Оперативка DDR2 Тайминги. Выбираем оперативную память

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Основные характеристики оперативной памяти (ее объем, частота, принадлежность к одному из поколений) могут быть дополнены еще одним важнейшим параметром - таймингами. Что они представляют собой? Можно ли их изменять в настройках BIOS? Как это делать наиболее корректным, с точки зрения стабильной работы компьютера, образом?

Что такое тайминги ОЗУ?

Тайминг оперативной памяти - это временной интервал, за который команда, отправляемая контроллером ОЗУ, выполняется. Измеряется эта единица в количестве тактов, которые пропускаются вычислительной шиной, пока идет обработка сигнала. Сущность работы таймингов проще понять, если разобраться в устройстве микросхем ОЗУ.

Оперативная память компьютера состоит из большого количества взаимодействующих ячеек. Каждая имеет свой условный адрес, по которому к ней обращается контроллер ОЗУ. Координаты ячеек, как правило, прописываются посредством двух параметров. Условно их можно представить как номера строк и столбцов (как в таблице). В свою очередь, группы адресов объединяются, чтобы контроллеру было "удобнее" находить конкретную ячейку в более крупную область данных (иногда ее называют "банком").

Таким образом, запрос к ресурсам памяти осуществляется в две стадии. Сначала контроллер отправляет запрос к "банку". Затем он запрашивает номер "строки" ячейки (посылая сигнал типа RAS) и ждет ответа. Длительность ожидания - это и есть тайминг оперативной памяти. Его общепринятое наименование - RAS to CAS Delay. Но это еще не все.

Контроллеру, чтобы обратиться к конкретной ячейке, нужен также и номер приписанного к ней "столбца": посылается другой сигнал, типа CAS. Время, пока контроллер ждет ответа, - это тоже тайминг оперативной памяти. Он называется CAS Latency. И это еще не все. Некоторые IT-специалисты предпочитают интерпретировать такое явление, как CAS Latency, несколько иначе. Они полагают, что этот параметр указывает, сколько должно пройти единичных тактов в процессе обработки сигналов не от контроллера, а от процессора. Но, как отмечают эксперты, речь в обоих случаях, в принципе, идет об одном и том же.

Контроллер, как правило, работает с одной и той же "строкой", на которой расположена ячейка, не один раз. Однако, прежде чем обратиться к ней повторно, он должен закрыть предыдущую сессию запроса. И только после этого возобновлять работу. Временной интервал между завершением и новым вызовом строки - это тоже тайминг. Называется он RAS Precharge. Уже третий по счету. На этом все? Нет.

Поработав со строкой, контроллер должен, как мы помним, закрыть предыдущую сессию запроса. Временной интервал между активацией доступа к строке и его закрытием - это тоже тайминг оперативной памяти. Его наименование - Active to Precharge Delay. В принципе, теперь все.

Мы насчитали, таким образом, 4 тайминга. Соответственно, записываются они всегда в виде четырех цифр, например, 2-3-3-6. Кроме них, к слову, есть еще один распространенный параметр, которым характеризуется оперативная память компьютера. Речь идет о значении Command Rate. Оно показывает, какое минимальное время тратит контроллер на то, чтобы переключиться от одной команды к другой. То есть, если для CAS Latency значение - 2, то временная задержка между запросом от процессора (контролера) и ответом модуля памяти составит 4 такта.

Тайминги: порядок расположения

Каков порядок расположения в этом числовом ряду каждого из таймингов? Он практически всегда (и это своего рода отраслевой "стандарт") таков: первая цифра - это CAS Latency, вторая - RAS to CAS Delay, третья - RAS Precharge и четвертая - Active to Precharge Delay. Как мы уже сказали выше, иногда используется параметр Command Rate, его значение пятое в ряду. Но если для четырех предыдущих показателей разброс цифр может быть достаточно большим, то для CR возможно, как правило, только два значения - T1 или T2. Первый означает, что время с момента, когда память активируется, до наступления ее готовности отвечать на запросы должен пройти 1 такт. Согласно второму - 2.

О чем говорят тайминги?

Как известно, объем ОЗУ - один из ключевых показателей производительности этого модуля. Чем он больше - тем лучше. Другой важный параметр - это частота оперативной памяти. Здесь тоже все однозначно. Чем она выше, тем ОЗУ будет работать быстрее. А что с таймингами?

В отношении них закономерность иная. Чем меньше значения каждого из четырех таймингов - тем лучше, тем производительнее память. И тем быстрее, соответственно, работает компьютер. Если у двух модулей с одинаковой частотой разные тайминги оперативной памяти, то и их производительность будет отличаться. Как мы уже определили выше, нужные нам величины выражаются в тактах. Чем их меньше, тем, соответственно, быстрее процессор получает ответ от модуля ОЗУ. И тем скорее он может "воспользоваться" такими ресурсами, как частота оперативной памяти и ее объем.

"Заводские" тайминги или свои?

Большинство пользователей ПК предпочитает использовать те тайминги, которые установлены еще на конвейере (либо в опциях материнской платы выставлена автонастройка). Однако на многих современных компьютерах есть возможности для того, чтобы выставить нужные параметры вручную. То есть, если нужны более низкие значения - их, как правило, можно проставить. Но как изменить тайминги оперативной памяти? Причем сделать это так, чтобы система работала стабильно? А еще, быть может, есть случаи, при которых лучше выбрать увеличенные значения? Как выставить тайминги оперативной памяти оптимальным образом? Сейчас мы попробуем дать ответы на эти вопросы.

Настраиваем тайминги

Заводские значения таймингов прописываются в специально отведенной области микросхемы ОЗУ. Называется она SPD. Используя данные из нее, система BIOS адаптирует оперативную память к конфигурации материнской платы. Во многих современных версиях BIOS настройки таймингов, выставленные по умолчанию, можно корректировать. Практически всегда это осуществляется программным методом - через интерфейс системы. Изменение значений как минимум одного тайминга доступно в большинстве моделей материнских плат. Есть, в свою очередь, производители, которые допускают тонкую настройку модулей ОЗУ при задействовании гораздо большего количества параметров, чем четыре указанных выше типа.

Чтобы войти в область нужных настроек в BIOS, нужно, зайдя в эту систему (клавиша DEL сразу после включения компьютера), выбрать пункт меню Advanced Chipset Settings. Далее в числе настроек находим строку DRAM Timing Selectable (может звучать несколько по-другому, но похоже). В нем отмечаем, что значения таймингов (SPD) будут выставляться вручную (Manual).

Как узнать тайминг оперативной памяти, установленный в BIOS по умолчанию? Для этого мы находим в соседствующих настройках параметры, созвучные CAS Latency, RAS to CAS, RAS Precharge и Active To Precharge Delay. Конкретные значения таймингов, как правило, зависят от типа модулей памяти, установленных на ПК.

Выбирая соответствующие опции, можно задавать значения таймингов. Эксперты рекомендуют понижать цифры очень постепенно. Следует, выбрав желаемые показатели, перезагружаться и тестировать систему на предмет устойчивости. Если компьютер работает со сбоями, нужно вернуться в BIOS и выставить значения на несколько уровней выше.

Оптимизация таймингов

Итак, тайминги оперативной памяти - какие лучше значения для них выставлять? Почти всегда оптимальные цифры определяются в ходе практических экспериментов. Работа ПК связана не только с качеством функционирования модулей ОЗУ, и далеко не только скоростью обмена данными между ними и процессором. Важны многие другие характеристики ПК (вплоть до таких нюансов, как система охлаждения компьютера). Поэтому практическая результативность изменения таймингов зависит от конкретной программно-аппаратной среды, в которой пользователь производит настройку модулей ОЗУ.

Общую закономерность мы уже назвали: чем ниже значения таймингов, тем выше скорость работы ПК. Но это, конечно, идеальный сценарий. В свою очередь, тайминги с пониженными значениями могут пригодиться при "разгоне" модулей материнской платы - искусственном завышении ее частоты.

Дело в том, что если придать микросхемам ОЗУ ускорение в ручном режиме, задействовав слишком большие коэффициенты, то компьютер может начать работать нестабильно. Вполне возможен сценарий, при котором настройки таймингов будут выставлены настолько некорректно, что ПК и вовсе не сможет загрузиться. Тогда, скорее всего, придется "обнулять" настройки BIOS аппаратным методом (с высокой вероятностью обращения в сервисный центр).

В свою очередь, более высокие значения для таймингов могут, несколько замедлив работу ПК (но не настолько, чтобы скорость функционирования была доведена до режима, предшествовавшего "разгону"), придать системе стабильности.

Некоторыми IT-экспертами подсчитано, что модули ОЗУ, обладающие CL в значении 3, обеспечивают примерно на 40 % меньшую задержку в обмене соответствующими сигналами, чем те, где CL равен 5. Разумеется, при условии, что тактовая частота и на том, и на другом одинаковая.

Дополнительные тайминги

Как мы уже сказали, в некоторых современных моделях материнских плат есть возможности для очень тонкой настройки работы ОЗУ. Речь, конечно, не идет о том, как увеличить оперативную память - этот параметр, безусловно, заводской, и изменению не подлежит. Однако в предлагаемых некоторыми производителями настройках ОЗУ есть очень интересные возможности, задействуя которые, можно существенно ускорить работу ПК. Мы же рассмотрим те, что относятся к таймингам, которые можно конфигурировать в дополнение к четырем основным. Важный нюанс: в зависимости от модели материнской платы и версии BIOS, названия каждого из параметров могут отличаться от тех, которые мы сейчас приведем в примерах.

1. RAS to RAS Delay

Этот тайминг отвечает за задержку между моментами, когда активизируются строки из разных областей консолидации адресов ячеек ("банков" то есть).

2. Row Cycle Time

Этот тайминг отражает временной интервал, в течение которого длится один цикл в рамках отдельной строки. То есть от момента ее активизации до начала работы с новым сигналом (с промежуточной фазой в виде закрытия).

3. Write Recovery Time

Данный тайминг отражает временной интервал между двумя событиями - завершением цикла записи данных в память и началом подачи электросигнала.

4. Write To Read Delay

Данный тайминг показывает, сколько должно пройти времени между завершением цикла записи и моментом, когда начинается чтение данных.

Во многих версиях BIOS также доступен параметр Bank Interleave. Выбрав его, можно настроить работу процессора так, чтобы он обращался к тем самым "банкам" ОЗУ одновременно, а не по очереди. По умолчанию этот режим функционирует автоматически. Однако можно попробовать выставить параметр типа 2 Way или 4 Way. Это позволит задействовать 2 или 4, соответственно, "банка" одновременно. Отключение режима Bank Interleave используется довольно редко (это, как правило, связано с диагностикой ПК).

