О чем свидетельствует рождение сверхновых звезд. Наиболее известные сверхновые звёзды и их остатки

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Небо в ясный день представляет в общем-то довольно скучную и однообразную картину: раскаленный шар Солнца и чистый бескрайний простор, иногда украшенный облаками или редкими тучами.

Другое дело - небо в безоблачную ночь. Оно обычно все усыпано яркими скоплениями звезд. При этом надо учесть, что на ночном небе невооруженным глазом можно видеть от 3 до 4,5 тысячи ночных светил. И все они принадлежат Млечному Пути, в котором находится и наша Солнечная система.

По современным представлениям звезды - это раскаленные газовые шары, в недрах которых происходит термоядерный синтез ядер гелия из ядер водорода с выделением колоссального количества энергии. Именно она и обеспечивает светимость звезд.

Самая близкая к нам звезда - наше Солнце, расстояние до которого 150 миллионов километров. А вот звезда Проксима Центавра, следующая по удаленности, находится от нас на расстоянии 4,25 светового года, или в 270 тысяч раз дальше, чем Солнце.

Есть звезды, в сотни раз превышающие по размеру Солнце и во столько же раз уступающие ему в этом показателе. Однако массы звезд меняются в гораздо более скромных пределах - от одной двенадцатой массы Солнца до 100 его масс. Более половины видимых звезд являются двойными, а иногда и тройными системами.

Вообще же, число звезд в видимой нам Вселенной можно обозначить числом 125 000 000 000 с одиннадцатью дополнительными нулями.

Теперь, чтобы избежать путаницы с нулями, астрономы ведут учет уже не отдельных звезд, а целых галактик, считая, что в среднем в каждой из них находится порядка 100 миллиардов звезд.


Американский астроном Фриц Цвики впервые начал заниматься целенаправленным поиском сверхновых звезд

Еще в 1996 году ученые определили, что с Земли можно увидеть 50 миллиардов галактик. Когда же в строй был введен орбитальный телескоп имени Хаббла, которому не мешают помехи земной атмосферы, число видимых галактик подскочило до 125 миллиардов.

Благодаря всевидящему глазу этого телескопа астрономы проникли в такие вселенские глубины, что увидели галактики, которые появились всего через один миллиард лет после Великого взрыва, породившего нашу Вселенную.

Для характеристики звезд используются несколько параметров: светимость, масса, радиус и химический состав атмосферы, а так же ее температура. А используя ряд дополнительных характеристик звезды, можно также определить и ее возраст.

Каждая звезда - это динамичная структура, которая рождается, растет и затем, достигнув определенного возраста, тихо умирает. Но случается и такое, что она вдруг взрывается. Это событие приводит к масштабным изменениям в той области, которая прилегала к взорвавшейся звезде.

Так, возмущение, последовавшее за этим взрывом, распространяется с гигантской скоростью, и в течение нескольких десятков тысяч лет захватывает огромное пространство в межзвездной среде. В этой области резко, до нескольких миллионов градусов, повышается температура, значительно увеличивается плотность космических лучей и напряженность магнитного поля.

Такие особенности вещества, выброшенного взорвавшейся звездой, позволяют ему сформировать новые звезды и даже целые планетные системы.

По этой причине как сверхновые звезды, так и их остатки очень пристально изучаются астрофизиками. Ведь сведения, полученные в ходе исследования этого явления, могут расширить знания об эволюции нормальных звезд, о процессах, происходящих при рождении нейтронных звезд, а также выяснить детали тех реакций, в результате которых образуются тяжелые элементы, космические лучи и т. д.

Одно время те звезды, яркость которых неожиданно возрастала более чем в 1000 раз, астрономы называли новыми. Они появлялись на небе неожиданно, внося изменения в привычную конфигурацию созвездий. Внезапно увеличившись в максимуме в несколько тысяч раз, их блеск спустя какое-то время резко уменьшался, а спустя несколько лет их яркость становилась такой же слабой, как и до взрыва.

