИЙ ток, который в проводнике представляет собою поток отрицательно заряженных ЭЛЕКТРОНОВ. Для того, чтобы в ПРОВОДНИКЕ возник электрический ток, необходима ЭЛЕКТРОДВИЖУЩАЯ СИЛА или РАЗНОСТЬ ПОТЕНЦИАЛОВ между концами проводника. Ток, который движется только в одном направлении, называется постоянным. Такой ток создается, когда источником разности потенциалов является БАТАРЕЙКА. Ток, меняющий направление дважды за цикл, называется переменным. Источником такого тока являются центральные сети. Единицей измерения тока служит АМПЕР, единицей заряда - КУЛОН, ом - это единица сопротивления, а вольт - единица электродвижущей силы. Основными средствами для вычисления параметров электрической цепи являются ЗАКОН ОМА и ЗАКОНЫ КИРХГОФА (о суммировании величин напряжения и тока в цепи). см. также ЭЛЕКТРИЧЕСКИЙ ТОК , ЭЛЕКТРОНИКА .

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создает переменный ток во внешней цепи. Наличие индуктивности или емкости (либо того и другого вместе) приводит к смещению фазы (А) между напряжением V и током I. На рисунке показано, что емкость вызывала смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности no-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю (В). Такие трехфазные токи используют в короткозамк-нугых асинхронных электродвигателях с ротором (С). В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых (D) и открытых (Е) колебательных контурах. Высокочастотные электромаг нитные волны, используемые в некоторых системах коммуникации, ПРОИЗВОДЯТСЯ ТЭКИМ1 цепями.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ЭЛЕКТРИЧЕСТВО" в других словарях:

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

    ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

    Совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …

    - (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

    Лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 актиноэлектричество … Словарь синонимов

    ЭЛЕКТРИЧЕСТВО - в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

    электричество - (1) EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 - Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 - In… … Справочник технического переводчика

    ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Электричество - – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

    ЭЛЕКТРИЧЕСТВО - совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Свет

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом . О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией . Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом .

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, или .


P.S. Все перечисленные способы получения электричества являются лишь небольшими примерами. Человек же создал на их основе более крупные источники энергии, такие как генераторы, аккумуляторы и прочее.

В четверг 14 февраля 2019 года в России отмечают замечательный праздник - День всех влюбленных. Государственные лотереи не могут остаться в стороне от столь яркого события, и проводят специально посвященный Дню всех влюбленных праздничный розыгрыш под номером 1271 .

В связи с этим хочется пожелать: влюбленные - любите, любящие - храните, купившие билет Русского лото - выигрывайте!

Днем выхода передачи в эфир на канале "НТВ" традиционно является воскресенье. Начиная с октября 17 года, трансляция начинается в 14:00 по московскому времени.

Трансляция 1271 тиража Русского лото по телевизору, посвященная Дню влюбленных, также будет проходить в воскресенье 17 февраля 2019 года, начиная с 14:00 мск на телеканале "НТВ" .

Что будет разыгрываться 17 февраля 2019 года:

В 1271 тираже Всероссийская гос. лотерея разыграет множество вещевых и денежных призов, 100 романтических путешествий и Джекпот в размере 500 миллионов рублей .

Как выглядит билет:

Билет тиража 1271 имеет розовую окантовку. На фоне голубого неба летит воздушный шар в виде сердца, слева от него размещена надпись "С Днём всех влюблённых!", а ниже - "Джекпот 500 000 000 руб." Слева снизу написано "1271 тираж". Внизу на белом фоне имеется надпись "100 романтических путешествий".

Напомним, что короткий день в пятницу 22.02.2019 будет единственным "подарком" российскии защитникам в плане отдыха, т.к. выходной день с субботы переносится не на ближайший понедельник, а на пятницу 10 мая 2019 года.

Вырастить хорошую рассаду помидоров в 2019 году на подоконнике в квартире - это целое искусство. Знание сроков своевременной посадки семян, пикировки рассады и соблюдение правил ухода за ней дают в результате крепкие и здоровые растения. Опытные огородники советуют также не пренебрегать календарем фаз луны, которые, по их мнению, оказывают огромное влияние на развитие томатов. Ниже рассказываем о том, когда сажать помидоры в 2019 году на рассаду и в грунт с учетом лунного календаря.


Даты посева семян томатов на рассаду в 2019 году:

В 2019 году лучшие сроки посадки семян на рассаду в домашних условиях для средней полосы России наступают спустя сутки после новолуния 6 марта 2019 г . Однако, наиболее благоприятными являются дни с 10 по 12 марта 2019 года, а также 15 и 16 марта 2019 года . Поздние сроки посева рассады помидор 2019 наступают после полнолуния 21 марта 2019 г . На убывающей луне оптимальными днями будут 23 и 24 марта 2019 года .

Напомним, что семена перед посадкой следует продезинфицировать (например, в 1% растворе марганцовки), а затем хорошо промыть. Советуем для повышения будущего урожая замочить семена на сутки в слабом растворе борной кислоты (0,1 г на 0,5 л воды). Сеют обсушенные семена в мелкие (7-8 см.) лоточки с землей на глубину не более 1-1,5 см., поливают и закрывают пленкой. Температура прорастания семян +22-25 град., поэтому их держат подальше от холодного подоконника. Как только покажутся первые всходы, пленку снимают и лотки выставляют на подоконник. Поливать рассаду следует только теплой (+20+-22 град.) водой.