Настройка таймингов: нюансы

Назовем некоторые особенности, касающиеся работы таймингов и их настройки. По мнению некоторых IT-специалистов, в ряду из четырех цифр наибольшее значение имеет первая, то есть тайминг CAS Latency. Поэтому, если у пользователя немного опыта в "разгоне" модулей ОЗУ, эксперименты, возможно, следует ограничить выставлением значений только для первого тайминга. Хотя эта точка зрения не является общепринятой. Многие IT-эксперты склонны считать, что три других тайминга не менее значимы с точки зрения скорости взаимодействия между ОЗУ и процессором.

В некоторых моделях материнских плат в BIOS можно настроить производительность микросхем оперативной памяти в нескольких базовых режимах. По сути, это выставление значений таймингов по шаблонам, допустимым с точки зрения стабильной работы ПК. Эти опции обычно соседствуют с параметром Auto by SPD, а режимы, о которых идет речь, - Turbo и Ultra. Первый подразумевает умеренное ускорение, второй - максимальное. Эта возможность может быть альтернативой выставлению таймингов вручную. Похожие режимы, к слову, есть во многих интерфейсах усовершенствованной системы BIOS - UEFI. Во многих случаях, как отмечают эксперты, при включении опций Turbo и Ultra достигается в достаточной мере высокая производительность ПК, а его работа при этом стабильна.

Такты и наносекунды

Реально ли выразить тактовые циклы в секундах? Да. И для этого существует очень простая формула. Такты в секундном выражении считаются делением единицы на фактическую тактовую частоту ОЗУ, указываемую производителем (правда, этот показатель, как правило, нужно делить на 2).

То есть, например, если мы хотим узнать такты, формирующие тайминги оперативной памяти DDR3 или 2, то мы смотрим на ее маркировку. Если там указана цифра 800, то фактическая частота ОЗУ будет равна 400 МГЦ. Это значит, что длительность такта составит значение, получаемое в результате деления единицы на 400. То есть 2,5 наносекунды.

Тайминги для модулей DDR3

Одни из самых современных модулей ОЗУ - микросхемы типа DDR3. Некоторые специалисты считают, что в отношении них такие показатели, как тайминги, имеют гораздо меньшее значение, чем для чипов предыдущих поколений - DDR 2 и более ранних. Дело в том, что эти модули, как правило, взаимодействуют с достаточно мощными процессорами (такими как, например, Intel Core i7), ресурсы которых позволяют не столь часто обращаться к ОЗУ. Во многих современных чипах от Intel, так же, как и в аналогичных решениях от AMD, есть достаточная величина собственного аналога ОЗУ в виде L2- и L3-кэша. Можно сказать, что у таких процессоров есть свой объем оперативной памяти, способный выполнять значительный объем типовых для ОЗУ функций.

Таким образом, работа с таймингами при использовании модулей DDR3, как мы выяснили, - не самый главный аспект "разгона" (если мы решим ускорить производительность ПК). Гораздо большее значение для таких микросхем имеют как раз-таки параметры частоты. Вместе с тем, модули ОЗУ вида DDR2 и даже более ранних технологических линеек сегодня все еще ставятся на компьютеры (хотя, конечно, повсеместное использование DDR3, по оценке многих экспертов, - более чем устойчивый тренд). И потому работа с таймингами может пригодиться очень большому количеству пользователей.

Часть 21: Модули Kingston HyperX DDR2-800 (PC2-6400)

Мы продолжаем изучение важнейших характеристик высокоскоростных модулей DDR2 на низком уровне с помощью универсального тестового пакета . Совсем недавно мы рассмотрели двухканальный комплект модулей памяти Kingston high-end серии HyperX, рассчитанный на функционирование в нестандартном режиме «DDR2-900 », сегодня же будет рассмотрено похожее предложение, но укладывающееся в рамки стандарта JEDEC — двухканальный комплект модулей памяти Kingston HyperX DDR2-800 высокой емкости (суммарный объем 2 ГБ), обладающих, как утверждает производитель, низкими задержками.Информация о производителе модуля

Производитель модуля: Kingston Technology
Производитель микросхем модуля: Elpida Memory, Inc.
Сайт производителя модуля:

Сайт производителя микросхем модуля:
Внешний вид модуля

Фото модуля памяти

Со снятыми радиаторами:

Фото микросхемы памяти

Part Number модуля

Расшифровка Part Number модуля

Руководство по расшифровке Part Number модулей памяти DDR2 на сайте производителя отсутствует. В модулей с Part Number KHX6400D2LLK2/2G указывается, что продукт представляет собой комплект из двух модулей с низкими задержками (Low Latency, отсюда сокращение «LL») объемом 1 ГБ каждый, имеющих конфигурацию 128M x 64 и основанных на 16 микросхемах с конфигурацией 64M x8. Производитель гарантирует 100% стабильную работу модулей в штатном режиме DDR2-800 при таймингах 4-4-4-12 и питающем напряжении 2.0 В, но в микросхеме SPD в качестве режима по умолчанию прописан режим DDR2-800 со стандартными таймингами 5-5-5-15 и напряжением питания 1.8 В.

Расшифровка Part Number микросхемы

Как и в ранее исследованных Kingston HyperX DDR2-900 , в настоящих модулях памяти использованы микросхемы с оригинальной маркировкой их реального производителя (Elpida), что позволяет нам изучить их характеристики в том числе, воспользовавшись описанием технических характеристик () 512-Мбит чипов памяти DDR2 Elpida, применяемых в данных модулях.

В маркировке рассматриваемых микросхем Elpida, как обычно, отсутствуют поля, характеризующие производителя (Elpida Memory) и тип устройства (монолитное), а также код упаковки устройства (FBGA). Как видно из приведенных в таблице характеристик, микросхемы модуля имеют конфигурацию 64M x8 (полная емкость — 512 Мбит) и рассчитаны на функционирование в «медленном» режиме DDR2-667 (при таймингах 5-5-5), соответствующем первой ревизии стандарта DDR2-667. Заметим, что такие же микросхемы (но другого производителя) применяются в еще более высокоскоростных модулях Kingston HyperX DDR2-900 , рассмотренных нами ранее. По-видимому, в обоих случаях можно говорить о тщательном отборе производителем модулей микросхем DDR2-667, обладающих наилучшими показателями скорости и надежности функционирования, вместо использования реальных микросхем скоростной категории DDR2-800.Данные микросхемы SPD модуля

Описание общего стандарта SPD:

Описание специфического стандарта SPD для DDR2:

Параметр Байт Значение Расшифровка
Фундаментальный тип памяти 2 08h DDR2 SDRAM
Общее количество адресных линий строки модуля 3 0Eh 14 (RA0-RA13)
Общее количество адресных линий столбца модуля 4 0Ah 10 (CA0-CA9)
Общее количество физических банков модуля памяти 5 61h 2 физических банка
Внешняя шина данных модуля памяти 6 40h 64 бит
Уровень питающего напряжения 8 05h SSTL 1.8V
Минимальная длительность периода синхросигнала (t CK) при максимальной задержке CAS# (CL X) 9 25h 2.50 нс (400.0 МГц)
Тип конфигурации модуля 11 00h Non-ECC
Тип и способ регенерации данных 12 82h 7.8125 мс — 0.5x сокращенная саморегенерация
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти 13 08h x8
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти ECC-модуля 14 00h Не определено
Длительность передаваемых пакетов (BL) 16 0Ch BL = 4, 8
Количество логических банков каждой микросхемы в модуле 17 04h 4
Поддерживаемые длительности задержки CAS# (CL) 18 38h CL = 5, 4, 3
Минимальная длительность периода синхросигнала (t CK) при уменьшенной задержке CAS# (CL X-1) 23 3Dh 3.75 нс (266.7 МГц)
Минимальная длительность периода синхросигнала (t CK) при уменьшенной задержке CAS# (CL X-2) 25 50h 5.00 нс (200.0 МГц)
Минимальное время подзарядки данных в строке (t RP) 27 32h 12.5 нс
5.0, CL = 5
3.3, CL = 4
2.5, CL = 3
Минимальная задержка между активизацией соседних строк (t RRD) 28 1Eh 7.5 нс
3.0, CL = 5
2.0, CL = 4
1.5, CL = 3
Минимальная задержка между RAS# и CAS# (t RCD) 29 32h 12.5 нс
5.0, CL = 5
3.3, CL = 4
2.5, CL = 3
Минимальная длительность импульса сигнала RAS# (t RAS) 30 27h 39.0 нс
15.6, CL = 5
10.4, CL = 4
7.8, CL = 3
Емкость одного физического банка модуля памяти 31 80h 512 МБ
Период восстановления после записи (t WR) 36 3Ch 15.0 нс
6, CL = 5
4, CL = 4
3, CL = 3
Внутренняя задержка между командами WRITE и READ (t WTR) 37 1Eh 7.5 нс
3.0, CL = 5
2.0, CL = 4
1.5, CL = 3
Внутренняя задержка между командами READ и PRECHARGE (t RTP) 38 1Eh 7.5 нс
3.0, CL = 5
2.0, CL = 4
1.5, CL = 3
Минимальное время цикла строки (t RC) 41, 40 33h, 30h 51.5 нс
20.6, CL = 5
13.7, CL = 4
10.3, CL = 3
Период между командами саморегенерации (t RFC) 42, 40 69h, 30h 105.0 нс
42, CL = 5
28, CL = 4
21, CL = 3
Максимальная длительность периода синхросигнала (t CK max) 43 80h 8.0 нс
Номер ревизии SPD 62 12h Ревизия 1.2
Контрольная сумма байт 0-62 63 31h 49 (верно)
Идентификационный код производителя по JEDEC 64-71 7Fh, 98h Kingston
Part Number модуля 73-90 00h...00h Не определено
Дата изготовления модуля 93-94 06h, 0Fh 2006 год, 15 неделя
Серийный номер модуля 95-98 5Ah, 15h,
8Eh, 29h
298E155Ah

