Нормальные формы гемоглобина. Патологические формы гемоглобина Дезоксигемоглобин – свободная от газов форма протеина

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Небелковой частью их является гем – структура, включающая в себя порфириновое кольцо (состоящее из 4 пиррольных колец) и иона Fe 2+ . Железо связывается с порфириновым кольцом двумя координационными и двумя ковалентными связями.

Строение гемоглобина

Строение гемоглобина А

Белковые субъединицы в нормальном гемоглобине могут быть представлены различными типами полипептидных цепей: α, β, γ, δ, ε, ξ (соответственно, греч. - альфа, бета, гамма, дельта, эпсилон, кси). В состав молекулы гемоглобина входят по две цепи двух разных типов.

Гем соединяется с белковой субъединицей, во-первых, через остаток гистидина координационной связью железа, во-вторых, через гидрофобные связи пиррольных колец и гидрофобных аминокислот. Гем располагается как бы «в кармане» своей цепи и формируется гемсодержащий протомер.

Нормальные формы гемоглобина

  • HbР – примитивный гемоглобин, содержит 2ξ- и 2ε-цепи, встречается в эмбрионе между 7-12 неделями жизни,
  • HbF – фетальный гемоглобин, содержит 2α- и 2γ-цепи, появляется через 12 недель внутриутробного развития и является основным после 3 месяцев,
  • HbA – гемоглобин взрослых, доля составляет 98%, содержит 2α- и 2β-цепи, у плода появляется через 3 месяца жизни и к рождению составляет 80% всего гемоглобина,
  • HbA 2 – гемоглобин взрослых, доля составляет 2%, содержит 2α- и 2δ-цепи,
  • HbO 2 – оксигемоглобин, образуется при связывании кислорода в легких, в легочных венах его 94-98% от всего количества гемоглобина,
  • HbCO 2 – карбогемоглобин, образуется при связывании углекислого газа в тканях, в венозной крови составляет 15-20% от всего количества гемоглобина.

Вы можете спросить или оставить свое мнение.

Виды гемоглобина, диагностика и расшифровка результатов исследования

Гемоглобин – это жизненно необходимый организму белок, который выполняет несколько функций, но основная – перенос кислорода к тканями и клеткам. Дефицит гемоглобина может привести к серьезным последствиям. Именно этот белок придает крови насыщенный красный цвет, благодаря содержанию железа в нем. Гемоглобин содержится в эритроцитах и состоит из соединений железа и глобина (белка).

Гемоглобин - виды и функции

Значение и виды гемоглобина в крови

Гемоглобин должен содержаться в крови человека в достаточном количестве, чтобы ткани получали необходимое им количество кислорода. Каждая молекула гемоглобина содержит в себе атомы железа, которые и связывают кислород.

Можно выделить три основные функции гемоглобина:

  1. Транспорт кислорода. Самая известная функция. Человек вдыхает воздух, молекулы кислорода попадают в легкие, а уже оттуда транспортируются к другим клеткам и тканям. Гемоглобин связывает молекулы кислорода и переносит их. Если эта функция нарушается, начинается кислородное голодание, что особенно опасно для мозга.
  2. Транспорт углекислого газа. Помимо кислорода гемоглобин может связывать и переносить молекулы углекислого газа, что также важно.
  3. Поддержание уровня рН. Углекислый газ, скапливаясь в крови, вызывает ее закисление. Этого нельзя допускать, молекулы углекислого газа должны постоянно выводиться.

В крови человека белок присутствует в нескольких разновидностях. Выделяют следующие виды гемоглобина:

  • Оксигемоглобин. Это гемоглобин со связанными молекулами кислорода. Он содержится в артериальной крови, поэтому она ярко-алая.
  • Карбоксигемоглобин. Гемоглобин со связанными молекулами углекислого газа. Они транспортируются в легкие, где углекислый газ выводится, а гемоглобин снова насыщается кислородом. Этот вид белка сдержится в венозной более темной и густой и крови.
  • Гликированный гемоглобин. Это неразделимое соединение белка и глюкозы. Этот вид глюкозы может циркулировать в крови достаточно долго, поэтому его используют для определения уровня сахара в крови.
  • Фетальный гемоглобин. Этот гемоглобин можно встретит в крови плода или новорожденного ребенка в первые несколько недель жизни. Это более активный в плане переноса кислорода гемоглобин, но быстро разрушающийся под воздействием факторов окружающей среды.
  • Метгемоглобин. Это гемоглобин, связанный с различными химическими агентами. Его рост может говорить об отравлении организма. Связи белка и агентов достаточно прочные. При повышении уровня этого вида гемоглобина нарушается насыщаемость тканей кислородом.
  • Сульфгемоглобин. Этот вид белка появляется в крови при приеме различных препаратов. Его содержание обычно не превышает 10%.

Диагностика уровня гемоглобина

Исследование уровня гемоглобина: назначение, подготовка и процедура

Гемоглобин входит в клинический анализ крови. Поэтому чаще всего назначается полный анализ крови и оцениваются все показатели в целом, даже если важен лишь гемоглобин.

При подозрении на сахарный диабет сдают отдельный анализ на гликированный гемоглобин. При этом у пациента наблюдается повышенная жажда, частое мочеиспускание, он быстро устает и часто болеет вирусными заболеваниями.

В любом случае кровь сдается утром на голодный желудок. Желательно, чтобы после последнего приема пищи прошло не менее 8 часов. Накануне анализа нежелательно заниматься физическими нагрузками, курить, употреблять алкоголь и любые лекарственные препараты. Если некоторые препараты отменить невозможно, об их приеме необходимо сообщить лечащему врачу. Придерживаться диеты не обязательно, но рекомендуется воздержаться от жирной и жареной пищи, поскольку показатели могут измениться. Во время беременности анализ на гемоглобин (и другие показатели в целом) сдается часто, раз в несколько недель, при необходимости каждую неделю.

Врач может заподозрить недостаток гемоглобина и назначить анализ крови для проверки, если у пациента наблюдается пониженное давление, усталость, слабость, головные боли и головокружения, обмороки, а также выпадение волос и ломкость ногтей.

В различных лабораториях исследование крови на гемоглобин проводится по-разному в зависимости от имеющихся приборов. Измеряется либо содержание железа в гемоглобине, либо оценивается насыщенность цвета раствора крови.

Полезное видео - Гликированный гемоглобин повышен.

Чаще всего для измерения уровня гемоглобина используют соляную кислоту. Этот метод называется метод Сали. Полученный материал в определенном количестве смешивают с кислотой, а затем доводят до стандартного цвета с помощью дистиллированной воды. Количество гемоглобина определяется путем соотношения полученного объема с принятыми стандартами. Метод Сали используется давно, он несколько длительный и субъективный, во многом зависит от человеческого фактора. Однако современная медицина позволяет определять уровень гемоглобина более точными и автоматизированными методами, с помощью прибора под названием гемометр. Этот метод более быстрый, но тоже может давать расхождения до 3 грамм на литр.

Расшифровка анализа

Гемоглобин: норма и причины отклонения

Расшифровывать результат анализа должен только врач. Несмотря на кажущуюся простоту (достаточно узнать норму и сравнить результат), могут быть расхождения. К тому же врач оценит остальные показатели и сможет определить, какое еще обследование необходимо провести.

  • У мужчин норма гемоглобина выше, чем у женщин. Она составляетг/л, у женщин –г/л.
  • Во время беременности гемоглобин может падать до 90 г/л из-за увеличенного объема крови.
  • У маленького ребенка норма еще выше. Если это новорожденный ребенок, его гемоглобин может превышать 200 г/л. С возрастом уровень уменьшается за счет распада фетального гемоглобина.