Следует отметить, что периодичность вспышек, во время которых звезда освобождается от одной тысячной своей массы и которую с огромной скоростью выбрасывает в мировое пространство, считается одним из основных признаков рождения новых звезд. Но, в то же время как это ни странно, взрывы звезд не ведут ни к существенным изменениям в их структуре, ни даже к их разрушениям.

Как часто в нашей Галактике случаются такие события? Если учитывать лишь те звезды, которые по своей яркости не превышали 3-ю звездную величину, то, согласно историческим хроникам и наблюдениям ученых-астрономов, в течение пяти тысяч лет наблюдались не более 200 ярких вспышек.

Но когда стали проводиться исследования других галактик, то стало очевидным, что яркость новых звезд, которые появляются в этих уголках космоса, нередко равна светимости всей галактики, в которой эти звезды появляются.

Конечно, появление звезд с такой светимостью - событие неординарное и абсолютно не похожее на рождение обычных звезд. Поэтому еще в 1934 году американские астрономы Фриц Цвикки и Вальтер Бааде предложили те звезды, максимальная яркость которых достигает светимости обычных галактик, выделить в отдельный класс сверхновых и самых ярких звезд. При этом следует иметь в виду, что вспышки сверхновых в современном состоянии нашей Галактики - явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее же яркие вспышки, которые зафиксировали китайские и японские трактаты, произошли в 1006 и 1054 годах.

Через пятьсот лет, в 1572 году, вспышку сверхновой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге. В 1604 году в созвездии Змееносца рождение сверхновой звезды увидел Иоганн Кеплер. И с тех пор таких грандиозных событий в нашей Галактике не отмечалось.

Возможно, связано это с тем, что Солнечная система занимает в нашей Галактике такое положение, что наблюдать в оптические приборы вспышки сверхновых с Земли можно лишь в половине ее объема. В остальной же части этому мешает межзвездное поглощение света.

А поскольку в других галактиках эти явления происходят примерно с той же частотой, что и в Млечном Пути, основные сведения о сверхновых в момент вспышки были получены по наблюдениям за ними в других галактиках…

Впервые целенаправленным поиском сверхновых звезд в 1936 году начали заниматься астрономы В. Бааде и Ф. Цвикки. В ходе трехлетних наблюдений в разных галактиках ученые обнаружили 12 вспышек сверхновых, которые впоследствии были подвергнуты более тщательному исследованию с помощью фотометрии и спектроскопии.

Более того, применение более усовершенствованной астрономической аппаратуры позволило расширить список вновь открытых сверхновых. А внедрение автоматизированного поиска привело к тому, что в год ученые обнаруживали более сотни сверхновых. Всего же за короткое время было зафиксировано 1500 этих объектов.

В последние годы с помощью мощных телескопов за одну ночь наблюдений ученые открывали более 10 далеких сверхновых звезд!

В январе 1999 года произошло событие, которое потрясло даже современных астрономов, привыкших ко многим «фокусам» Вселенной: в глубинах космоса была зарегистрирована вспышка в десять раз ярче всех тех, которые фиксировались учеными раньше. Заметили ее два исследовательских спутника и телескоп в горах Новой Мексики, снабженный автоматической фотокамерой. Произошло это уникальное явление в созвездии Волопаса. Чуть позже, в апреле того же года, ученые установили, что расстояние до вспышки - девять миллиардов световых лет. Это почти три четверти радиуса Вселенной.

Подсчеты, произведенные астрономами, показали, что за несколько секунд, в течение которых длилась вспышка, энергии выделилось во много раз больше, чем произвело Солнце за пять миллиардов лет своего существования. Что же стало причиной столь невероятного взрыва? Какие процессы породили этот грандиозный энергетический выброс? Ответить конкретно на эти вопросы наука пока не может, хотя существует предположение, что такое огромное количество энергии могло произойти в случае слияния двух нейтронных звезд.