Содержимое SPD выглядит несколько нестандартно, по всей видимости — ввиду нацеленности на использование уменьшенных задержек. Поддерживаются три различных значения задержки сигнала CAS# — 5, 4 и 3. Первому (CL X = 5) соответствует режим функционирования DDR2-800 (время цикла 2.5 нс) со схемой таймингов 5-5-5-15.6 (с округлением — 5-5-5-16), что примерно совпадает со значениями, заявленными производителем в документации модулей (5-5-5-15 при DDR2-800). Второму значению t CL (CL X-1 = 4) соответствует, как ни странно, режим не DDR2-667, но DDR2-533 (время цикла 3.75 нс). Схема таймингов для этого случая не представляется целыми значениями и может быть записана как 4-3.3-3.3.-10.4, что при округлении превратится в схему 4-4-4-11. Наконец, третьему значению задержки сигнала CAS# (CL X-2 = 3) соответствует режим DDR2-400, вновь с нецелой схемой таймингов 3-2.5-2.5-7.8, превращающейся при округлении в 3-3-3-8. Из особенностей данных SPD можно отметить сравнительно большое, но достаточно часто встречающееся в высокоскоростных модулях минимальное время цикла регенерации t RFC = 105.0 нс. Номер ревизии SPD, идентификационный код производителя, дата изготовления и серийный номер модуля указаны верно, но в то же время, информация о Part Number модуля отсутствует.Конфигурация тестового стенда

  • Процессор: Intel Pentium 4 Extreme Edition 3.73 ГГц (Prescott N0, 2 МБ L2)
  • Чипсет: Intel 975X
  • Материнская плата: ASUS P5WD2-E Premium, версия BIOS 0404 от 03/22/2006
  • Память: 2x1024 МБ Kingston HyperX DDR2-800 Low Latency
Результаты тестирования

Тесты производительности

В первой серии тестов использовалась схема таймингов, выставляемая в настройках BIOS по умолчанию (Memory Timings: «by SPD»). Тестирование осуществлялось в двух скоростных режимах — DDR2-667 при частотах FSB 200 и 266 МГц (множители памяти 1.67 и 1.25, соответственно) и DDR2-800 при частотах FSB 200 и 266 МГц (множители памяти 2.0 и 1.5, соответственно). Напомним, что, начиная с нашего предыдущего исследования , в тестах модулей памяти используется новая версия тестового пакета RMMA 3.65, в которой по умолчанию выбран больший размер тестируемого блока памяти (32 МБ), что позволяет в большей степени устранить влияние сравнительно большого 2-МБ L2-кэша процессора Pentium 4 Extreme Edition.

В режиме DDR2-667 BIOS материнской платы в качестве значений таймингов по умолчанию выставила схему 5-5-5-13 («наугад», т.к. соответствующие данные отсутствуют в SPD), тогда как в режиме DDR2-800 по умолчанию выставляется схема 5-5-5-16, соответствующая рассмотренным выше данным SPD.

Параметр / Режим DDR2-667 DDR2-800
Частота FSB, МГц 200 266 200 266
Тайминги 5-5-5-13 5-5-5-13 5-5-5-16 5-5-5-16
Средняя ПСП на чтение, МБ/с 5387 6406 5617 6875
Средняя ПСП на запись, МБ/с 2056 2252 2321 2465
Макс. ПСП на чтение, МБ/с 6491 8232 6528 8541
Макс. ПСП на запись, МБ/с 4282 5660 4279 5679
56.6 50.0 52.5 45.5
66.2 57.3 61.7 53.0
118.8 105.3 106.0 95.4
143.8 123.9 130.2 115.5
Минимальная латентность псевдослучайного доступа, нс
87.0 78.2 80.3 70.4
Максимальная латентность псевдослучайного доступа, нс
(без аппаратной предвыборки)
113.7 96.5 107.3 90.1

(без аппаратной предвыборки)
119.6 105.5 106.2 95.9

(без аппаратной предвыборки)
145.5 125.0 133.7 116.6

* размер блока 32 МБ

Скоростные показатели модулей достаточно высоки — максимальная реальная ПСП составляет примерно 6.4-6.5 ГБ/с при 200-МГц FSB и 8.2-8.6ГБ/с при 266-МГц FSB, т.е. практически достигает теоретического максимума ПС процессорной шины (и даже несколько превосходит его, т.к. некоторое влияние L2-кэша процессора все же присутствует). Задержки при доступе в память, как обычно, уменьшаются при переходе как к более скоростным режимам (от DDR2-667 к DDR2-800), так и к более высокой частоте системной шины (от 200-МГц к 266-МГц FSB). Минимальная латентность памяти в режиме DDR2-800 при частоте системной шины 266 МГц находится в интервале от 45.5 нс (псевдослучайный обход, аппаратная предвыборка включена) до 116.6 нс (случайный обход, аппаратная предвыборка отключена), что несколько уступает значениям, полученным ранее на более «топовых» модулях Kingston HyperX DDR2-900 .

Тесты стабильности

Значения таймингов, за исключением t CL , варьировались «на ходу» благодаря встроенной в тестовый пакет RMMA возможности динамического изменения поддерживаемых чипсетом настроек подсистемы памяти. Устойчивость функционирования подсистемы памяти определялась с помощью вспомогательной утилиты RightMark Memory Stability Test, входящей в состав тестового пакета RMMA.

Параметр / Режим DDR2-667 DDR2-800
Частота FSB, МГц 200 266 200 266
Тайминги 3-4-4
(2.0 V)
3-4-4
(2.0 V)
4-5-4-12
(2.0 V)
4-5-4-12
(2.0 V)
Средняя ПСП на чтение, МБ/с 5537 6798 5652 6990
Средняя ПСП на запись, МБ/с 2260 2465 2358 2613
Макс. ПСП на чтение, МБ/с 6501 8331 6515 8632
Макс. ПСП на запись, МБ/с 4282 5664 4281 5675
53.1 46.1 49.3 44.4
62.5 53.3 59.0 51.8
Минимальная латентность случайного доступа * , нс 109.6 95.4 105.5 92.7
Максимальная латентность случайного доступа * , нс 133.9 114.9 129.7 112.7
Минимальная латентность псевдослучайного доступа, нс
(без аппаратной предвыборки)
81.9 70.9 75.2 68.5
Максимальная латентность псевдослучайного доступа, нс
(без аппаратной предвыборки)
107.9 93.2 102.0 88.4
Минимальная латентность случайного доступа * , нс
(без аппаратной предвыборки)
110.4 95.9 105.8 93.1
Максимальная латентность случайного доступа * , нс
(без аппаратной предвыборки)
136.6 116.7 132.6 113.6

* размер блока 32 МБ

Минимальные значения таймингов, которые нам удалось достичь в режиме DDR2-667 при использовании рекомендованного производителем повышенного питающего напряжения 2.0 В, как ни странно, выглядят весьма скромно — 3-4-4 (изменение параметра t RAS в данном случае игнорируется). Напомним, что с модулями Kingston HyperX DDR2-900 в указанных условиях нам удалось достичь гораздо более «экстремальную» схему 3-3-2. Еще хуже обстоят дела в режиме DDR2-800 — минимальной возможной (устойчивой) оказалась лишь схема 4-5-4-12, что даже выше по сравнению с «официально» заявленной производителем схемой 4-4-4-12. Что интересно, параметр t RAS в данном случае вносит решающий вклад в устойчивость функционирования подсистемы памяти — его уменьшение приводило к немедленному «зависанию» системы.

Как обычно, выставление «экстремальных» схем таймингов лишь незначительно увеличивает пропускную способность подсистемы памяти и отчетливо проявляет себя лишь в величинах латентностей истинно случайного доступа к памяти. Максимальный эффект снижения задержек достигается в режиме DDR2-667 и составляет порядка 9 нс, т.е. примерно 8%.Итоги

Исследованные модули Kingston HyperX DDR2-800 (PC2-6400) высокой емкости с «низкими задержками» способны функционировать в скоростных режимах DDR2-667 и DDR2-800 при номинальных условиях (т.е. стандартных схемах таймингов, вроде 5-5-5-15 для режима DDR2-800) и характеризуются высокой производительностью в указанных режимах. В то же время, «разгонный потенциал» модулей по таймингам явно оставляет желать лучшего, что с трудом позволяет говорить о них как о модулях класса «Low Latency». Минимально возможная схема таймингов в режиме DDR2-667, не приводящая к потере устойчивости функционирования подсистемы памяти, составляет всего 3-4-4 (при рекомендованном питающем напряжении 2.0 В), а в режиме DDR2-800 — 4-5-4-12, что «не дотягивает» даже до значений 4-4-4-12, официально заявленных производителем в документации. По крайней мере, на используемой в тестах материнской плате (ASUS P5WD2-E), надежно зарекомендовавшей себя для тестирования высокоскоростных модулей памяти DDR2.

Очень много читателей на нашем сайте интересуются вопросами, так или иначе связанными с выбором оперативной памяти и у нашего сайта очень большое желание ответить всем. Чтобы в процессе получения знаний Вам было интересно, данная статья представлена автором в форме увлекательнейшего рассказа из которого вы узнаете ВСЁ про оперативную память компьютера!

Вы узнаете не только то, как правильно выбрать и купить оперативную память качественного производителя, но и как правильно установить модули оперативки в Ваш компьютер и многое другое, например:

  1. Сколько нужно оперативной памяти современному компьютеру для комфортной работы всех ресурсоёмких приложений, например: современных игр на максимальных настройках, программ обработки видео, звука и т.д. Каким вообще должен быть мощный современный компьютер?
  2. (переходите по ссылке и читайте отдельную статью).
  3. (переходите по ссылке и читайте отдельную статью)?
  4. Какой выход из положения находит операционная система при нехватке оперативной памяти?
  5. На пользу ли идёт компьютеру избыток оперативной памяти?
  6. Нужно ли совсем отключать файл подкачки при наличии у вас большого объёма физической оперативной памяти, например 16 -32 ГБ?
  7. Насколько двухканальный режим работы оперативной памяти лучше чем одноканальный. Что лучше купить, одну планку памяти объёмом 8Гб или две планки по 4 ГБ?
  8. Как правильно подобрать модули оперативной памяти для работы в двухканальном режиме?
  9. Что такое частота оперативной памяти и можно ли установить в компьютер планки оперативной памяти с разной частотой?
  10. Что такое латентность (тайминги) оперативной памяти? Можно ли установить в компьютер планки оперативной памяти с разными таймингами?
  11. Чем отличаются планки оперативной памяти используемой на ноутбуках от обычной оперативной памяти?
  12. В наше время активно используется память DDR3, а существуют ли в продаже планки памяти DDR4?
  13. Если у вас старый компьютер и вы хотите докупить оперативную память DDR2, то несколько раз подумайте, ведь память DDR2 дорогая, может быть вам лучше заменить материнскую плату, процессор и поменять оперативную память на DDR3.
  14. Как выбрать производителя оперативной памяти и вся ли оперативная память производится в Китае?
  15. Нужен ли разгон оперативной памяти и насколько повысится производительность оперативной памяти при разгоне?
  16. Так ли необходим оперативной памяти радиатор?
  17. Что такое контроллер оперативной памяти, зачем он нужен и где он находится?
  18. Что обозначает маркировка оперативной памяти ECC?