Гликированный гемоглобин определяется в зависимости от уровня общего. В норме он составляет не более 6,5%. У женщин гемоглобин падает во время месячных, и это считается нормой из-за определенной потери крови. В это время показатель вг/л не считается отклонением. При расшифровке врач должен учитывать факторы, влияющие на уровень гемоглобина у пациента: это операции, кровотечения (менструальные, геморроидальные и даже кровоточивость десен).

Низким считается гемоглобин нижег/л.

Если эта отметка достигаетг/л, это критическое понижения гемоглобина, требующее госпитализации и наблюдения. При подобной анемии страдают все органы и системы организма. Причинами снижения уровня гемоглобина могут быть не только различные кровотечения, но и патологии органов репродуктивной системы, инфекции, аутоиммунные и наследственные заболевания, раковые опухоли. Поэтому при хронически низком гемоглобине желательно провести дополнительное обследование.

Повышенный уровень гемоглобина (большег/л) вовсе не является хорошим признаком и не говорит о достаточном количестве кислорода в тканях. Это является нормой только при нахождении в условиях с недостаточным уровнем кислорода, например, при работе на большой высоте. Повышенный уровень гемоглобина может указывать на нарушение работы внутренних органов, онкологическое заболевание, бронхиальную астму, серьезные заболевания сердца и легких, туберкулез и т.д.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Комментарии

Только ваша статья мне помогла разобраться с наблюдающимся у меня пониженным гемоглобином. Все, что читала до этого, ни в какие рамки по своей познавательности. Спасибо!

Добавить комментарий Отменить ответ

В продолжение статьи

Мы в соц. сетях

Комментарии

  • ГРАНТ – 25.09.2017
  • Татьяна – 25.09.2017
  • Илона – 24.09.2017
  • Лара – 22.09.2017
  • Татьяна – 22.09.2017
  • Мила – 21.09.2017

Темы вопросов

Анализы

УЗИ / МРТ

Facebook

Новые вопросы и ответы

Copyright © 2017 · diagnozlab.com | Все права защищены. г. Москва, ул. Трофимова, д. 33 | Контакты | Карта сайта

Содержание данной страницы исключительно ознакомительного и информационного характера и не может и не являет собой публичную оферту, которая определяется ст. №437 ГК РФ. Предоставленная информация существует с ознакомительной целью и не заменяет обследование и консультацию у врача. Имеются противопоказания и возможны побочные эффекты, проконсультируйтесь с профильным специалистом

Патологические формы гемоглобина

К настоящему времени известно более 200 форм патологических гемоглобинов, отличающихся от нормальных структурой полипептидной цепи глобина, когда одна или несколько аминокислот заменены другими или отсутствуют.

Наиболее частой наследственной патологией является гемоглобинопатия S (серповидноклеточная анемия), которая может быть подтверждена пробами на серповидность эритроцитов (см. 3.3.2). Исследование патологических гемоглобинов явК патологическим производным гемоглобина относятся:

Карбоксигемоглобин (НbCO) - образуется при соединении гемоглобина с угарным газом (CО). Этот процесс возможен в 2-4% в нормальных условиях. СО в норме образуется при распаде гемоглобина, когда образуется вердоглобин, при расщеплении метинового мостика. СН группа (метиновая группа) при этом не теряется, а превращается в СО. СО может активировать гуанилатциклазу, вызывая последующие события в клетке-мишени. Карбоксигемоглобин - это прочное соединение, слабо диссоциирующее, не способное присоединить кислород. Кроме этого в присутствии карбоксигемоглобина затрудняется деоксигенация оксигемоглобина (эффект Холдена). При концентрации угарного газа во вдыхаемом воздухе около 0,1% 50% гемоглобина связывается с ним за 1/130 секунды (гемогло­бин имеет более высокое сродство к угарному газу, чем к кисло­роду). Различают три степени отравления угарным газом. Первая проявляется сильными головными болями, одышкой и тошнотой. Вторая к проявлениям первой дополнительно характеризуется мышечной слабостью и наличием алых пятен на лице. Третья степень – кома (ярко-алое лицо, цианоз конечностей, температура 38-40С, приступы судорог). Есть атипичные формы – молниеносная, когда резко падает АД, бледность (белая асфиксия). Возможно хроническое отравление угарным газом. Если примерно 70% гемоглобина связано с угарным газом, наступает гибель организма от гипоксии. Кровь имеет сиреневый от­тенок ("цвет брусничного сока"). Спектр поглощения карбоксигемоглобина очень похож на спектр пог­лощения оксигемоглобина - две тонкие темные линии в желто-зеленой части спектра, но они несколько сдвинуты к фиолетовому концу. Для более точного распознавания оксигемоглоби­на и карбоксигемоглобина к исследуемому раствору следует добавить реактив Стокса (аммиачный раствор виннокаменного железа). Так как этот реактив является сильным восстановите­лем, то при добавлении его к раствору оксигемоглобина последний восстанавливается в гемоглобин, спектр поглощения которого – одна темная линия. Спектр поглощения карбоксигемоглобина при добавлении реактива Стокса не меняется, т.к. на это соединение он не оказывает воздействия. Это используется в судебно-медицинской практике для диагностики различия между смертью от механической асфиксии (удушения) и отравления угарным газом.

Метгемоглобин (НbОН) – может образовываться в нормальных условиях (1-2%) при утилизации оксида азота. Метгемоглобин в физиологических условиях участвует не только в утилизации оксида азота, но также способен связывать цианиды, реактивируя дыхательные ферменты. Цианиды образуются постоянно в физиологических условиях (в результате взаимодействия альдегидов, кетонов и альфа-оксикислот с циан-гидрином, а также в результате метаболизма нитрилов). В утилизации цианидов также принимает участие фермент родоназа (печень, почки и надпочечники). Этот фермент катализирует присоединение к цианидам серы, что ведет к образованию тиоцианатов – в 200раз менее токсичных веществ. Метгемоглобин способен связывать сероводород, азит натрия, роданиды, фтористый натр, формиат, мышьяковистую кислоту и другие яды. Метгемоглобин участвует в устранении избытка пероксида водорода, разрушая его до воды и атомарного кислорода с превращением в оксигемоглобин. В норме метгемоглобин не накапливается в эритроцитах, т.к. в них существует система его восстановления – ферментная (НАДФ-редуктаза, или диафораза – 75%), неферментная (витамин С – 12-16% и восстановленный ГЛТ – 9-12%).

ляется трудоемким и проводится в специализированных лабораториях.

биохимические критерии диагностики анемии

Они включают: ОАК (Нв, Эр, Цв. п., ретикул.), МСН, МСНС, сыворот. Fe, ОЖСС, ЛЖСС, уровень ферритина. При исследовании крови выявляется снижение Нв и уменьшение концентрации Нв в Эр. Кол-во Эр снижено в меньшей степени.

Основным гематологическим признаком ЖДА является её резкая гипохромность : цв. п. < 0,85 – 0,4-0,6. В N- цв. п. – 0,85-1,05. ЖДА всегда гипохромная, хотя не всякая гипохромная анемия является Fe-дефицитной.

Выявляется микроцитоз (диаметр Эр < 6,8 мкм), анизо- и пойкилоцитоз. Количество ретикулоцитов, как правило нормальное, за исключением случаев кровопотери или на фоне лечения препаратами Fe.

При ЖДА снижается средняя концентрация Нв в эритроците (МСНС). Этот показатель отражает степень насыщения эритроцита гемоглобином и в N равен 30-38%. Это концентрация Нв в граммах на 100 мл крови.