Даты пикировка рассады томатов в 2019 году:

Когда между семядольными листиками появляется первый настоящий резной лист, сеянцы можно пикировать в отдельные горшочки или в ящики с землей высотой 12-15 см. В любом случае, расстояние между соседними растениями должно быть 10-12 см. При этом ростки заглубляют в землю по самые семядоли.

В марте 2019 г. - с 23 по 27 марта ; в апреле 2019 г. - 2, 3, 7, 8, 11, 12, 16, 17 апреля . 5 апреля 2019 новолуние, поэтому пикировка на растущей луне с 7 по 17 апреля 2019 года наиболее предпочтительна.

Сроки ухода за рассадой томатов в 2019 году (полив, подкормка, закалка):

Чтобы рассада помидор не вытягивалась, нужно обеспечить ей достаточно света и снизить температуру воздуха днем от +18 до 24 град., а ночью от +12 до 16 град.

Необходимо также вносить подкормки . Первую подкормку дают через 7-10 дней после пикировки, когда растение образует новые корни, и далее через каждые 8-12 дней. Для подкормки в воде для полива растворяют минеральные удобрения или древесную золу.

В апреле 2019 наилучшими для подкормки будут любые дни с 7 по 18, с 20 по 26, 29 и 30 апреля . В мае 2019 подкармливать можно с 1 по 4, с 7 по 18, 21-23, 26-31 мая .

За 15-20 дней до высадки в грунт рассаду нужно закалять . Лучше всего вынести ее на лоджию или балкон, открыть окно.

В течение последней декады до посадки рассада помидор сильно вытягивается, особенно если стоит теплая погода. Задержать рост можно прекращением полива, а поливать только при подвядании листьев в середине дня.

Сроки высадки рассады помидор 2019 в грунт:

Рассаду томатов высаживают в грунт в возрасте 60-70 дней от всходов , когда температура воздуха ночью превышает +12 град. За один-два дня до посадки растения нужно хорошо полить водой с подкормкой, чтобы обеспечить сохранение корней и питание растений после высадки в грунт.

В мае 2019 рассаду можно высаживать под дуги с укрывным материалом уже 17-18 мая на растущей луне . Напомним, что 19 мая 2019 года - полнолуние, и работы лучше прервать. Лучшими днями в мае 2019 на убывающей луне будут 26-28 и 31 мая . В июне 2019 уже можно сажать в открытый грунт 1 и 2, 5 и 6 июня . 3 июня 2019 новолуние и деятельность в огороде нежелательна.

Напомним оптимальные сроки посадки и ухода за помидорной рассадой в 2019 году:
* посев семян - с 10 по 12, 15 и 16, 23 и 24 марта 2019 г.;
* пикировка рассады - с 23 по 27 марта; 2 ,3, 7, 8, 11, 12, 16, 17 апреля 2019 г.;
* подкормки рассады каждые 8-12 дней - с 7 по 18, с 20 по 26, 29 и 30 апреля, с 1 по 4, с 7 по 18, 21-23, 26-31 мая 2019 г.;
* высадка рассады в грунт - 17, 18, 26-28, 31 мая, 1, 2, 5, 6 июня 2019 г.

Также читаем:
*

Дата Песаха привязана к лунно-солнечному еврейскому календарю, и поэтому по календарю григорианскому число празднования ежегодно меняется. Начинается еврейская Пасха 2019 года с наступлением сумерек 14 дня весеннего месяца нисан (с вечера 19 апреля 2019 года ), и длится 7 дней в Израиле - с 15 по 21 нисана (с 20 апреля 2019 года по 26 апреля 2019 года ), и 8 дней за его пределами, в том числе в России - по 22 нисана (по 27 апреля 2019 года).

Согласно древней традиции, каждый иудейский праздник начинается накануне вечером, после захода солнца. Поэтому праздновать Песах 2019 также начинают вечером 19 апреля 2019 года с праздничного седара (ночной пасхальной трапезы). А сам день 14 нисана также называют Днём подготовки к празднику.

Таким образом, дата еврейской Пасхи в 2019 году будет следующая:
* Начало - 19 апреля 2019 г. (вечером, с наступлением сумерек).
* Первый день - 20 апреля 2019 г.
* Последний день - 26 апреля 2019 г. в Израиле (27 апреля 2019 г. вне Израиля).

Также читаем:

В первый и последний день Песаха 2019 запрещено работать, поэтому 15 нисана (20 апреля 2019 года) и 21 нисана (26 апреля 2019 года) объявлены в Израиле нерабочими днями. Кроме того 20 апреля в 2019 году выпадает на субботу - нерабочий день при пятидневной рабочей неделе в ряде стран, в том числе и в России.

Одной из традиций праздника Песах является употребление в пищу "плоского пресного хлеба" - мацы. Объясняется эта традиция тем, что когда фараон освободил израильтян от рабства, они покидали Египет в спешке, при которой не могли ждать когда поднимется хлебное тесто на дрожжах. Поэтому во время еврейской Пасхи не едят заквашенного хлеба.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»