Как выбрать оперативную память

Друзья, в прошлой статье мы с Вами рассматривали вопрос выбора и и я думал о том какую бы статью написать следующей. Вроде бы как логично после процессора выбирать материнскую плату под него, но я обычно делаю иначе. После выбора процессора я выбираю память и видеокарту, не знаю почему, наверное так просто проще и сразу можно прикинуть на какую сумму примерно рассчитывать, так как выбор материнской платы это самая сложная часть подбора конфигурации компьютера. Ввиду этого я решил не отклонятся от выбранной мной традиции и посвятить эту статью выбору оперативной памяти (ОЗУ). Поскольку этот сайт посвящен ремонту персональных компьютеров, конечно будет рассмотрен вопрос выбора оперативной памяти не только для новых, но и для более старых ПК.

Как и выбор процессора, выбор оперативной памяти является совсем не сложной задачей, наверное, даже более легкой. Но, как и везде, есть свои нюансы. Часто выбор оперативной памяти сводится к её текущей цене и сумме, которую Вы готовы потратить. В последнее время тенденции изменения цены на модули оперативной памяти весьма неоднозначны. Несколько лет назад произошел настоящий бум увеличения объема оперативной памяти в персональных компьютерах. И связано это было даже не столько с ростом требований современных приложений и операционных систем, сколько с невероятным снижением цены на нее.

Планку памяти на 4 гигабайта (Гб) можно было приобрести всего за 25$ и даже дешевле. В результате чего, исключительно в маркетинговых целях (для большей привлекательности и увеличения продаж компьютеров), эту самую память начали «сувать» в новые компьютеры в огромных объемах. Так, самый дешевый системный блок, стоимостью порядка 200-250$ обязательно имел 4 Гб памяти, а средненький за 300-350$ – все 8 Гб. На это продавцы в магазинах делали большой акцент, при этом умалчивая, что такой объем памяти этим ПК реализовать (использовать полностью) никогда не удастся, так как остальная «начинка», такая как процессор и видеокарта оставляли желать лучшего. Это, по сути, являлось своеобразным обманом покупателей или, если красиво сформулировать, – маркетинговым ходом…

К сожалению, прошли те времена, когда можно было «нахаляву» затариться оперативкой по самое не балуйся, и сейчас цена на нее значительно возросла. Похоже, что нас опять «подсадили на иглу» технического прогресса… Но так ли действительно нужен большой объем оперативки?

Сколько нужно оперативной памяти современному компьютеру

Нужно сказать, что до недавнего времени, я увлекался современными компьютерными играми. Поэтому всегда старался держать свой ПК в актуальном техническом состоянии. Наверное, с тех пор как в 1997 году я собрал свой первый полноценный ПК, не прошло ни одного года, что бы я не побаловал себя приобретением новой видеокарты, процессора или памяти.

В те старые (по меркам компьютеров) времена существовало определенное разделение по использованию компьютерами компонентов операционной системы. Играм нужна была только мощная видеокарта, немного ОЗУ, а процессор почти не имел значения, так как все вычисления производила видеокарта, у которой есть и свой процессор и своя память.

Для кодирования видео наоборот необходим был мощный процессор и достаточное количество ОЗУ, а видеокарта не имела значения и т.д. Современные же игровые приложения «научились» вдоволь использовать «простаивающие» до этого мощные компоненты современных компьютеров, такие как процессор и оперативная память.

Если вести речь об использовании ПК в качестве игровой и развлекательной платформы , то, до недавнего времени, мне не попадались игры, которые могли бы даже на максимальных настройках графики загрузить хотя бы 3 Гб памяти на 100%. Но в некоторых случаях общая загрузка памяти приближалась к этой цифре, при том, что сама игра потребляла около 2 Гб, а остальное другие приложения, такие как скайп, антивирус и т.п.

Примечание: Заметьте, что речь шла не о 4 Гб, а именно о 3-х. Дело в том, что 32-х разрядные операционные системы (ОС) Windows не умеют использовать более 3-х Гб оперативной памяти и поэтому «излишек» просто «не видят»… Справедливости ради стоит заметить, что для 32-х разрядных ОС, построенных на ядре Linux, таких жестких ограничений не существует. Так что, друзья, нет никакого смысла ставить более 4 Гб памяти на 32-х разрядную «винду», они просто не будут использоваться.

Для не очень новых, но еще и относительно не старых систем, на которые можно поставить достаточно много памяти, использование 64-х разрядной ОС, в некоторых случаях, может быть проблематично. Так как 64-х разрядных версий драйверов на некоторое оборудование может попросту не существовать.

Не так давно, как раз в момент тотального удешевления памяти, я приобрел дополнительно к своим 4 Гб еще столько же. Но вызвано это было не ее недостатком, а тем, что на моей, достаточно мощной материнской плате, по какому-то недоразумению) оказались слоты для уже почти устаревшей памяти DDR2 и я боялся, что еще чуть-чуть и она может совсем исчезнуть или дико подорожать, а тут такая «халява»… После этого я перешел на 64-х разрядную операционную систему, так как иначе это приобретение выглядело бы не так разумно). Так же нужно учесть, что у меня достаточно мощный 4-х ядерный процессор и дорогая современная видеокарта, благодаря которым я могу играть в игры на очень высоких настройках графики, при которых потребление оперативной памяти является максимальным.

Если у Вас ПК начального или среднего уровня, то Вам вполне хватит 4 Гб ОЗУ , так как комфортно играть в современные игры Вы сможете только на низких или средних настройках, при которых не нужны большие объемы памяти. В таких условиях установка скажем 8 Гб ОЗУ – это выброшенные на ветер деньги. Но если Ваш ПК достаточно мощный и является игровым, то я порекомендовал бы все же установить 8 Гб, так как наблюдается некоторая тенденция к постепенному увеличению потребления ОЗУ современными играми.

Так, например, недавно вышедшая игра Call of Duty: Ghosts просто отказывалась запускаться, если обнаруживала, что у Вас установлено меньше 6 Гб оперативной памяти. Опять же, справедливости ради нужно отметить, что народные умельцы сделали фикс, позволяющий обходить это ограничение при запуске и игра работала.

Что касается 64-разрядных операционных систем , то следует знать, что она, как и все 64-разрядные приложения, расходует ровно в 2 раза больше памяти, чем 32-х разрядные. Здесь это уже вполне обосновано технологией адресации памяти и значительно повышает производительность.

Каким должен быть быстрый компьютер

Не будем вдаваться в подробности, но Вы должны понимать, что бы почувствовать прирост скорости должны соблюдаться следующие условия:

Центральный процессор (ЦПУ) должен иметь 64-х разрядную архитектуру, операционная система должна быть 64-х разрядной.

Приложение, которое Вы хотите использовать для повышения производительности тех или иных операций должно быть 64-х разрядным, данные, которые обрабатываются должны быть потоковыми (конвертирование видео, архивация), так как прирост скорости достигается за счет обработки за один проход большего количества информации. В таком случае прирост будет очень значителен – до 2-х раз. При таких условиях, используя процессор Intel (с более длинным конвейером) Вы получите максимально возможную производительность таких операций. Но, как известно, в играх данные передаются небольшими порциями (так как невозможно предсказать следующий шаг пользователя), поэтому, даже в тех играх, где для запуска имеются 64-х разрядные версии игрового движка прироста почти не будет. Да и всё же решающая роль видеокарты в них никуда не делась.

Что же касается профессионального применения, в таких сферах как видеомонтаж, 3D-моделирование, дизайн, то специалисты в этих направлениях точно знают какое железо и сколько памяти им нужно. Обычно это от 16 Гб и больше. И если, скажем в 3D-моделировании нет потоковой обработки данных, то здесь просто объем и качество моделей может быть настолько высоко, что тут «тупо» нужна куча оперативки, что бы разместить эту модель.

Если Вы не профессионал, но очень любите конвертировать видео, то Вам хватит и 4-8 Гб.

Поистине огромные размеры ОЗУ могут быть востребованы в научных системах и высоко нагруженных серверах. В последних, например, вполне обыденным считается объем памяти от 64 Гб. Но и память там не копеечная – серверная (с проверкой четности и автоматической коррекцией ошибок), так как сбои на них не допустимы.

Ну и еще, для примера, приведу ситуацию из моей реальной жизни. Когда я проходил обучение по сетевым технологиям и системному администрированию, мне часто приходилось эмулировать большое количество одновременно работающих операционных систем и сетевого оборудования. Такие связки как 5-10 запущенных в VirtualBox (или VMware) ОС + столько же сэмулированных сетевых устройств в GNS могут кушать прилично оперативки. И хорошо, если в добавок к мощному «процу», поддерживающему современные технологии виртуализации, будет 8-16 Гб «оперативы», иначе тормоза обеспечены…

Почему нельзя отключать файл подкачки

Что происходит при нехватке ОЗУ? Да очень просто – ОС, что бы компенсировать нехватку памяти, начинает активно использовать жесткий диск (так называемый файл подкачки). Кстати, упаси вас Бог его отключать. Работа системы очень глубоко завязана на файле подкачки и от его отключения будет больше проблем, чем пользы. В результате не только тормозится работа процессора, но и жесткого диска.

Вывод один – памяти должно быть достаточно, если ее не хватает компьютер начинает жутко тормозить, но ее излишний избыток не дает никакого прироста производительности.

Какая бывает оперативная память

Какой только памяти не бывает…

Плату с чипами памяти принято называть модулем памяти (или «планкой»). Бывают односторонние и двухсторонние модули памяти. На первых чипы размещены с одной стороны печатной платы, на вторых – с двух сторон. Что лучше? Не знаю) Есть мнение, что двухсторонние модули лучше «гонятся», о том что это значит читайте дальше в этой статье. С другой стороны – чем меньше чипов, тем выше надежность модуля. Я не раз встречал случаи, когда на планке отказывала одна сторона чипов и компьютер видел только половину ее объема. Но сейчас я бы не стал заострять на этом внимание.

Главное, что нужно знать это то, что если в компьютере несколько модулей памяти, то желательно, что бы все были либо односторонние, либо двухсторонние. Иначе память не всегда хорошо уживается между собой и работает не на полную скорость.

На сегодняшний день самой современной является память типа DDR3 , которая сменила собой более старую DDR2, а она в свою очередь еще более старую – DDR. Уже разработана и новая, более современная память DDR4, но она еще не дошла в массы . Дальше углубляться не будем.