Среднее содержание Нв в эритроците (МСН) – показатель, отражающий абсолютное содержание Нв в одном эритроците (в N равенпикограмм (пг)). Этот показатель является относительно стабильным и существенно не изменяется при ЖДА.

Они являются решающими в диагностике ЖДА. К ним относятся: уровень сывороточного Fe, ОЖСС, ЛЖСС, коэффициент насыщения трансферрина железом. Кровь для исследования этих показателей берётся в специальные пробирки, дважды промытые дистиллированной водой. Больной не должен за 5 дней до исследования получать препараты Fe.

Сывороточное Fe – это количество негемового Fe, находящегося в сыворотке (железо трансферрина, ферритина). В N – 40,6-62,5 мкмоль/л. ЛЖСС – разница между ОЖСС и уровнем сывороточного Fe (N должна быть не менее 47 мкмоль/л).

Коэффициент насыщения трансферрином отражает удельный вес сывороточного Fe от ОЖСС. В N не менее 17%.

У больных ЖДА отмечается снижение уровня сывороточного Fe, повышение ОЖСС и ЛЖСС, снижение коэффициента насыщения трансферрина железом.

Так как запасы Fe при ЖДА истощены, отмечается снижение содержания в сыворотке ферритина (<мкг/л). Этот показатель является наиболее специфичным признаком дефицита Fe.

Оценка запасов Fe может быть определена также с помощью десфераловой пробы. После введения в/м или в/в десферала в норме с мочой выводится 0,6-1,3 мг/сут Fe, а при ЖДА – количество выводимого Fe снижается до 0,4-0,2 мг/сут.

В костном мозге наблюдается эритроидная гиперплазия с уменьшением количества сидеробластов.

Гемоглобин. Содержание гемоглобина в крови, уровень, измерение гемоглобина.

Гемоглобин - дыхательный пигмент крови, участвующий в транспорте кислорода и углекислоты, выполняющий буферные функции, поддержание рН. Содержится в эритроцитах (красные кровяные тельца крови - каждый день организм человека вырабатывает 200 миллиардов красных кровяных шариков). Состоит из белковой части - глобина - и железосодержащей порфиритовой части - гема. Это белок с четвертичной структурой, образованной 4 субъединицами. Железо в геме находится в двухвалентной форме.

Содержание гемоглобина в крови у мужчин несколько выше, чем у женщин. У детей первого года жизни наблюдается физиологическое снижение концентрации гемоглобина. Снижение содержания гемоглобина в крови (анемия) может быть следствием повышенных потерь гемоглобина при разного рода кровотечениях или повышенном разрушении (гемолизе) эритроцитов. Причиной анемии может быть нехватка железа, необходимого для синтеза гемоглобина, или витаминов, участвующих в образовании эритроцитов (преимущественно В12, фолиевая кислота), а также нарушение образования клеток крови при специфических гематологических заболеваниях. Анемия может возникать вторично при разного рода хронических не гематологических заболеваниях.

Альтернативные единицы измерения: г/л

Коэффициент пересчета: г/л х 0,1 ==> г/дал

Патологические формы гемоглобина

Нормальные формы гемоглобина

Гемоглобин - основной белок крови

Гемоглобин входит в состав группы белков гемопротеины, которые сами являются подвидом хромопротеинов и подразделяются на неферментативныебелки (гемоглобин, миоглобин) и ферменты(цитохромы, каталаза, пероксидаза). Небелковой частью их является гем – структура, включающая в себя порфириновое кольцо (состоящее из 4 пиррольных колец) и иона Fe 2+ . Железо связывается с порфириновым кольцом двумя координационными и двумя ковалентными связями.

Гемоглобин представляет собой белок, включающий 4 гемсодержащие белковые субъединицы. Между собой протомеры соединяются гидрофобными, ионными, водородными связями по принципу комплементарности. При этом они взаимодействуют не произвольно, а определенным участком - контактной поверхностью. Этот процесс высокоспецифичен, контакт происходит одновременно в десятках точек по принципу комплементарности. Взаимодействие осуществляют разноименно заряженные группы, гидрофобные участки, неровности на поверхности белка.

Белковые субъединицы в нормальном гемоглобине могут быть представлены различными типами полипептидных цепей: α, β, γ, δ, ε, ξ (соответственно, греч. - альфа, бета, гамма, дельта, эпсилон, кси). В состав молекулы гемоглобина входят по двецепи двухразных типов.

Гем соединяется с белковой субъединицей, во-первых, через остаток гистидина координационной связью железа, во-вторых, через гидрофобные связи пиррольных колец и гидрофобных аминокислот. Гем располагается как бы "в кармане" своей цепи и формируется гемсодержащий протомер.

Существует несколько нормальных вариантов гемоглобина:

· HbР – примитивный гемоглобин, содержит 2ξ- и 2ε-цепи, встречается в эмбрионе между 7-12 неделями жизни,

· HbF – фетальный гемоглобин, содержит 2α- и 2γ-цепи, появляется через 12 недель внутриутробного развития и является основным после 3 месяцев,

· HbA – гемоглобин взрослых, доля составляет 98%, содержит 2α- и 2β-цепи, у плода появляется через 3 месяца жизни и к рождению составляет 80% всего гемоглобина,

· HbA 2 – гемоглобин взрослых, доля составляет 2%, содержит 2α- и 2δ-цепи,

· HbO 2 – оксигемоглобин, образуется при связывании кислорода в легких, в легочных венах его 94-98% от всего количества гемоглобина,

· HbCO 2 – карбогемоглобин, образуется при связывании углекислого газа в тканях, в венозной крови составляет 15-20% от всего количества гемоглобина.

HbS – гемоглобин серповидно-клеточной анемии.

MetHb – метгемоглобин, форма гемоглобина, включающая трехвалентный ион железа вместо двухвалентного. Такая форма обычно образуется спонтанно, в этом случае ферментативных мощностей клетки хватает на его восстановление. При использовании сульфаниламидов, употреблении нитрита натрия и нитратов пищевых продуктов, при недостаточности аскорбиновой кислоты ускоряется переход Fe 2+ в Fe 3+ . Образующийся metHb не способен связывать кислород и возникает гипоксия тканей. Для восстановления ионов железа в клинике используют аскорбиновую кислоту и метиленовую синь.

Hb-CO – карбоксигемоглобин, образуется при наличии СО (угарный газ) во вдыхаемом воздухе. Он постоянно присутствует в крови в малых концентрациях, но его доля может колебаться от условий и образа жизни.

Угарный газ является активным ингибитором гем-содержащих ферментов, в частности, цитохромоксидазы4-го комплекса дыхательной цепи.

HbA 1С – гликозилированный гемоглобин. Концентрация его нарастает при хронической гипергликемии и является хорошим скрининговым показателем уровня глюкозы крови за длительный период времени.

Миоглобин тоже способен связывать кислород

Миоглобин является одиночнойполипептидной цепью, состоит из 153 аминокислот с молекулярной массой 17 кДа и по структуре сходен с β-цепью гемоглобина. Белок локализован в мышечной ткани. Миоглобин обладает более высоким сродством к кислороду по сравнению с гемоглобином. Это свойство обуславливает функцию миоглобина – депонирование кислорода в мышечной клетке и использование его только при значительном уменьшении парциального давления О 2 в мышце (до 1-2 мм рт.ст).

Кривые насыщения кислородом показывают отличия миоглобина и гемоглобина:

· одно и то же 50%-е насыщение достигается при совершенно разных концентрациях кислорода – около 26 мм рт.ст. для гемоглобина и 5 мм рт.ст. для миоглобина,

· при физиологическом парциальном давлении кислорода от 26 до 40 мм рт.ст. гемоглобин насыщен на 50-80%, тогда как миоглобин – почти на 100%.