<<< Назад
Вперед >>>

Астрономы официально заявили об одном из самых громких событий в научном мире: в 2022 году с Земли невооружённым глазом мы сможем увидеть уникальное явление - один из ярчайших взрывов сверхновой. По прогнозам , он затмит своим светом сияние большинства звёзд в нашей галактике.

Речь идёт о тесной двойной системе KIC 9832227 в созвездии Лебедя, которую отделяет от нас 1800 световых лет. Звёзды в этой системе расположены настолько близко друг к другу, что имеют общую атмосферу, а скорость их вращения постоянно увеличивается (сейчас период обращения составляет 11 часов).

О возможном столкновении, которое ожидается примерно через пять лет (плюс-минус один год) рассказал на ежегодном собрании Американского астрономического общества профессор Ларри Мольнар (Larry Molnar) из Колледжа Кальвина в США. По его словам, предсказать подобные космические катастрофы довольно сложно — на исследование ушло несколько лет (изучать звёздную пару астрономы начали ещё в 2013 году).

Первым такой прогноз сделал Дэниел Ван Нурд (Daniel Van Noord), научный сотрудник Мольнара (на тот момент ещё студент).

"Он изучил, как цвет звезды коррелирует с её яркостью, и предположил, что мы имеем дело с двойным объектом, более того с тесной двойной системой — такой, где у двух звёзд есть общая атмосфера, словно у двух ядер арахиса под одной скорлупой", — поясняет Мольнар в пресс-релизе .

В 2015 году Мольнар, после нескольких лет наблюдений, рассказал коллегам о прогнозе: вероятно, астрономов ожидает взрыв, подобный рождению сверхновой V1309 в созвездии Скорпиона в 2008 году. Не все учёные отнеслись к его заявлению серьёзно, однако теперь, после новых наблюдений, Ларри Мольнар вновь затронул эту тему, представив ещё больше данных. Спектроскопические наблюдения и обработка более 32 тысяч изображений, полученных с разных телескопов, исключили другие сценарии развития событий.

Астрономы полагают, что когда звёзды врежутся друг в друга, то обе погибнут, однако перед этим испустят много света и энергии, образовав красную сверхновую и увеличив яркость двойной звезды в десять тысяч раз. Сверхновая будет видна на небосклоне как часть созвездия Лебедя и Северного Креста. Это станет первым случаем, когда специалисты и даже любители смогут проследить за двойными звёздами непосредственно в момент их смерти.

"Это будет очень резкое изменение в небе, и любой человек сможет увидеть это. Вам не понадобится телескоп, чтобы сказать мне в 2023 году, прав я был или нет. Хотя отсутствие взрыва разочарует меня, любой альтернативный исход будет не менее интересным", — добавляет Молнер.

По мнению астрономов, к прогнозу действительно нельзя отнестись несерьёзно: у экспертов впервые появилась возможность наблюдать последние несколько лет жизни звёзд перед их слиянием.

Будущие исследования помогут многое узнать о подобных двойных системах и их внутренних процессах, а также о последствиях масштабного столкновения. "Взрывы" такого рода, по статистике, происходят примерно раз в десять лет, однако это первый случай, когда столкновение звёзд произойдёт на . Ранее, например, учёные наблюдали взрыв .

Препринт возможной будущей статьи Мольнара (PDF-документ) можно прочитать на сайте Колледжа.

Кстати, в 2015 году астрономы ЕКА обнаружили уникальную в туманности Тарантул, чьи орбиты находятся на невероятно малом расстоянии друг от друга. Учёные спрогнозировали, что в какой-то момент такое соседство окончится трагически: небесные тела либо сольются в единую звезду гигантских размеров, либо случится взрыв сверхновой, который породит двойную систему .

Напомним также, что ранее мы рассказывали о том, как взрывы сверхновых .