Собирая новый ПК следует выбирать только самый последний стандарт памяти. На данный момент это DDR3 .

Порой замена материнской платы и приобретение нового типа памяти равносильно по цене добавлению старого типа оперативки на старую плату.

Новая память будет еще и значительно дешевле более старой DDR2, на которую жадные производители и продавцы «лупят» (держат) высокую цену, так как ее осталось мало и для желающих модернизировать ПК просто нет другого выбора, как согласиться на такие драконовские условия. В таком случае стоит подумать, а может чуть-чуть добавить и купить более перспективные комплектующие? А если еще продать старое, так и вообще в плюс можно выйти, если повезет конечно)

Ноутбучная память

В ноутбуках используется такая же память как и в ПК, но отличается меньшим размером модуля и называется SO-DIMM DDR (DDR2, DDR3).

Характеристики памяти. Частота и тайминги

Память характеризуется прежде всего типом. Для настольных компьютеров (десктопов) сегодня используются типы памяти: DDR, DDR2, DDR3.

Основной характеристикой памяти является ее частота. Чем частота больше, тем память считается быстрее. Но эту частоту должны поддерживать процессор и материнская плата, иначе память будет работать на более низкой частоте, а деньги, которые Вы переплатили уйдут на ветер.

Модули памяти, как и ее типы имеют свою маркировку, которая начинается на PC, PC2 и PC3 соответственно.

На сегодня самой распространенной является память DDR3 PC3-10600 (1333 МГц). Она будет работать на своей родной частоте на любом компьютере. В принципе в частоту памяти не сильно упирается быстродействие компьютера. Например, в играх этот прирост будет абсолютно неразличим, а в некоторых других приложениях будет заметен больше. Но и разница в цене, например в сравнении с памятью DDR3 PC3-12800 (1600 МГц) будет очень невелика. Здесь я обычно руководствуюсь правилом – если цена незначительно выше (1-3$) и процессор поддерживает более высокую частоту, то почему бы и нет – берем более быструю память.

Можно ли установить в компьютер планки оперативной памяти с разной частотой?

Частота оперативной памяти не обязательно должна совпадать, материнская плата выставит для всех планок частоту по самому медленному модулю, но очень часто компьютер с планками разной частоты работает нестабильно. Например может вообще не включится.

Тайминги

Следующим параметром быстродействия памяти являются так называемые задержки (тайминги). Грубо говоря – это время, которое прошло от момента обращения к памяти до момента выдачи ей нужных данных. Соответственно чем меньше тайминги – тем лучше. Существуют десятки различных задержек при чтении, записи, копировании и различных комбинаций этих и других операций. Но основных, по которым можно ориентироваться всего несколько.

Тайминги указываются (правда не всегда) на этикетке модулей памяти в виде 4 цифр с дефисами между ними. Первый и самый главный – латентность, остальные производные от нее.

Задержки зависят от качества изготовления чипов памяти. Соответственно – выше качество-ниже тайминги-выше цена. Однако стоит заметить, что тайминги значительно меньше влияют на производительность, чем частота памяти. Поэтому я редко придаю этому значение, только если цена примерно одинаковая можно взять память с меньшими таймингами. Обычно модули, имеющие сверхнизкие тайминги, позиционируются как топовые, идут в комплекте с радиаторами (о которых поговорим позже), в красивой упаковке и стоят гораздо дороже.

Маркировка основных типов, модулей памяти, их частота и типичная латентность (CL)

DDR – устаревшая (совсем)

DDR-266 - PC2100 - 266 МГц - CL 2.5

DDR-333 - PC2700 - 333 МГц - CL 2.5

DDR-400 - PC-3200 - 400 МГц - CL 2.5

DDR2 – устаревшая (иногда еще встречается и может быть использована для добавления в старый ПК)

DDR2-533 - PC2-4200 - 533 МГц - CL 5

DDR2-667 - PC2-5300 - 667 МГц - CL 5

DDR2-800 - PC2-6400 - 800 МГц - CL 5

DDR2-1066 - PC2-8500 - 1066 МГц - CL 5

DDR3 – современная

DDR3-1333 - PC3-10600 - 1333 МГц - CL 9

DDR3-1600 - PC3-12800 - 1600 МГц - CL 11

DDR3-1800 - PC3-14400 - 1800 МГц - CL 11

DDR3-2000 - PC3-16000 - 2000 МГц - CL 11

Можно ли установить в компьютер планки оперативной памяти с разными таймингами?

Тайминги тоже не обязательно должны совпадать. Материнская плата автоматом выставит тайминги для всех планок по самому медленному модулю. Проблем быть не должно.

Режимы работы памяти

Да, да... Возможно не все знали, но оперативная память может работать в разных режимах, так называемых: Single Mode (одноканальный) и Dual Mode (двухканальный).

В одноканальном режиме данные записываются сначала в один модуль памяти, а когда его объем будет исчерпан начинает записываться на следующий свободный модуль.

В двухканальном режиме запись данных распараллеливается и записывается одновременно на несколько модулей.

Вот здесь, друзья, использование двухканального режима значительно повышает скорость работы памяти. Реально скорость работы памяти в двухканальном режиме до 30% выше, чем в одноканальном. Но для того, что бы он работал необходимо соблюсти следующие условия:

Материнская плата должна поддерживать двухканальный режим работы с ОЗУ

Модулей памяти должно быть 2 или 4

Модули памяти должны быть либо все односторонние, либо все двухсторонние

При несоблюдении какого либо из этих условий память будет работать только в одноканальном режиме.

Желательно, что бы все планки были как можно идентичнее: имели одну частоту, латентность и даже были одного производителя . Иначе никаких гарантий работы двухканального режима дать никто не сможет. Поэтому, если Вы хотите, что бы Ваша память работала в максимально быстром режиме, очень желательно приобретать сразу же 2 одинаковых планки памяти, потому что спустя год-два Вы точно такую уже не найдете.

Другой вопрос, если Вам нужно увеличить объем памяти на старом компьютере. В таком случае можно попытаться найти максимально похожий модуль памяти к тому, который у Вас уже имеется. Если у Вас их 2, и есть еще 2 свободных слота на материнской плате, то придется искать еще 2 таких же модуля. Идеальный, но не всегда экономичный вариант, – сдать старую память как б/у и купить 2 новых одинаковых модуля большего объема.

Конечно, если Ваш старый компьютер совсем слабенький, то большого прироста от двухканального режима может и не быть. В таком случае можно поставить любой модуль, но все же лучше подобрать наиболее подходящий, что бы исключить возможный конфликт его со старыми модулями и полную неработоспособность компьютера. Попробуйте заранее договориться с продавцом о возврате или притащите к нему системник и пусть он попробует подобрать подходящий модуль.

Контроллер оперативной памяти

Нужно заметить, что раньше контроллеры памяти находились в чипсете (наборе логики) материнских плат. В современных же системах контроллеры памяти располагаются в процессорах. В связи с этим у двухканального режима работы памяти появилось еще 2 подрежима: Ganged (спаренный) и Unganged (неспаренный).

В спаренном (Ganged) режиме модули памяти работают так же как и в старых материнках, а вот в неспаренном (Unganged) каждый контроллер памяти процессора (в современных процессорах их 2) может работать отдельно с каждой планкой. Этот режим можно задать в BIOS компьютера, но обычно он выбирается процессором автоматически. Если планки идентичные – то Ganged (но не обязательно), если разные – то только Unganged. В любом случае память будет работать в двухканальном режиме. Но я все же рекомендую покупать и ставить сразу 2 одинаковых модуля, это исключит перекосы в их параметрах и улучшит совместимость.

У двухканального режима работы ОЗУ есть только один недостаток – 2 планки памяти стоят несколько дороже, чем одна того же объема. Поэтому многие магазины и частные сборщики экономят и ставят одну планку. В результате мы имеем современный компьютер, который работает не в полную силу.

Некоторые современные дорогие материнские платы, имеющие обычно 6 разъемов для модулей памяти, могут работать даже в трехканальном режиме.

Кстати, если у вас 2 или 3 планки памяти, то для того чтобы работал двухканальный или трехканальный режим все эти планки нужно вставлять в слоты одного цвета.

Некоторые модули памяти для десктопов в своей маркировке имеют аббревиатуру ECC .

Это память с контролем четности, технологией используемой в серверных системах. Не стоит обращать на это никакого внимания, так как в десктопных ПК эта технология не критична и, в большинстве случаев, вообще не работает. Это все тот же маркетинговый ход.

Разъемы памяти

Тут вообще не о чем говорить. Каждому типу памяти DDR, DDR2, DDR3 соответствует свой разъем на материнской плате одноименного типа (DDR, DDR2, DDR3). Вы не вставите память одного типа в разъем другого типа, так как в слоте материнской платы существует специальный выступ (ключ),

Который должен совпасть с прорезью на плате модуля памяти. Это как раз сделано для того, что бы случайно не перепутать и не установить планку в не тот разъем и в результате не вывести из строя как память, так и, возможно, материнскую плату. При покупке памяти нужно точно знать какой ее тип поддерживает материнская плата.

О радиаторах оперативной памяти

Некоторые модули памяти оснащаются так называемыми радиаторами, которые представляют собой накладки из алюминиевых пластин, иногда крашенных под медь или в другие цвета, с обоих сторон платы. Эти накладки соединяются с чипами памяти через специальные термопрокладки, которые предназначены для лучшей передачи тепла от чипов к радиаторам. Радиаторы могут иметь дополнительные ребра для увеличения площади охлаждения и еще лучшего отвода тепла.

На практике чипы памяти при нормальной работе нагреваются незначительно и не требуют дополнительного охлаждения. Прокладки между чипами и радиаторами не передают тепло на столько хорошо, как термопаста между процессором и кулером. Кроме того в свободном пространстве между платой и радиаторами находится воздушная прослойка, которая мешает естественному охлаждению и со временем забивается пылью, которую оттуда тяжело вычистить. Такая конструкция предусматривает активное охлаждение при помощи дополнительного вентилятора или хорошей организации воздушного потока внутри корпуса. Кроме того, такие модули часто могут стоить дороже.

Так кому же нужна такая радость, спросите Вы? Ну, спросите меня)

Ответ: энтузиастам, которым всегда всего мало, которые хотят все разогнать, всех перегнать и т.п. Кроме того – это же просто красиво) Да, друзья, если Вы причисляете себя к этой группе юзеров то такая память для Вас! Потому что такая система охлаждения будет эффективна лишь при достаточно высоком нагреве в результате разгона с повышением напряжения и обязательным дополнительным обдувом. Запомните – обычной памяти, работающей в штатном режиме радиаторы не нужны.