Таким образом, миоглобин остается оксигенированным до того момента, пока количество кислорода в клетке не снизится до предельныхвеличин. Только после этого начинается отдача кислорода для реакций метаболизма.

Гемоглобин

Гемоглобин - белок с четвертичной структурой, образованной четырьмя субъединицами. Железо в геме находится в двухвалентной форме. Существуют такие физиологические формы гемоглобина:

Оксигемоглобин (Н b О 2) - соединение гемоглобина с кислородом, образуется преимущественно в артериальной крови и придаёт ей алый цвет (кислород связывается с атомом железа посредством координационной связи);

Восстановленный гемоглобин, или дезоксигемоглобин (Н b Н), - гемоглобин, отдавший кислород тканям;

Карбоксигемоглобин (Н bC О 2) - соединение гемоглобина с углекислым газом, образуется преимущественно в венозной крови, вследствие этого кровь приобретает тёмно-вишнёвый цвет.

Патологические формы гемоглобина:

Карбгемоглобин (Н bC О) образуется при отравлении угарным газом (СО) , при этом гемоглобин теряет способность при соединять кислород;

Метгемоглобин образуется под действием нитритов, нитратов и некоторых лекарственных препаратов (происходит переход двухвалентного железа в трёхвалентное с образованием метгемоглобина - HbMet).

Стандартным цианметгемоглобиновым методом определяют все формы гемоглобина без их дифференцировки.

Снижение содержания гемоглобина в крови (анемия) бывает следствием потерь гемоглобина при разного рода кровотечениях или повышенного разрушения (гемолиза) эритроцитов. Причиной анемии может быть нехватка железа, необходимого для синтеза гемоглобина, или витаминов, участвующих в образовании эритроцитов (преимущественно В12 и фолиевая кислота), а также нарушение образования клеток крови при специфических гематологических заболеваниях. Анемия может возникать вторично при хронических соматических заболеваниях.

Единицы измерения: граммы на литр (г/л) .

Референсные значения: см. табл. 2-2.

Таблица 2-2. Нормальные значения содержания гемоглобина

Содержание гемоглобина повышается при заболеваниях, сопровождающихся увеличением количества эритроцитов (первичные и вторичные эритроцитозы), гемоконцентрации, врождённых пороках сердца, лёгочно-сердечной недостаточности, а также по физиологическим причинам (у жителей высокогорья, лётчиков после высотных полётов, альпинистов после повышенной физической нагрузки) .

Пониженное содержание гемоглобина отмечают при анемии различной этиологии (основной симптом).

  • Вы здесь:
  • Главная
  • Неврология
  • Лабораторная диагностика
  • Гемоглобин

Неврология

Обновленные статьи по неврологии

© 2018 Все секреты медицины на МедСекрет.нет

Виды гемоглобина, его соединения, их физиологическое значение

Различают три вида гемоглобина; первоначально эмбрион имеет примитивный гемоглобин (HbP) – до 4-5 мес. внутриутробной жизни, затем начинает появляться фетальный гемоглобин (HbF), количество которого увеличивается до 6–7 мес. внутриутробной жизни. С этого срока происходит увеличение гемоглобина А (взрослого) максимальная величина которого достигает к 9 мес. внутриутробной жизни (90%). Количество фетального гемоглобина при рождении является одним из признаков доношенности: чем больше HbF, тем менее доношенный ребенок. Следует отметить, что HbF в присутствии 2,3 дифосфоглицерата (ДФГ – продукт метаболизма оболочки эритроцита при недостатки кислорода) не меняет своего сродства к кислороду в отличии от HbA, сродство которого к кислороду снижается.

Виды Нв отличаются друг от друга по степени химического сродства к О2. Так, НвF в физиологических условиях имеет более высокое сродство к О2, чем НвА. Эта важнейшая особенность НвF создает оптимальные условия для транспорта О2 кровью плода.

Гемоглобин представляет собой кровяной пигмент, роль которого заключается в транспорте кислорода к органам и тканям, транспорте двуокиси углерода от тканей к легким, кроме этого он является внутриклеточным буфером, который поддерживает оптимальную для метаболизма pH. Гемоглобин содержится в эритроцитах и составляет 90% их сухой массы. Вне эритроцитов гемоглобин практически не обнаруживается.

Химически гемоглобин относится к группе хромопротеидов. Его простетическая группа, включающая железо, называется гемом, белковый компонент - глобином. Молекула гемоглобина содержит 4 гема и 1 глобин.

К физиологическим гемоглобинам относятся НЬА (гемоглобин взрослого) и HbF (фетальный гемоглобин, составляющий основную массу гемоглобина плода и исчезающий почти полностью ко 2-му году жизни ребенка). Современными электрофоретическими исследованиями доказано существование по крайней мере двух разновидностей нормального гемоглобина А: А1 (главный) и А2 (медленный). Основную массу гемоглобина взрослого (96-99%) составляет HbAl, содержание других фракций (А2 F) не превышает 1 - 4%. Каждый вид гемоглобина, вернее его глобиновая часть, характеризуется своей «полипептидной формулой». Так, HbAl обозначается как ά2 β2, то есть он состоит из двух ά-цепей и двух β-цепей (всего 574 аминокислотных остатка, расположенных в строго определенном порядке). Другие виды нормальных гемоглобинов - F, A2 обладают общей с HbAl β-пептидной цепью, но отличаются структурой второй полипептидной цепи (например, структурная формула HbF – ά2γ2).

Помимо физиологических гемоглобинов, существуют еще несколько патологических разновидностей гемоглобина. Патологические гемоглобины возникают в результате врожденного, передаваемого по наследству дефекта образования гемоглобина.

В эритроцитах циркулирующей крови гемоглобин находится в состоянии беспрерывной обратимой реакции. Он то

присоединяет молекулу кислорода (в легочных капиллярах), то отдает ее (в тканевых капиллярах).

К основным соединениям гемоглобина относятся: ННв - восстановленный гемоглобин и НвСО2 - соединение с углекислым газом (карбогемоглобин). Они в основном находятся в венозной крови и придают ей темно-вишневый цвет.

НвО2 - оксигемоглобин– находится, в основном, в артериальной крови, придавая ей алый цвет. НвО2 - чрезвычайно нестойкое соединение, его концентрация определяется парциальным давлением О2 (рО2): чем больше рО2, тем больше образуется НвО2 и наоборот. Все вышеперечисленные соединения гемоглобина относятся к физиологическим.

Гемоглобин в венозной крови с низким парциальным давлением кислорода связан с 1 молекулой воды. Такой гемоглобин называется редуцированным (восстановленным) гемоглобином. В артериальной крови с высоким парциальным давлением кислорода гемоглобин соединен с 1 молекулой кислорода и имеет название - оксигемоглобин. Путем непрерывного превращения оксигемоглобина в редуцированный гемоглобин и обратно осуществляется перенос кислорода из легких к тканям. Восприятие углекислоты в тканевых капиллярах и доставка ее в легкие также является функцией гемоглобина. В тканях оксигемоглобин, отдавая кислород, превращается в редуцированный гемоглобин. Кислотные свойства редуцированного гемоглобина в 70 раз слабее свойств оксигемоглобина, поэтому свободные валентности его связывают углекислоту. Таким образом, углекислота доставляется из тканей в легкие с помощью гемоглобина. В легких образующийся оксигемоглобин в силу своих высоких кислотных свойств вступает в связь с щелочными валентностями карбогемоглобина, вытесняя углекислоту. Так как основной функцией гемоглобина является обеспечение тканей кислородом, то при всех состояниях, сопровождающихся снижением концентрации гемоглобина в крови, или при качественных его изменениях развивается гипоксия тканей.