СВЕРХНОВАЯ ЗВЕЗДА

СВЕРХНОВАЯ ЗВЕЗДА , взрыв звезды, при котором практически вся ЗВЕЗДА разрушается. В течение недели сверхновая звезда может затмить все другие звезды Галактики. Светимость сверхновой звезды на 23 звездных величины (в 1000 млн. раз) больше, чем светимость Солнца, а энергия, высвобождаемая при взрыве, равна всей энергии, излученной звездой в течение всей ее предыдущей жизни. Через несколько лет сверхновая увеличивается в объеме настолько, что становится разреженной и полупрозрачной. В течение сотен или тысяч лет остатки выброшенного вещества видны как остатки сверхновой звезды. Сверхновая примерно в 1000 раз ярче НОВОЙ ЗВЕЗДЫ. Каждые 30 лет в такой галактике, как наша, появляется примерно одна сверхновая, однако, большинство этих звезд не видно из-за пыли. Сверхновые звезды бывают двух основных типов, различаемых по их кривым блеска и по спектрам.

Сверхновые - неожиданно вспыхивающие звезды, приобретающие яркость иногда в 10 000 млн. раз большую, чем яркость Солнца. Это происходит в несколько стадий.В начале (А) огромная звезда очень быстро развивается до стадии, когда различные ядерные процессы начинают протекать внутри звезды одновременно. В центре может образоваться железо,что означает конец производства ядерной энергии. Затем звезда начинает подвергаться гравитационному коллапсу (B). Это, однако, нагревает центр звезды до такой степени, что химические элементы распадаются, а новые реакции протекают со взрывной силой (C). Выбрасывается большая часть вещества звезды в космос, в то время как остатки центра звезды коллапсируют, пока звезда не станет полностью темной, возможно пре вратившись в очень плотную нейтронную звезду (D). Одна такая сзерхновая была видна в 1054г. в созвездии Тельца (Е). Остатки этой звезды представляет собой облако газа, называемое Крабовид ной туманностью (F).


Научно-технический энциклопедический словарь .

Смотреть что такое "СВЕРХНОВАЯ ЗВЕЗДА" в других словарях:

    Запрос «Сверхновая» перенаправляется сюда; см. также другие значения. Остаток сверхновой Кеплера Сверхновые звёзды … Википедия

    Взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла. Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что… … Энциклопедия Кольера

    сверхновая звезда - астрон. Внезапно вспыхивающая звезда с мощностью излучения во много тысяч раз превосходящей мощность вспышки новой звезды … Словарь многих выражений

    Сверхновая SN 1572 Остаток сверхновой SN 1572, композиция изображений в рентгеновском и инфракрасном диапазоне, сделанных телескопами «Сптицер», «Чандра» и обсерваторией Калар Альто Наблюдательные данные (Эпоха?) Тип сверхновой … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода … Википедия

    Сверхновая: Сверхновая звезда звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе; Сверхновая российская поп панк группа. Сверхновая (фильм) фантастический хорор фильм 2000 года американского режиссёра… … Википедия

    У этого термина существуют и другие значения, см. Звезда (значения). Плеяды Звезда небесное тело, в котором идут, шли или будут идти … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличие … Википедия

    SN 2007on Сверхновая SN 2007on, сфотографированная космическим телескопом Swift. Наблюдательные данные (Эпоха J2000,0) Тип сверхновой Ia … Википедия

Книги

  • Перст судьбы (включая полный обзор неаспектированных планет) , Хамакер-Зондаг К.. Книга известного астролога Карен Хамакер-Зондаг - плод двадцатилетнего труда по изучению загадочных и нередко непредсказуемых скрытых факторов гороскопа: конфигурации "Перст Судьбы",…

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Остаток сверхновой Кеплера

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки. Является результатом катаклизмического процесса, сопровождающегося выделением огромной энергии и возникающего в конце эволюции некоторых звёзд.