Пример правильного использования памяти с радиаторами в мощной системе

Разгон оперативной памяти

Разгон – жаргонное слово в компьютерном лексиконе, которое подразумевает ручную установку более агрессивных параметров работы электронных комплектующих, таких как процессоры, память и видеокарты, чем предусмотрены производителем. Такими параметрами как правило является частота (в процессорах еще множитель). При особо высоком разгоне для относительно стабильной работы этих компонентов повышают еще и напряжение. В результате происходит и более высокие нагрев элементов, требующий улучшенного охлаждения. Сам, так называемый разгон, возможен благодаря определенному запасу, заложенному производителем, что бы изделие работало стабильно, а не на грани своих возможностей, или специально для продвинутых пользователей) В любом случае это мероприятие делает работу всей системы менее стабильной и сокращает срок службы разогнанных компонентов. Если Вы все таки решите поэкспериментировать, то предварительно хорошо изучите все аспекты и действуйте строго по инструкции. Кстати, при выходе из строя компонентов в результате разгона Вы можете лишиться гарантии.

Производители оперативной памяти

Как и другие комплектующие модули памяти изготавливает множество производителей. И, как всегда, они имеют разное качество. Я рекомендую обратить внимание на следующие бренды, имеющие оптимальное соотношение цена/качество: AMD, Crucial, Goodram , Hynix, Kingston, Micron, Patriot, Samsung, TakeMS, Transcend.

К брендам для энтузиастов относятся: Corsair, G.Skill, Mushkin, Team. Эти фирмы производят большой ассортимент модулей с радиаторами и повышенными техническими характеристиками. Рекомендую избегать дешевых китайских брендов: A-Data, Apacer, Elixir, Elpida, NCP, PQI и других мало известных производителей.

Отдельного упоминания заслуживают модули памяти, которые производятся не в Китае. В настоящее время таких не много, например модули, которые маркируются как Hynix Original и Samsung Original производятся в Корее. Качество таких модулей считается выше, стоят они чуть дороже, но обычно имеют более длительную гарантию (до 36 месяцев).

Справедливости ради нужно заметить, что даже если Вы приобрели память известного и зарекомендовавшего себя бренда это, к сожалению, не значит, что Вам не попадется брак или поврежденные при транспортировке модули. Конечно, в продукции топовых брендов в индивидуальной упаковке брака (повреждений) будет меньше, чем у самых дешевых модулей, которые транспортируются и продаются «россыпью».

Модуль памяти в индивидуальной упаковке

Как выбрать память для нового компьютера

Прежде всего выбирайте самый современный из используемых типов памяти. На сегодня это DDR3. Определитесь с объемом, который Вам нужен. Кратко суммируя эту статью, приведу общие рекомендации по минимальному объему ОЗУ для разных по назначению ПК:

Для офисного или слабого домашнего ПК – 2 Гб

4. Лучше подбирать максимально идентичные планки (односторонние или двухсторонние), с такой же частотой и латентностью. Идеальный вариант продать старую память как б/у и установить новую в нужном объеме.

5. Если Вы поставите память с большей частотой, чем поддерживает Ваш процессор или материнская плата, то она будет работать на пониженной частоте.

Делайте правильный выбор с нами друзья, и ни пыли Вам ни пробоя)

Основные характеристики оперативной памяти (ее объем, частота, принадлежность к одному из поколений) могут быть дополнены еще одним важнейшим параметром - таймингами. Что они представляют собой? Можно ли их изменять в настройках BIOS? Как это делать наиболее корректным, с точки зрения стабильной работы компьютера, образом?

Что такое тайминги ОЗУ?

Тайминг оперативной памяти - это временной интервал, за который команда, отправляемая контроллером ОЗУ, выполняется. Измеряется эта единица в количестве тактов, которые пропускаются вычислительной шиной, пока идет обработка сигнала. Сущность работы таймингов проще понять, если разобраться в устройстве микросхем ОЗУ.

Оперативная память компьютера состоит из большого количества взаимодействующих ячеек. Каждая имеет свой условный адрес, по которому к ней обращается контроллер ОЗУ. Координаты ячеек, как правило, прописываются посредством двух параметров. Условно их можно представить как номера строк и столбцов (как в таблице). В свою очередь, группы адресов объединяются, чтобы контроллеру было "удобнее" находить конкретную ячейку в более крупную область данных (иногда ее называют "банком").

Таким образом, запрос к ресурсам памяти осуществляется в две стадии. Сначала контроллер отправляет запрос к "банку". Затем он запрашивает номер "строки" ячейки (посылая сигнал типа RAS) и ждет ответа. Длительность ожидания - это и есть тайминг оперативной памяти. Его общепринятое наименование - RAS to CAS Delay. Но это еще не все.

Контроллеру, чтобы обратиться к конкретной ячейке, нужен также и номер приписанного к ней "столбца": посылается другой сигнал, типа CAS. Время, пока контроллер ждет ответа, - это тоже тайминг оперативной памяти. Он называется CAS Latency. И это еще не все. Некоторые IT-специалисты предпочитают интерпретировать такое явление, как CAS Latency, несколько иначе. Они полагают, что этот параметр указывает, сколько должно пройти единичных тактов в процессе обработки сигналов не от контроллера, а от процессора. Но, как отмечают эксперты, речь в обоих случаях, в принципе, идет об одном и том же.

Контроллер, как правило, работает с одной и той же "строкой", на которой расположена ячейка, не один раз. Однако, прежде чем обратиться к ней повторно, он должен закрыть предыдущую сессию запроса. И только после этого возобновлять работу. Временной интервал между завершением и новым вызовом строки - это тоже тайминг. Называется он RAS Precharge. Уже третий по счету. На этом все? Нет.

Поработав со строкой, контроллер должен, как мы помним, закрыть предыдущую сессию запроса. Временной интервал между активацией доступа к строке и его закрытием - это тоже тайминг оперативной памяти. Его наименование - Active to Precharge Delay. В принципе, теперь все.

Мы насчитали, таким образом, 4 тайминга. Соответственно, записываются они всегда в виде четырех цифр, например, 2-3-3-6. Кроме них, к слову, есть еще один распространенный параметр, которым характеризуется оперативная память компьютера. Речь идет о значении Command Rate. Оно показывает, какое минимальное время тратит контроллер на то, чтобы переключиться от одной команды к другой. То есть, если для CAS Latency значение - 2, то временная задержка между запросом от процессора (контролера) и ответом модуля памяти составит 4 такта.

Тайминги: порядок расположения

Каков порядок расположения в этом числовом ряду каждого из таймингов? Он практически всегда (и это своего рода отраслевой "стандарт") таков: первая цифра - это CAS Latency, вторая - RAS to CAS Delay, третья - RAS Precharge и четвертая - Active to Precharge Delay. Как мы уже сказали выше, иногда используется параметр Command Rate, его значение пятое в ряду. Но если для четырех предыдущих показателей разброс цифр может быть достаточно большим, то для CR возможно, как правило, только два значения - T1 или T2. Первый означает, что время с момента, когда память активируется, до наступления ее готовности отвечать на запросы должен пройти 1 такт. Согласно второму - 2.

О чем говорят тайминги?

Как известно, объем ОЗУ - один из ключевых показателей производительности этого модуля. Чем он больше - тем лучше. Другой важный параметр - это частота оперативной памяти. Здесь тоже все однозначно. Чем она выше, тем ОЗУ будет работать быстрее. А что с таймингами?

В отношении них закономерность иная. Чем меньше значения каждого из четырех таймингов - тем лучше, тем производительнее память. И тем быстрее, соответственно, работает компьютер. Если у двух модулей с одинаковой частотой разные тайминги оперативной памяти, то и их производительность будет отличаться. Как мы уже определили выше, нужные нам величины выражаются в тактах. Чем их меньше, тем, соответственно, быстрее процессор получает ответ от модуля ОЗУ. И тем скорее он может "воспользоваться" такими ресурсами, как частота оперативной памяти и ее объем.

"Заводские" тайминги или свои?

Большинство пользователей ПК предпочитает использовать те тайминги, которые установлены еще на конвейере (либо в опциях материнской платы выставлена автонастройка). Однако на многих современных компьютерах есть возможности для того, чтобы выставить нужные параметры вручную. То есть, если нужны более низкие значения - их, как правило, можно проставить. Но как изменить тайминги оперативной памяти? Причем сделать это так, чтобы система работала стабильно? А еще, быть может, есть случаи, при которых лучше выбрать увеличенные значения? Как выставить тайминги оперативной памяти оптимальным образом? Сейчас мы попробуем дать ответы на эти вопросы.

Настраиваем тайминги

Заводские значения таймингов прописываются в специально отведенной области микросхемы ОЗУ. Называется она SPD. Используя данные из нее, система BIOS адаптирует оперативную память к конфигурации материнской платы. Во многих современных версиях BIOS настройки таймингов, выставленные по умолчанию, можно корректировать. Практически всегда это осуществляется программным методом - через интерфейс системы. Изменение значений как минимум одного тайминга доступно в большинстве моделей материнских плат. Есть, в свою очередь, производители, которые допускают тонкую настройку модулей ОЗУ при задействовании гораздо большего количества параметров, чем четыре указанных выше типа.

Чтобы войти в область нужных настроек в BIOS, нужно, зайдя в эту систему (клавиша DEL сразу после включения компьютера), выбрать пункт меню Advanced Chipset Settings. Далее в числе настроек находим строку DRAM Timing Selectable (может звучать несколько по-другому, но похоже). В нем отмечаем, что значения таймингов (SPD) будут выставляться вручную (Manual).

Как узнать тайминг оперативной памяти, установленный в BIOS по умолчанию? Для этого мы находим в соседствующих настройках параметры, созвучные CAS Latency, RAS to CAS, RAS Precharge и Active To Precharge Delay. Конкретные значения таймингов, как правило, зависят от типа модулей памяти, установленных на ПК.

Выбирая соответствующие опции, можно задавать значения таймингов. Эксперты рекомендуют понижать цифры очень постепенно. Следует, выбрав желаемые показатели, перезагружаться и тестировать систему на предмет устойчивости. Если компьютер работает со сбоями, нужно вернуться в BIOS и выставить значения на несколько уровней выше.

Оптимизация таймингов

Итак, тайминги оперативной памяти - какие лучше значения для них выставлять? Почти всегда оптимальные цифры определяются в ходе практических экспериментов. Работа ПК связана не только с качеством функционирования модулей ОЗУ, и далеко не только скоростью обмена данными между ними и процессором. Важны многие другие характеристики ПК (вплоть до таких нюансов, как система охлаждения компьютера). Поэтому практическая результативность изменения таймингов зависит от конкретной программно-аппаратной среды, в которой пользователь производит настройку модулей ОЗУ.