Однако есть и патологические формы гемоглобина.

Гемоглобин обладает способностью вступать в диссоциирующие соединения не только с кислородом и углекислый газом, но и с другими газами. В результате образуются карбоксигемоглобин, оксиазотистый гемоглобинисульфгемоглобин.

Карбоксигемоглобин (оксиуглеродный) диссоциирует в несколько сотен раз медленнее, чем оксигемоглобин, поэтому даже незначительная концентрация (0,07%) в воздухе угарного газа (СО), связывая около 50% имеющегося в организме гемоглобина и лишая его способности переносить кислород, является смертельным. Карбоксигемоглобин (НвСО) - очень прочное соединение с угарным газом, обусловленное химическими свойствами угарного газа по отношению к Нв. Оказалось, что его родство к Нв враз больше, чем сродство О2 к Нв. Поэтому при незначительном повышении концентрации СО в окружающей среде образуется очень большое количество НвСО. Если в организме находится много НвСО, то возникает кислородное голодание. Фактически О2 в крови очень много, а клетки тканей его не получают, т.к. НвСО - прочное соединение с О2.

Метгемоглобин представляет собой более стойкое, чем оксигемоглобин, соединение гемоглобина с кислородом, получающееся при отравлениях некоторыми лекарственными препаратами - фенацетином, антипирином, сульфаниламидами. При этом двухвалентное железо простетической группы, окисляясь, превращается в трехвалентное. Метгемоглобин (MetНв) - окисленная форма Нв, крови придает коричневую окраску. Образуется MetНв при действии на Нв любым окислителями: нитраты, перекиси, перманганат калия, красная кровяная соль и т.д. Это стойкое соединение, потому что железо из ферроформы (Fe++) переходит в ферриформу (Fe+++), необратимо связывающую О2. При образовании в организме больших количеств MetНв также возникает кислородная недостаточность (гипоксия).

Сульфгемоглобин обнаруживается в крови иногда при применении лекарственных веществ (сульфаниламидов). Содержание сульфгемоглобина редко превышает 10%. Сульфгемоглобинемия - необратимый процесс. Так как пораженные эритроциты

разрушаются в те же сроки, что и нормальные, явлений гемолиза не наблюдается и сульфгемоглобин может находиться в крови в течение нескольких месяцев. На этом свойстве сульфгемоглобина основан метод определения сроков пребывания нормальных эритроцитов в периферической крови.

Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

3. Виды гемоглобина и его значение

Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина.

Гемоглобин является сложным белком, который относится к классу хромопротеинов и состоит из двух компонентов:

2) белка глобина – 96 %.

Гем является комплексным соединением порфирина с железом. Это соединение довольно неустойчивое и легко превращается либо в гематин, либо в гемин. Строение гема идентично для гемоглобина всех видов животных. Отличия связаны со свойствами белкового компонента, который представлен двумя парами полипептидных цепей. Различают HbA, HbF, HbP формы гемоглобина.

В крови взрослого человека содержится до 95–98 % гемоглобина HbA. Его молекула включает в себя 2 ?– и 2 ?-полипептидные цепи. Фетальный гемоглобин в норме встречается только у новорожденных. Кроме нормальных типов гемоглобина, существуют и аномальные, которые вырабатываются под влиянием генных мутаций на уровне структурных и регуляторных генов.

Внутри эритроцита молекулы гемоглобина распространяются по-разному. Вблизи мембраны они лежат к ней перпендикулярно, что улучшает взаимодействие гемоглобина с кислородом. В центре клетки они лежат более хаотично. У мужчин в норме содержание гемоглобина примерно 130–160 г/л, а у женщин – 120–140 г/л.

Выделяют четыре формы гемоглобина:

1) оксигемоглобин;

2) метгемоглобин;

3) карбоксигемоглобин;

4) миоглобин.

Оксигемоглобин содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам. При воздействии окислителей (перекисей, нитритов и т. д.) происходит переход железа из двухвалентного в трехвалентное состояние, за счет чего образуется метгемоглобин, который не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт. Карбоксигемоглобин образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа. Миоглобин по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц.

Гемоглобин выполняет дыхательную и буферную функции. 1 моль гемоглобина способен связать 4 моля кислорода, а 1 г – 1,345 мл газа. Кислородная емкость крови – максимальное количество кислорода, которое может находиться в 100 мл крови. При выполнении дыхательной функции молекула гемоглобина изменяется в размерах. Соотношение между гемоглобином и оксигемоглобином зависит от степени парциального давления в крови. Буферная функция связана с регуляцией pH крови.

Из книги Сезонные заболевания. Весна автора Владислав Владимирович Леонкин

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

Из книги Нормальная физиология автора Марина Геннадиевна Дрангой

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

Из книги Прогнозирующая гомеопатия Часть 1 Теория подавления автора Прафулл Виджейкар

Из книги Избранное автора Абу Али ибн Сина

Из книги Секреты целителей Востока автора Виктор Федорович Востоков

Из книги Лечение сердца травами автора Илья Мельников

Из книги Целительные комнатные растения автора Юлия Савельева

Из книги Лечение соками автора Илья Мельников

автора Елена В. Погосян

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Из книги Питание автора Светлана Васильевна Баранова

Из книги Квантовое целительство автора Михаил Светлов

Из книги Система доктора Наумова. Как запустить механизмы исцеления и омоложения автора Ольга Строганова

Из книги Целебный яблочный уксус автора Николай Илларионович Даников

Гемограмма

Гемограмма (греч. haima кровь + gramma запись) – клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др.

Кровь для исследования берут через 1 ч после легкого завтраки из пальца (мочки уха или пятки у новорожденных и детей раннего возраста). Место прокола обрабатывают ватным тампоном, смоченным 70% этиловым спиртом. Прокол кожи проводят стандартным копьем-скарификатором разового пользования. Кровь должна вытекать свободно. Можно использовать кровь, взятую из вены.

При сгущении крови возможно увеличение концентраций гемоглобина, при увеличении объема плазмы крови – снижение.

Определение количества форменных элементов крови проводят в счетной камере Горяева. Высота камеры, площадь сетки и ее делений, разведение взятой для исследования крови позволяют установить количество форменных элементов в определенном объеме крови. Камера Горяева может быть заменена автоматическими счетчиками. Принцип их работы основан на различной электропроводности взвешенных частиц в жидкости.

Норма количества эритроцитов в 1 л крови

4,0–5,0×10 12

3,7–4,7×10 12

Уменьшение числа эритроцитов (эритроцитопения) характерно для анемий: увеличение их наблюдается при гипоксии, врожденных пороках сердца, сердечно-сосудистой недостаточности, эритремии и др.

Количество тромбоцитов подсчитывают различными методами (в мазках крови, в камере Горяева, при помощи автоматических счетчиков). У взрослых количество тромбоцитов составляет 180,0–320,0×10 9 /л. Увеличение числа тромбоцитов отмечается при злокачественных новообразованиях, хроническом миелолейкозе, остеомиелофиброзе и др. Пониженное содержание тромбоцитов может быть симптомом различных заболеваний, например тромбоцитопенической пурпуры. Наиболее часто в клинической практике встречаются иммунные тромбоцитопении. Количество ретикулоцитов подсчитывают в мазках крови или в камере Горяева. У взрослых их содержание составляет 2–10 ‰ .