Остаток сверхновой RCW 103 c нейтронной звездой 1E 161348-5055 в центре

Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и их излучения достигло . Поэтому их природа довольно долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство, а из оставшейся части вещества взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда или чёрная дыра. Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым в целом и каждая в частности, химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд. Аналогично среди сверхновых сейчас выделяется подкласс - гиперновые.

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин.

А вот кривые блеска типа II достаточны разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе.

Вышеприведенная классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:
Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещенные эмиссионные компоненты.
Линии , , , наблюдаемые в ультрафиолетовом излучении.

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости.

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Крабовидная туманность (изображение в рентгеновских лучах), хорошо видна внутренняя ударная волна, свободно распространяющийся ветер, а также джет

Каноническая схема молодого остатка следующая:

Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра
Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
Возвратная волна, распространяющаяся в веществе выброса сверхновой.
Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоев.

Оптическое излучение молодого остатка создает газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000-9000 км/с и излучают только в линиях O, S, Si - то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100-400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации - прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне.

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M⊙.

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M⊙, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный.

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M⊙.

Доминирующий сценарий

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики. Однако сам по себе последний - устойчивая звезда, все может изменится только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлеченного во взрыв вещества.

Второй компаньон обычная звезда с которого вещество утекает на первый.
Второй компаньон такой же белый карлик. Такой сценарий называет двойным вырождением (англ. Double degeneration).

Взрыв происходит при превышении предела Чандрасекара.
Взрыв происходит до него.

Общим во всех сценариях образования сверхновых сверхновых Ia то, что взрывающийся карлик скорее всего углеродно-кислородный.

Масса вступающего в реакцию вещества определяет энергетику взрыва и соответственно блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 1051 эрг.

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада.

Изотоп 56Ni нестабилен и имеет период полураспада 6.1 дней. Далее e-захват приводит к образованию ядра 56Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и как следствие нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчеты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени,56Ni уже распался и энерговыделение идет за счет β-распада 56Co до 56Fe(T1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Модель механизма гравитационного коллапса

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его его должна быть в точности равна массе его остатка - нейтронной звезды.

Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации.

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение).

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад.

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества.

Заметим, что процессы нейтронизации идут только при плотностях 1011/см3, достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Выделяется три этапа эволюции остатка сверхновой:

Свободный разлет.
Адиабатическое расширение (стадия Седова). Вспышка сверхновой на этой стадии представляется как сильный точечный взрыв в среде с постоянной теплоёмкостью. К этой задаче применимо автомодальное решение Седова, проверенное на ядерных взрывах в земной атмосфере.
Стадия интенсивного высвечивания. Начинается когда температура за фронтом достигает максимума на кривой радиационных потерь.

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками.

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам:

Мгновенная детонация
Отложенная детонация
Пульсирующая отложенная детонация
Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два . Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Взрывы сверхновых – основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее) He. Однако процессы их породившие для различных групп элементов и даже изотопов свои.

Практически все элементы тяжелее He и до Fe – результат классического термоядерного синтеза, проистекающего, например в недрах звёзд или при взрыве сверхновых в ходе p-процесса. Тут стоит оговориться, что крайне малая часть все же была получена в ходе первичного нуклеосинтеза.
Все элементы тяжелее 209Bi – это результат r-процесса
Происхождение же прочих является предметом дискуссии, в качестве возможных механизмов предлагаются s-, r-, ν-, и rp-процессы.

Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M☉, масштаб не соблюдён.

r-проце́сс – это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β−-распада изотопа.

ν-процесс – это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7Li, 11B, 19F, 138La и 180Ta.

Крабовидная туманность как остаток сверхновой SN 1054

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185, была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054, породившая Крабовидную туманность. Сверхновые звезды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи, следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности, в то время как возраст остатка сверхновой RX J0852.0-4622 оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты, соответствующие времени взрыва сверхновой.

22 января 2014 года в галактике M82, расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J. Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»