Общую закономерность мы уже назвали: чем ниже значения таймингов, тем выше скорость работы ПК. Но это, конечно, идеальный сценарий. В свою очередь, тайминги с пониженными значениями могут пригодиться при "разгоне" модулей материнской платы - искусственном завышении ее частоты.

Дело в том, что если придать микросхемам ОЗУ ускорение в ручном режиме, задействовав слишком большие коэффициенты, то компьютер может начать работать нестабильно. Вполне возможен сценарий, при котором настройки таймингов будут выставлены настолько некорректно, что ПК и вовсе не сможет загрузиться. Тогда, скорее всего, придется "обнулять" настройки BIOS аппаратным методом (с высокой вероятностью обращения в сервисный центр).

В свою очередь, более высокие значения для таймингов могут, несколько замедлив работу ПК (но не настолько, чтобы скорость функционирования была доведена до режима, предшествовавшего "разгону"), придать системе стабильности.

Некоторыми IT-экспертами подсчитано, что модули ОЗУ, обладающие CL в значении 3, обеспечивают примерно на 40 % меньшую задержку в обмене соответствующими сигналами, чем те, где CL равен 5. Разумеется, при условии, что тактовая частота и на том, и на другом одинаковая.

Дополнительные тайминги

Как мы уже сказали, в некоторых современных моделях материнских плат есть возможности для очень тонкой настройки работы ОЗУ. Речь, конечно, не идет о том, как увеличить оперативную память - этот параметр, безусловно, заводской, и изменению не подлежит. Однако в предлагаемых некоторыми производителями настройках ОЗУ есть очень интересные возможности, задействуя которые, можно существенно ускорить работу ПК. Мы же рассмотрим те, что относятся к таймингам, которые можно конфигурировать в дополнение к четырем основным. Важный нюанс: в зависимости от модели материнской платы и версии BIOS, названия каждого из параметров могут отличаться от тех, которые мы сейчас приведем в примерах.

1. RAS to RAS Delay

Этот тайминг отвечает за задержку между моментами, когда активизируются строки из разных областей консолидации адресов ячеек ("банков" то есть).

2. Row Cycle Time

Этот тайминг отражает временной интервал, в течение которого длится один цикл в рамках отдельной строки. То есть от момента ее активизации до начала работы с новым сигналом (с промежуточной фазой в виде закрытия).

3. Write Recovery Time

Данный тайминг отражает временной интервал между двумя событиями - завершением цикла записи данных в память и началом подачи электросигнала.

4. Write To Read Delay

Данный тайминг показывает, сколько должно пройти времени между завершением цикла записи и моментом, когда начинается чтение данных.

Во многих версиях BIOS также доступен параметр Bank Interleave. Выбрав его, можно настроить работу процессора так, чтобы он обращался к тем самым "банкам" ОЗУ одновременно, а не по очереди. По умолчанию этот режим функционирует автоматически. Однако можно попробовать выставить параметр типа 2 Way или 4 Way. Это позволит задействовать 2 или 4, соответственно, "банка" одновременно. Отключение режима Bank Interleave используется довольно редко (это, как правило, связано с диагностикой ПК).

Настройка таймингов: нюансы

Назовем некоторые особенности, касающиеся работы таймингов и их настройки. По мнению некоторых IT-специалистов, в ряду из четырех цифр наибольшее значение имеет первая, то есть тайминг CAS Latency. Поэтому, если у пользователя немного опыта в "разгоне" модулей ОЗУ, эксперименты, возможно, следует ограничить выставлением значений только для первого тайминга. Хотя эта точка зрения не является общепринятой. Многие IT-эксперты склонны считать, что три других тайминга не менее значимы с точки зрения скорости взаимодействия между ОЗУ и процессором.

В некоторых моделях материнских плат в BIOS можно настроить производительность микросхем оперативной памяти в нескольких базовых режимах. По сути, это выставление значений таймингов по шаблонам, допустимым с точки зрения стабильной работы ПК. Эти опции обычно соседствуют с параметром Auto by SPD, а режимы, о которых идет речь, - Turbo и Ultra. Первый подразумевает умеренное ускорение, второй - максимальное. Эта возможность может быть альтернативой выставлению таймингов вручную. Похожие режимы, к слову, есть во многих интерфейсах усовершенствованной системы BIOS - UEFI. Во многих случаях, как отмечают эксперты, при включении опций Turbo и Ultra достигается в достаточной мере высокая производительность ПК, а его работа при этом стабильна.

Такты и наносекунды

Реально ли выразить тактовые циклы в секундах? Да. И для этого существует очень простая формула. Такты в секундном выражении считаются делением единицы на фактическую тактовую частоту ОЗУ, указываемую производителем (правда, этот показатель, как правило, нужно делить на 2).

То есть, например, если мы хотим узнать такты, формирующие тайминги оперативной памяти DDR3 или 2, то мы смотрим на ее маркировку. Если там указана цифра 800, то фактическая частота ОЗУ будет равна 400 МГЦ. Это значит, что длительность такта составит значение, получаемое в результате деления единицы на 400. То есть 2,5 наносекунды.

Тайминги для модулей DDR3

Одни из самых современных модулей ОЗУ - микросхемы типа DDR3. Некоторые специалисты считают, что в отношении них такие показатели, как тайминги, имеют гораздо меньшее значение, чем для чипов предыдущих поколений - DDR 2 и более ранних. Дело в том, что эти модули, как правило, взаимодействуют с достаточно мощными процессорами (такими как, например, Intel Core i7), ресурсы которых позволяют не столь часто обращаться к ОЗУ. Во многих современных чипах от Intel, так же, как и в аналогичных решениях от AMD, есть достаточная величина собственного аналога ОЗУ в виде L2- и L3-кэша. Можно сказать, что у таких процессоров есть свой объем оперативной памяти, способный выполнять значительный объем типовых для ОЗУ функций.

Таким образом, работа с таймингами при использовании модулей DDR3, как мы выяснили, - не самый главный аспект "разгона" (если мы решим ускорить производительность ПК). Гораздо большее значение для таких микросхем имеют как раз-таки параметры частоты. Вместе с тем, модули ОЗУ вида DDR2 и даже более ранних технологических линеек сегодня все еще ставятся на компьютеры (хотя, конечно, повсеместное использование DDR3, по оценке многих экспертов, - более чем устойчивый тренд). И потому работа с таймингами может пригодиться очень большому количеству пользователей.

Как оказалось, наибольший интерес почти у всех читателей вызывают вопросы влияния
таймингов DDR2 на производительность, а также то, насколько ее латентность окажется
выше по сравнению с предыдущим стандартом DDR400. Как мы уже говорили в прошлых
статьях, касающихся нюансов функционирования подсистем памяти с чипсетами предыдущих
поколений, вклад основных таймингов (к примеру, CAS Latency или RAS-to-CAS) в
общий результат — величина непостоянная, очень сильно зависящая от используемой
платформы и конфигурации. Так, наибольший рост быстродействия за счет уменьшения
задержек зафиксирован на AMD Athlon 64 (Socket 939) — при снижении значений с
8-4-4-3 (для DDR400) до 5-2-2-2 он составил в реальных задачах около 20%. В системах
на чипсетах ATI 9100IGP для платформы Socket 478, отличающихся от конкурентов
самой высокой латентностью, подобное понижение таймингов добавило лишь около 3%
производительности.

Следовательно, пока можно сделать предварительный вывод — чем меньше общая
латентность контроллера памяти, тем большее влияние на быстродействие оказывают
настройки подсистемы памяти
. Не вдаваясь в теоретические размышления (см.
статью "Подсистема памяти — чем дальше, тем страшнее…"),
сразу перейдем к рассмотрению ситуации с DDR2.

Таблица
1. Сравнение приведенных задержек доступа к памяти (нс)
Режимы
работы памяти (тайминги 8-4-4-3)
DDR400 DDR-533 DDR2-400 DDR2-533 DDR2-667 DDR2-800
DRAM
Command Rate (CMD rate) — время нахождения микросхемы с необходимыми данными
5 3,8 10,0 7,7 6,0 5
Row
Cycle time (T RC) — время
активности банка
RAS#
Active time (T RAS) — время
активности страницы
RAS-to-CAS (T RCD)
— время между определением адреса строки и столбца
20 15,4 40,0 30,8 24,0 20
CAS# Latency
(T CL) — время между определением
адресного массива и началом считывания
15 11,5 30,0 23,1 18,0 15
RAS#
Precharge time (T RP) — время
для перезарядки страницы
20 15,4 40,0 30,8 24,0 20
Общее
время задержек
60 46,2 120,0 92,3 72,0 60

Для большей наглядности выясним (табл. 1), как отличаются по времени выполнения полные циклы операций с памятью стандартов DDR400 и DDR2-533. Сделаем еще одно важное замечание, о котором часто забывают пользователи, — в подавляющем большинстве BIOS Setup материнских плат тайминги приведены в тактах реальной (!) физической шины , т. е. для DDR400 это такты 200 MHz шины, а для DDR2-533 — 133 MHz. Как видно из таблицы, общее (теоретическое) время задержек при доступе к памяти действительно значительно меньше у DDR400 даже с учетом одинаковых таймингов. Также наглядно можно убедиться, что латентность обоих стандартов уравняется только после появления DDR2-800.

Здесь необходимо сделать несколько пояснений. Во-первых, указанная латентность DDR533, DDR2-533/667/800 справедлива только при равнозначной пропускной способности процессорной шины. Во-вторых, не следует забывать, что, когда выйдет стандарт DDR2-800, при одинаковой латентности с DDR400 объем передаваемых данных будет уже в два раза выше — 6,4 GBps (при одноканальном 64-битном доступе) против 3,2 GBps у DDR400. Также данная таблица наверняка поможет понять принципы "вложенности" таймингов — к примеру, самый большой из доступных таймингов DRAM Cycle time (T RAS) , в идеале, должен равняться сумме RAS-to-CAS и CAS Latency . В случае T RAS > T RCD +T CL освобождаются дополнительные такты для синхронизации сигналов, что приводит к росту стабильности при незначительном снижении производительности. Противоположный вариант — T RAS < T RCD +T CL — либо невозможен в принципе (контроллеры предыдущих чипсетов вообще не позволяли устанавливать это значение меньше 5, что заведомо больше минимальных 2+2), либо просто заданные цифры будут корректироваться в большую сторону — по той простой причине, что время активности сигнала RAS# не может быть меньше, чем потребуется на определение адреса строки и столбца (т. е. массива считываемых данных).