Нормальное количество лейкоцитов у взрослых колеблется от 4,0 до 9,0×10 9 . У детей оно несколько больше. Содержание лейкоцитов ниже 4,0×10 9 обозначается термином «лейкопения», более 10,0×10 9 – термином «лейкоцитоз». Количество лейкоцитов у здорового человека не является постоянным и может значительно колебаться в течение суток (суточные биоритмы). Амплитуда колебаний зависит от возраста, пола, конституциональных особенностей, условий жизни, физической нагрузки и др. Развитие лейкопении обусловлено несколькими механизмами, например снижением продукции лейкоцитов костным мозгом, что имеет место при гипопластической и железодефицитной анемии. Лейкоцитоз обычно связан с увеличением количества нейтрофилов, чище обусловлен повышением продукции лейкоцитов или их перераспределением в сосудистом русле; наблюдается при многих состояниях организма, например, при эмоциональном или физическом напряжении, при ряде инфекционных болезней, интоксикациях и др. В норме лейкоциты крови взрослого человека представлены различными формами, которые распределяются в окрашенных препаратах в следующих соотношениях:

Определение количественного соотношения между отдельными формами лейкоцитов (лейкоцитарная формула) имеет клиническое значение. Наиболее часто наблюдается так называемый сдвиг в лейкоцитарной формуле влево. Он характеризуется появлением незрелых форм лейкоцитов (палочкоядерных, метамиелоцитов, миелоцитов, бластов и др.). Наблюдается при воспалительных процессах различной этиологии, лейкозах.

Морфологическую картину форменных элементов исследуют в окрашенных мазках крови под микроскопом. Существует несколько способов окраски мазков крови, основанных на химическом сродстве элементов клетки к определенным анилиновым краскам. Так, цитоплазматические включения метахроматически окрашиваются органическим красителем азуром в ярко-пурпурный цвет (азурофилия). В окрашенных мазках крови определяют величину лейкоцитов, лимфоцитов, эритроцитов (микроциты, макроциты и мегалоциты), их форму, окраску, например насыщенность эритроцита гемоглобином (цветной показатель), цвет цитоплазмы лейкоцитов, лимфоцитов. Низкий цветной показатель свидетельствует о гипохромии, он наблюдается при анемиях, обусловленных дефицитом железа в эритроцитах или неиспользованием его для синтеза гемоглобина. Высокий цветной показатель говорит о гиперхромии при анемиях, вызванных недостаточностью витамина В 12 и (или) фолиевой кислоты, гемолизом.

Скорость оседания эритроцитов (СОЭ) определяется методом Панченкова, основанным на свойстве эритроцитов оседать при помещении несвернувшейся крови в вертикально расположенную пипетку. СОЭ зависит от количества эритроцитов, их величины. Объема и способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенная СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах. Наибольшее увеличение СОЭ наблюдается при синтезе патологического белка, что характерно для миеломной болезни, макроглобулинемии Вальденстрема, болезни легких и тяжелых цепей, а также при гиперфибриногенемии. Следует иметь в виду, что снижение содержания фибриногена в крови может компенсировать изменение соотношения альбуминов и глобулинов, вследствие чего СОЭ остается нормальной или замедляется. При острых инфекционных болезнях (например, при гриппе, ангине) наиболее высокая СОЭ возможна в период снижения температуры тела, при обратном развитии процесса. Значительно реже отмечается замедленная СОЭ, например при эритремии, вторичных эритроцитозах, повышении концентрации желчных кислот и желчных пигментов в крови, гемолизе, кровотечениях и др.

Об общем объеме эритроцитов дает представление гематокритное число – объемное соотношение форменных элементов крови и плазмы.

Нормальное гематокритное число

Его определяют с помощью гематокрита, представляющего собой два коротких стеклянных градуированных капилляра в специальной насадке. Гематокритное число зависит от объема эритроцитов в кровяном русле, вязкости крови, скорости кровотока и других факторов. Оно повышается при обезвоживании организма, тиреотоксикозе, сахарном диабете, кишечной непроходимости, беременности и др. Низкое гематокритное число наблюдается при кровотечениях, сердечной и почечной недостаточности, голодании, сепсисе.

Показатели гемограммы позволяют обычно ориентироваться в особенностях течения патологического процесса. Так, небольшой нейтрофильный лейкоцитоз возможен при легком течении инфекционных болезней и гнойных процессов; об утяжелении свидетельствует нейтрофильный гиперлейкоцитоз. Данные гемограммы используют для контроля за действием некоторых лекарственных препаратов. Так, регулярное определение содержания гемоглобина эритроцитов необходимо для установления режима приема препаратов железа у больных железодефицитной анемией, числа лейкоцитов и тромбоцитов – при лечении лейкозов цитостатическими препаратами.

Строение и функции гемоглобина

Гемоглобин – главный компонент эритроцита и основной дыхательный пигмент, обеспечивает перенос кислорода (О 2 ) из легких в ткани и углекислого газа (СО 2 ) из тканей в легкие. Кроме того, он играет существенную роль в поддержании кислотно-основного равновесия крови. Подсчитано, что в одном эритроците содержится ~340 000 000 молекул гемоглобина, каждая из которых состоит примерно из 103 атомов. В крови человека в среднем содержится ~750 г гемоглобина.

Гемоглобин представляет собой сложный белок, относящийся к группе гемопротеинов белковый компонент в котором представлен глобином, небелковый – четырьмя одинаковыми железопорфириновыми соединениями, которые называются гемами. Атом железа (II), расположенный в центре гема, придает крови характерный красный цвет (см. рис. 1 ). Наиболее характерным свойством гемоглобина является обратимое присоединение газовО 2 , СО 2 и др.

Рис. 1. Структура гемоглобина

Было установлено, что гем приобретает способность переносить О 2 лишь при условии, что его окружает и защищает специфический белок – глобин (сам по себе гем не связывает кислород). Обычно при соединенииО 2 с железом (Fe ) один или более электронов необратимо переходят с атомовFe на атомыО 2 . Иными словами, происходит химическая реакция. Экспериментально было доказано, что миоглобин и гемоглобин обладают уникальной способностью обратимо связыватьO 2 без окисления гемовогоFe 2+ в Fe 3+ .

Таким образом, процесс дыхания, который на первый взгляд кажется столь простым, на самом деле осуществляется благодаря взаимодействию многих видов атомов в гигантских молекулах чрезвычайной сложности.

В крови гемоглобин существует, по крайней мере, в четырех формах: оксигемоглобин, дезоксигемоглобин, карбоксигемоглобин, метгемоглобин. В эритроцитах молекулярные формы гемоглобина способны к взаимопревращению, их соотношение определено индивидуальными особенностями организма.

Как и любой другой белок, гемоглобин имеет определенный набор характеристик, по которым его можно отличить от других белковых и небелковых веществ в растворе. К таким характеристикам относятся молекулярная масса, аминокислотный состав, электрический заряд, химические свойства.

На практике чаще всего используются электролитные свойства гемоглобина (на этом основаны кондуктивные методы его исследования) и способность гема присоединять различные химические группы, приводящие к изменению валентности Fe и окраски раствора (калориметрические методы). Однако в многочисленных исследованиях показано, что результат кондуктивных методов определения гемоглобина зависит от электролитного состава крови, это делает затруднительным применение такого исследования в неотложной медицине.

Строение и функции костного мозга

Костный мозг (medulla ossium) – центральный орган кроветворения, расположенный в губчатом веществе костей и костно-мозговых полостях. Выполняет также функции биологической защиты организма и костеобразования.

У человека костный мозг (КМ) впервые появляется на 2-м месяце эмбриогенеза в закладке ключицы, на 3-м месяце – в лопатках, ребрах, грудине, позвонках и др. На 5-м месяце эмбриогенеза костный мозг функционирует как основной кроветворный орган, обеспечивая дифференцированное костномозговое кроветворение с элементами гранулоцитарного, эритроцитарного и мегакарциоцитарного рядов.

В организме взрослого человека различают красный КМ, представленный деятельной кроветворной тканью, и желтый, состоящий из жировых клеток. Красный КМ заполняет промежутки между костными перекладинами губчатого вещества плоских костей и эпифизов трубчатых костей. Он имеет темно-красный цвет и полужидкую консистенцию, состоит из стромы и клеток кроветворной ткани. Строма образована ретикулярной тканью, она представлена фибробластами и эндотелиальными клетками; содержит большое количество кровеносных сосудов, в основном широких тонкостенных синусоидных капилляров. Строма принимает участие в развитии и жизнедеятельности кости. В промежутках между структурами стромы находятся клетки, участвующие в процессах кроветворения стволовые клетки, клетки-предшественники, эритробласты, миелобласты, монобласты, мегакариобласты, промиелоциты, миелоциты, метамиелоциты, мегакариоциты, макрофаги и зрелые форменные элементы крови.

Формирующиеся клетки крови в красном КМ располагаются в виде островков. При этом эритробласты окружают макрофаг, содержащий железо, необходимое для построения геминовой части гемоглобина. В процессе созревания зернистые лейкоциты (гранулоциты) депонируются в красном КМ, поэтому их содержание в 3 раза больше, чем эритрокариоцитов. Мегакариоциты тесно связаны с синусоидными капиллярами; часть их цитоплазмы проникает в просвет кровеносного сосуда. Отделяющиеся фрагменты цитоплазмы в виде тромбоцитов переходят в кровяное русло. Формирующиеся лимфоциты плотно окружают кровеносные сосуды. В красном костном мозгу развиваются предшественники лимфоцитов и В-лимфоциты. В норме через стенку кровеносных сосудов КМ проникают только созревшие форменные элементы крови, поэтому появление в кровяном русле незрелых форм свидетельствует об изменении функции или повреждении костномозгового барьера. КМ занимает одно из первых мест в организме по своим репродуктивным свойствам. В среднем у человека в день образуется:

В детском возрасте (после 4 лет) красный КМ постепенно замещается жировыми клетками. К 25 годам диафизы трубчатых костей целиком заполняются желтым мозгом, в плоских костях он занимает около 50% объема КМ. Желтый КМ в норме не выполняет кроветворной функции, но при больших кровопотерях в нем появляются очаги кроветворения. С возрастом объем и масса КМ изменяются. Если у новорожденных на его долю приходится примерно 1,4% массы тела, то у взрослого человека – 4,6%.

Костный мозг участвует также в разрушении эритроцитов, реутилизации железа, синтезе гемоглобина, служит местом накопления резервных липидов. Поскольку в нем содержатся лимфоциты и мононуклеарные фагоциты, он принимает участие в реакции иммунного ответа.

Деятельность КМ как саморегулирующейся системы контролируется по принципу обратной связи (число зрелых клеток крови влияет на интенсивность их образования). Эта регуляция обеспечивается сложным комплексом межклеточных и гуморальных (поэтины, лимфокины и монокины) воздействий. Предполагается, что основным фактором, регулирующим клеточный гомеостаз, является количество клеток крови. В норме по мере старения клеток они удаляются и на их место приходят другие. При экстремальных состояниях (например, кровотечении, гемолизе) изменяется концентрация клеток, срабатывает обратная связь; в дальнейшем процесс зависит от динамической устойчивости системы и силы воздействия вредных факторов.

Под воздействием эндогенных и экзогенных факторов происходит нарушение кроветворной функции КМ. Нередко патологические изменения, происходящие в КМ, особенно в начале какого-либо заболевания, не сказываются на показателях, характеризующих состояние крови. Возможны уменьшение числа клеточных элементов КМ (гипоплазия) или их увеличение (гиперплазия). При гипоплазии КМ уменьшается количество миелокариоцитов, отмечается цитопения, нередко жировая ткань преобладает над миелоидной. Гипоплазия кроветворения может быть самостоятельным заболеванием (например, апластическая анемия). В редких случаях она сопровождает такие заболевания, как хронический гепатит, злокачественные новообразования, встречается при некоторых формах миелофиброза, мраморной болезни, аутоиммунных заболеваниях. При некоторых заболеваниях уменьшается количество клеток одного ряда, например красного (парциальная красноклеточная аплазия), или клеток гранулоцитарного ряда (агранулоцитоз). При ряде патологических состояний, кроме гипоплазии кроветворения, возможен неэффективный гемопоэз, для которого характерны нарушение созревания и выхода клеток гемопоэза в кровь и их интрамедуллярная гибель.

Гиперплазия КМ имеет место при различных лейкозах. Так, при остром лейкозе появляются незрелые (бластные) клетки; при хроническом лейкозе возрастает число морфологически зрелых клеток, например лимфоцитов при лимфолейкозе, эритроцитов при эритремии, гранулоцитов при хроническом миелолейкозе. Гиперплазия клеток эритроцитарного ряда характерна также для гемолитических анемий ,В 12 -дефицитной анемии .

Главный белок эритроцитов – гемоглобин (Нb), он включает в свой состав гем с катионом железа, а его глобин содержит 4 полипептидных цепи.

Среди аминокислот глобина преобладают лейцин, валин, лизин (на их долю приходится до 1/3 всех мономеров). В норме уровень Нb в крови у мужчин – 130-160г/л, у женщин – 120-140 г/л. В разные периоды жизни зародыша и ребёнка активно работают различные гены, ответственные за синтез нескольких полипептидных цепей глобина. Выделяют 6 субъединиц: α, β, γ, δ, ε, ζ (альфа, бета, гамма, дельта, эпсилон, дзета соответственно). Первая и последняя из них содержат по 141, а остальные по 146 аминокислотных остатков. Друг от друга они отличаются не только количеством мономеров, но и их составом. Принцип образования вторичной структуры у всех цепей однотипен: они сильно (до 75% длины) спирализованы за счёт водородных связей. Компактная укладка в пространстве подобного образования приводит к возникновению третичной структуры; причем при этом создаётся карман, куда и вкладывается гем. Возникший комплекс сохраняется с помощью приблизительно 60 гидрофобных взаимодействий между белком и простетической группой. Подобная глобула объединяется с 3 сходными субъединицами, образуя четвертичную структуру. Получается белок, составленный из 4 полипептидных цепей (гетерогенный тетрамер), имеющий форму тетраэдра. Высокая растворимость Нb сохраняется только при наличии различных пар цепей. Если же происходит объединение одинаковых, — следует быстрая денатурация, укорачивающая жизнь эритроцита.

В зависимости от характера включённых протомеров различают следующие виды нормальных гемоглобинов. В первые 20 суток существования эмбриона в ретикулоцитах образуется Hb P (Primitive) в виде двух вариантов: Hb Gower 1, состоящий из дзета- и эпсилон-цепей, соединенных попарно, и Hb Gower 2 , в котором дзета-последовательности уже заменены на альфа. Переключение генеза одного вида структуры на другой осуществляется медленно: вначале появляются отдельные клетки, продуцирующие иной вариант. Они дают стимул клонам новых клеток, синтезирующих другой вид полипептида. Позднее эритробласты начинают преобладать и постепенно вытесняют старые. На 8-й неделе жизни зародыша включается синтез гемоглобина F =α 2 γ 2, по мере же приближения акта родов появляются ретикулоциты, содержащие HbA =α 2 β 2. У новорожденных на его долю приходится 20-30%, у здорового взрослого человека его вклад составляет 96–98% от общей массы этого белка. Кроме того, в отдельных эритроцитах присутствуют гемоглобины HbA 2 =α 2 δ 2 (1,5 – 3%) и фетальный HbF (обычно не больше 2%). Однако в некоторых регионах, в том числе и у аборигенов Забайкалья концентрация последнего вида повышена до 4% (в норме).