Забегая вперед, заметим, что нам удалось установить тайминги 3-3-2-3 для DDR2-533, при этом все программы-идентификаторы подтвердили данные значения, но никакой разницы по сравнению с 6-3-2-3 даже в низкоуровневых тестах обнаружить не удалось, что полностью подтверждает вышесказанное.

На многих материнских платах под Socket 754/939 (AMD Athlon 64) есть возможность задавать еще несколько параметров, в числе которых Row Cycle time (T RC) и Write Enable (T WE) . Первый отображает минимальное время активности всего банка памяти и равняется соответственно T RAS +T RP . Если установить значение больше данной суммы, при необходимости освобождаются дополнительные такты для регенерации, в обратной ситуации система либо станет работать нестабильно (равносильно заниженному T RP), либо, как и в случае T RAS , будет просто игнорироваться. Тайминг T WE задает минимальное время, за которое должен быть выдан сигнал о том, что ячейки готовы к операции записи; как можно догадаться, его уменьшение приводит к увеличению скорости в режиме записи. На материнских платах с чипсетами Intel данный параметр, как правило, закрыт для изменения, но именно его прошитыми значениями можно объяснить разную скорость записи у моделей от различных производителей. Что касается тайминга DRAM Command rate (CMD rate), то он определяет, сколько времени потребуется для нахождения необходимой микросхемы — иными словами, нужного банка. У чипсетов для Socket 478 CMD rate по умолчанию равняется 1Т, для десктопной платформы AMD64 составляет 2Т (иногда изменяется до 1Т). Заметим, один такт задержки возможен только при последовательном обращении, а при произвольном доступе к памяти в любом случае тратится два такта.

Итак, небольшой ликбез по таймингам будем считать законченным. Перейдем к рассмотрению реальных примеров с использованием памяти DDR2 в новых настольных платформах Intel.

Таблица
2. Параметры производительности при различных режимах работы памяти
Режим тестирования Максимальная
Скорость чтения,
MBps
Скорость записи,
MBps
Латентность,
нс
12-4-4-4 DDR2-533 5330 4048 2230 82
6-3-2-3 DDR2-533 5466 4280 2260 79
12-4-4-4 DDR2-400 4847 3884 1906 88
5-2-2-3 DDR2-400 4951 4086 1952 81
Таблица
3. Значения удельной производительности*
Режим тестирования Максимальная
производительность памяти, MBps
Скорость чтения,
MBps
Скорость записи,
MBps
12-4-4-4 DDR2-533 10,0 7,6 4,2
6-3-2-3 DDR2-533 10,3 8,0 4,2
12-4-4-4 DDR2-400 12,1 9,7 4,8
5-2-2-3 DDR2-400 12,4 10,2 4,9

* на 1
MHz эффективной частоты.

Результаты тестирования

Для простоты понимания и наглядности данные, представленные в табл. 2, продублированы на диаграммах. Как можно заметить, даже несмотря на то, что в обоих случаях (DDR2-400 и DDR2-533) частота процессорной шины составляла всего 800 MHz, абсолютная производительность подсистемы памяти существенно увеличилась при переходе от 400 к 533 MHz. Наибольший вклад приходится именно на значительное увеличение скорости записи. Однозначно следует сказать, что контроллеры новых чипсетов Intel 915/925 изначально проектировались исключительно на частоты шины памяти 533 MHz и выше, а поддержка DDR2-400 реализована лишь для совместимости.

Еще одним веским тому подтверждением служат график, демонстрирующий скорость "отклика" подсистемы памяти в зависимости от величины пакета, и диаграмма с результатами средней латентности. Это первый случай, когда асинхронный режим работы шины памяти и процессора, да еще с увеличенными таймингами, оказался более производительным по сравнению с синхронным с меньшими уровнями задержек. Наверняка данная ситуация сохранится с выходом CPU, имеющим шину 266 (1066) MHz; примерно в то же время должны появиться в широкой продаже первые модули DDR2-667. Каким-то образом инженерам Intel удалось повысить быстродействие операций записи за счет освободившихся тактов ожидания процессора. По удельной же производительности (скорость передачи данных при 1 MHz эффективной частоты), разумеется, режим DDR2-400 имеет несколько больший КПД (табл. 3), однако, как мы уже сказали, разница оказалась намного меньшей, чем ожидалось.

Известный факт: из реальных приложений, способных адекватно воспринять сокращение задержек памяти, со значительным отрывом вперед выходят игры. Справедливости ради заметим, что ПО, работающее по принципу базы данных, также весьма чувствительно к настройкам памяти, но это, как говорится, уже совсем другая история. Для анализа изменения быстродействия в развлекательных задачах мы традиционно выбрали Unreal Tournament 2003. Видно, что разница между минимальным режимом 12-4-4-4 для DDR2-400 и 6-3-2-3 для DDR2-533 равняется 15 кадров в секунду, что составило около 8% прироста производительности. Действительно, такой отрыв можно назвать существенным, учитывая использование в тестах далеко не самой быстрой видеокарты на базе NVidia PCX5900.


Модули DDR2-533


Kingston KVR533

Micron PC2-4300U

Samsung PC2-4300U

Transcend DDR2-533

Отрадно сообщить, что компании, специализирующиеся на поставках модулей памяти,
практически сразу после анонсирования новой десктопной платформы Intel начали
поставки на отечественный рынок линеек DDR2-400 ECC для серверов и рабочих станций
(о них мы расскажем в будущих материалах) и DDR2-533 для настольных систем. Нам
удалось протестировать продукцию таких известных брендов, как Micron, Samsung,
Transcend и Kingston. Во всех модулях применялись микросхемы BGA со временем доступа
3,75 нс, что в точности соответствует эффективной частоте 533 MHz. В Micron и
Samsung, как обычно, установлены микросхемы одноименных производителей, тогда
как Kingston и Transcend построены на идентичных чипах от Elpida. Интересно, что
во время масштабного тестирования модулей DDR400, проведенного нами в начале нынешнего
года, ни один из продуктов не базировался на микросхемах этой японской компании.

Не вдаваясь в определение разгонного потенциала (пока невостребованного), мы решили ограничиться проверкой минимальных задержек в режиме DDR2-533 при стандартном напряжении 1,8 В и при его увеличении до 2 В (результаты приведены в табл. 4). Продукция Micron всегда была эталоном качества и производительности, не стали исключением и новые модули. При штатном и повышенном уровне питания они стабильно работали с меньшими задержками, тем более что при 2 В мо-дули MT16HTF6464AG оказались единственными, кому покорилось значение 2Т для RAS# Precharge. Неудивительно, что память от Kingston и Transcend продемонстрировала идентичные результаты, которые были чуть выше, чем у Samsung PC2-4300U. Попытка запустить тестовую систему в режиме DDR2 667 даже с таймингами 12-4-4-4 и при увеличенном напряжении ни с одним из комплектов модулей не увенчалась успехом. Жаль, что на тестирование не успели попасть линейки памяти от Hynix — как известно, продукция именно этого производителя задает тон на мировом рынке.

Таблица
4. Сравнительные характеристики модулей памяти PC2-4300 (DDR2-533)
Модуль памяти Samsung PC2-4300U Micron PC2-4300U Kingston KVR533 Transcend DDR2-533
Прошитые тайминги
для режима DDR2-533
11-4-4-4 12-4-4-4 12-4-4-4 11-4-4-4
Минимальные
тайминги приштатном напряжении 1,8 В
8-4-3-3 6-3-3-3 8-3-3-3 8-3-3-3
Минимальные
тайминги при повышенном напряжении 2 В
7-4-3-3 6-3-2-3 6-3-3-3 6-3-3-3

Выводы

Этот материал — уже третий по счету, в котором серьезно затрагивается вопрос функционирования нового стандарта системной памяти DDR2. Но согласитесь, если уже в следующем году DDR2 станет массовым, подобные усилия оправданы. "Не цепляясь" за текущее сравнение DDR и DDR2, с уверенностью можно сказать, что сама технология DDR2 "не так страшна, как ее малюют", тем более что перспективы у нее очень радужные. На сайтах большинства производителей чипов уже имеется информация о готовых продуктах DDR2-667 (модули с индексом PC2-5300). Зачем далеко ходить, если в спартанских по тонким настройкам BIOS Setup материнских плат Intel присут-ствует возможность выбора этого режима, а чипсеты SiS под Socket LGA775 вообще официально поддерживают память с эффективной частотой 667 MHz.

Как мы сегодня выяснили, теоре-тически новые контроллеры, рассчитанные на применение DDR2, должны быть куда более инертными по сравнению со своими предшественниками, работающими с DDR400. Однако, как показали наши прошлые тестирования, на практике эта разница оказалась менее заметной, в чем есть реальная заслуга инженеров R&D-отдела компании Intel.

Помимо SiS, еще один крупнейший производитель чипсетов, компания VIA Technologies, также в ближайшее время покажет миру свои наборы логики под новые процессоры Intel и память DDR2. Очень будет интересно сравнить эти три решения, что мы обязательно сделаем, как только представится такая возможность.

На самом деле "страшные" значения таймингов для модулей PC2-4300 (к примеру, 12-4-4-4) еще вовсе не означают, что их нельзя привести к более привычным 6-3-3-3 (аналогичная ситуация наблюдается с линейками памяти DDR400, когда стандартная прошивка 8-4-4-3 совсем не мешает выставить на большинстве из них 5-3-2-2,5).

Модули, попавшие к нам на тестирование, являются типичными массовыми изделиями,
которым далеко до оверклокерских моделей, однако появление таковых не за горами.
Да и вообще, учитывая быстрые темпы выхода на украинский рынок новых систем Intel
и сопутствующего оборудования в виде видеокарт PCI Express и памяти DDR2, можно
ручаться, что не пройдет и полгода, как большинство отечественных пользователей
перестанут воспринимать платформу Socket 775 с ее нововведениями как что-то уникальное
и далекое от реальной жизни.

Конфигурация
тестовой системы
Платформа Intel
Процессор Intel Pentium
4 (Prescott) 3,6 GHz, Socket LGA775, FSB 800 MHz
Материнская
плата
Intel D925XCV,
чипсет i925X
Референсная
память
Micron PC2-4300U
(DDR2-533), 2x512 MB
Видеокарта Leadtek PCX5900
128 MB (FX 5900XT, PCI Express)
Режимы тестирования
видео
480/830 MHz
(чип/память), ForceWare 62.01
Жесткий диск Western
Digital WD1600 (160 GB, 7200 об/мин)
ОС Windows XP Professional
SP2, DirectX 9.0c


← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»