Формы гемоглобина

Описаны следующие формы данного гемопротеида, получающиеся после взаимодействия, в первую очередь, с газами и другими соединениями.

  • Дезоксигемоглобин – свободная от газов форма протеина.

  • Оксигемоглобин – продукт включения кислорода в молекулу белка. Одна молекула Hb способна удерживать 4 молекулы газа.

  • Карбгемоглобин уносит из тканей СО 2 , связавшийся с лизином этого протеина.

  • Монооксид углерода, проникая с атмосферным воздухом в лёгкие, быстро преодолевает альвеолярно-капиллярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает во взаимодействие с дезоки- и/или окси-Hb:

Образовавшийся карбоксигемоглобин не способен присоединять к себе кислород, а угарного газа может связывать 4 молекулы.

    Важным производным Hb является метгемоглобин , в молекуле которого атом железа находится в степени окисления 3+. Такая форма гемопротеида образуется при действии на него различных окислителей (оксидов азота, нитробензола, нитроглицерина, хлоратов, метиленового синего), в результате в крови уменьшается количество функционально важного оксиHb, что нарушает доставку кислорода к тканям, вызывая в них развитие гипоксии.

    Концевые аминокислоты в цепях глобина позволяют им реагировать с моносахаридами, в первую очередь, с глюкозой. В настоящее время выделяют несколько подвидов Hb A (от 0 до 1c), в которых к валину бета-цепей прикреплены олигосахариды. Особенно легко реагирует последний подвид гемопротеида. У образовавшегося при этом без участия фермента гликозилированного гемоглобина меняется его сродство к кислороду. В норме на долю подобной формы Hb приходится не более 5% от его общего количества. При сахарном диабете его концентрация возрастает в 2-3 раза, что благоприятствует возникновению тканевой гипоксии.

Свойства гемоглобина

Все известные гемопротеиды (Раздел I) близки по строению не только простетической группы, но и апопротеина. Определённая общность в пространственной укладке обусловливает и сходство в функционировании – взаимодействии с газами, в основном с кислородом, СО 2 , СО, NО. Главное свойство гемоглобина – способность обратимо присоединять в лёгких (до 94%) и эффективно отдавать в тканях кислород . Но поистине уникальным для того белка является сочетание прочности связывания кислорода при высоких его парциальных напряжениях и лёгкости диссоциации этого комплекса в области пониженных давлений. Кроме того скорость распада оксигемоглобина зависит от температуры, pH среды. При накоплении углекислоты, лактата и других кислых продуктов происходит более быстрая отдача кислорода (эффект Бора ). Также действует и лихорадка. При алкалозе, гипотермии следует обратное смещение, улучшаются условия насыщения Hb кислородом в лёгких, но полнота выхода газа в ткани уменьшается. Подобное явление наблюдается при гипервентиляции, замерзании и т.д. Попадая в условия острой гипоксии, эритроциты активируют гликолиз, что сопровождается увеличением содержания 2,3-ДФГК, которая снижает сродство гемопротеида к кислороду, активирует дезоксигенацию крови в тканях. Интересно, что фетальный гемоглобин с ДФГК не взаимодействует, сохраняя поэтому повышенное сродство к кислороду и артериальной, и венозной крови.

Этапы образования гемоглобина

Синтез гемоглобина, как любого другого белка, требует наличия матрицы (иРНК), которая продуцируется в ядре. Эритроцит, как известно, не имеет никаких органоидов; следовательно, формирование гемовых протеинов возможно лишь в клетках-предшественниках (эритробластах, заканчиваясь в ретикулоцитах). Этот процесс у эмбрионов осуществляется в печени, селезенке, а у взрослых в костном мозге плоских костей, в которых кроветворные стволовые клетки непрерывно размножаются и генерируют предшественников всех типов клеток крови (эритроцитов, лейкоцитов, тромбоцитов). Формирование первых регулируется эритропоэтином почек. Параллельно с генезом глобина происходит образование гема, облигатным компонентом которого служат катионы железа.

Существует несколько нормальных вариантов гемоглобина:

    HbР – примитивный гемоглобин, содержит 2ξ- и 2ε-цепи, встречается в эмбрионе между 7-12 неделями жизни,

    HbF – фетальный гемоглобин, содержит 2α- и 2γ-цепи, появляется через 12 недель внутриутробного развития и является основным после 3 месяцев,

    HbA – гемоглобин взрослых, доля составляет 98%, содержит 2α- и 2β-цепи, у плода появляется через 3 месяца жизни и к рождению составляет 80% всего гемоглобина,

    HbA 2 – гемоглобин взрослых, доля составляет 2%, содержит 2α- и 2δ-цепи,

    HbO 2 – оксигемоглобин, образуется при связывании кислорода в легких, в легочных венах его 94-98% от всего количества гемоглобина,

    HbCO 2 – карбогемоглобин, образуется при связывании углекислого газа в тканях, в венозной крови составляет 15-20% от всего количества гемоглобина.

Патологические формы гемоглобина

HbS – гемоглобин серповидно-клеточной анемии.

MetHb – метгемоглобин, форма гемоглобина, включающая трехвалентный ион железа вместо двухвалентного. Такая форма обычно образуется спонтанно, в этом случае ферментативных мощностей клетки хватает на его восстановление. При использовании сульфаниламидов, употреблении нитрита натрия и нитратов пищевых продуктов, при недостаточности аскорбиновой кислоты ускоряется переход Fe 2+ в Fe 3+ . Образующийся metHb не способен связывать кислород и возникает гипоксия тканей. Для восстановления ионов железа в клинике используют аскорбиновую кислоту и метиленовую синь.

Hb-CO – карбоксигемоглобин, образуется при наличии СО (угарный газ) во вдыхаемом воздухе. Он постоянно присутствует в крови в малых концентрациях, но его доля может колебаться от условий и образа жизни.

Угарный газ является активным ингибитором гем-содержащих ферментов, в частности, цитохромоксидазы4-го комплекса дыхательной цепи.

HbA – гликозилированный гемоглобин. Концентрация его нарастает при хронической гипергликемии и является хорошим скрининговым показателем уровня глюкозы крови за длительный период времени.

Миоглобин тоже способен связывать кислород

Миоглобин является одиночной полипептидной цепью, состоит из 153 аминокислот с молекулярной массой 17 кДа и по структуре сходен с β-цепью гемоглобина. Белок локализован в мышечной ткани. Миоглобин обладает более высоким сродством к кислороду по сравнению с гемоглобином. Это свойство обуславливает функцию миоглобина – депонирование кислорода в мышечной клетке и использование его только при значительном уменьшении парциального давления О 2 в мышце (до 1-2 мм рт.ст).

Кривые насыщения кислородом показывают отличия миоглобина и гемоглобина :

    одно и то же 50%-е насыщение достигается при совершенно разных концентрациях кислорода – около 26 мм рт.ст. для гемоглобина и 5 мм рт.ст. для миоглобина,

    при физиологическом парциальном давлении кислорода от 26 до 40 мм рт.ст. гемоглобин насыщен на 50-80%, тогда как миоглобин – почти на 100%.

Таким образом, миоглобин остается оксигенированным до того момента, пока количество кислорода в клетке не снизится до предельных величин. Только после этого начинается отдача кислорода для реакций метаболизма.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»