Перспективы развития средств связи и информационных технологий. Прмц - приемный радиоцентр

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Системы транкинговой радиосвязи, представляющие собой радиальнозоновые системы подвижной УКВ радиосвязи, осуществляющие автоматической распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности, транспортными и энергетическими компаниями различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи общего пользования, отличающихся друг от друга методом передачи речевой информации (аналоговые и цифровые), типом многостанционного доступа, временным или кодовым, способом поиска и назначения канала (с децентрализованным и централизованным управлением), типом канала управления (выделенный и распределенный) и другими характеристиками.

Мы живем в такое время, когда доступ к информации является важнейшим фактором обеспечения оперативности и эффективности работы организаций. Поэтому необходимо обеспечить соответствие уровня мобильного доступа к информации растущему уровню мобильности современных организаций. Это касается и доступа в Интернет, и использование решений на базе Интернета.

С начала 90-х гг. системы "СмартЗона" устанавливаются по всему миру. "Скотланд Ярд" и ЮКОС, муниципалитет Рима и МВД России, транспортные предприятия и коммерческие операторы по достоинству оценили возможности системы, способной обеспечить связь через границы не только городов или областей, но и стран. Каждый из многочисленных пользователей находит в системе достоинства, привлекательные для него в первую очередь. Засекречивание речи и передача данных, непрерываемый телефонный разговор и телеметрия, диспетчеризация парка абонентов и многое другое заставили более миллиона человек сделать выбор в пользу систем семейства "СмартНет", к которому относится "СмартЗона"

Современные цифровые транкинговые системы радиосвязи знаменуют новый этап в развитии подвижной радиосвязи в России, да и во всем мире. По сравнению с сотовыми системами подвижной радиосвязи транкинговые оказываются в ряде случаев более экономичными, отличаясь многообразием реализаций в рамках одного стандарта при использовании оборудования от различных фирм-производителей.

Главная задача данной курсовой работы рассмотреть перспективы развития транкинговой связи (различных стандартов) в мире и в России в целом.

1. Транкинговая радио связь. Основные понятия

Системы транкинговой радиосвязи, представляющие собой радиально-зоновые системы подвижной УКВ-радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Цифровые стандарты транкинговой радиосвязи пока не получили широкого распространения в России, но уже сейчас можно говорить об их активном и успешном внедрении.

Цифровая транкинговая связь характеризуется такими характеристиками как (имеет такие преимущества как)

1. Высокая оперативность связи.

2. Передача данных.

3. Безопасность связи.

4. Услуги связи.

5. Возможность взаимодействия. Для служб общественной безопасности особенно актуальным является требование по обеспечению возможности взаимодействия подразделений различных ведомств для координации совместных действий при чрезвычайных ситуациях: стихийных бедствиях, террористических актах и т. п.

К наиболее популярным, заслужившим международное признание стандартам цифровой транкинговой радиосвязи, на основе которых во многих странах развернуты системы связи, относятся:

EDACS, разработанный фирмой Ericsson;

TETRA, разработанный Европейским институтом стандартов связи;

APCO 25, разработанный Ассоциацией официальных представителей служб связи органов общественной безопасности;

Tetrapol, разработанный фирмой Matra Communication (Франция);

iDEN, разработанный фирмой Motorola (США).

Все эти стандарты отвечают современным требованиям к системам транкинговой радиосвязи. Они позволяют создавать различные конфигурации сетей связи: от простейших локальных однозоновых систем до сложных многозоновых систем регионального или национального уровня.

1.1 Общие сведения о стандартах цифровой транкинговой радиосвязи

Система EDACS

Одним из первых стандартов цифровой транкинговой радиосвязи был стандарт EDACS (Enhanced Digital Access Communication System), разработанный фирмой Ericsson (Швеция).

Цифровые системы EDACS выпускались на диапазоны частот 138-174 МГц, 403-423, 450-470 МГц и 806-870 МГц с разносом частот 30; 25; и 12,5 кГц.

Скорость передачи информации в рабочем канале соответствует 9600 бит/с.

Речевое кодирование в системе производится путем компрессии импульсно-кодовой последовательности со скоростью 64 Кбит/с, полученной с помощью аналого-цифрового преобразования сигнала с тактовой частотой 8 кГц и разрядностью 8 бит. Основными функциями стандарта EDACS, обеспечивающими специфику служб общественной безопасности, являются различные режимы вызова (групповой, индивидуальный, экстренный, статусный), динамическое управление приоритетностью вызовов (в системе может использоваться до 8 уровней приоритета), динамическая модификация групп абонентов (перегруппировка), дистанционное выключение радиостанций (при утере или краже радиосредств).

Одной из основных задач разработки системы было достижение высокой надежности и отказоустойчивости сетей связи на основе данного стандарта.

На сегодняшний день в мире развернуто большое количество сетей стандарта EDACS, в числе которых есть многозоновые сети связи, используемые службами общественной безопасности различных стран. В России функционирует около десяти сетей данного стандарта. Вместе с тем фирма Ericsson не проводит работ по совершенствованию системы EDACS, прекратила поставки оборудования для развертывания новых сетей данного стандарта и только поддерживает функционирование действующих сетей.

Система TETRA

TETRA представляет собой стандарт цифровой транкинговой радиосвязи, состоящий из ряда спецификаций, разработанных Европейским институтом телекоммуникационных стандартов ETSI (European Telecommunications Standards Institute). Стандарт TETRA создавался как единый общеевропейский цифровой стандарт. В настоящее время TETRA расшифровывается как Наземное транкинговое радио (TErrestrial Trunked RAdio).

TETRA - открытый стандарт, т. е. предполагается, что оборудование различных производителей будет совместимо.

В стандарт TETRA входят спецификации беспроводного интерфейса, интерфейсов между сетью TETRA и цифровой сетью с интеграцией услуг (ISDN), телефонной сетью общего пользования, сетью передачи данных, учрежденческими АТС и т. п.

Радиоинтерфейс стандарта TETRA предполагает работу в стандартной сетке частот с шагом 25 кГц. Необходимый минимальный дуплексный разнос радиоканалов - 10 МГц. Для систем стандарта TETRA могут использоваться некоторые поддиапазоны частот. В странах Европы за службами безопасности закреплены диапазоны 380-385/390-395 МГц, а для коммерческих организаций предусмотрены диапазоны 410-430/450-470 МГц. В Азии для систем TETRA используется диапазон 806-870 МГц.

Стандарт TETRA обеспечивает два уровня безопасности передаваемой информации:

стандартный уровень, использующий шифрование радиоинтерфейса (обеспечивается уровень защиты информации, аналогичный системе сотовой связи GSM);

высокий уровень, использующий сквозное шифрование (от источника до получателя).

Сети TETRA развернуты в Европе, Северной и Южной Америке, Китае, Юго-Восточной Азии, Австралии, Африке.

Система APCO 25

Стандарт APCO 25 разработан Ассоциацией официальных представителей служб связи органов общественной безопасности (Association of Public safety Communications Officials-international), которая объединяет пользователей систем связи, работающих в службах общественной безопасности.

Стандарт APCO 25 предусматривает возможность работы в любом из стандартных диапазонов частот, используемых системами подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц.

Заложенная в стандарте APCO 25 система идентификации абонентов позволяет адресовать в одной сети не менее 2 миллионов радиостанций и до 65 тысяч групп. При этом задержка при установлении канала связи в подсистеме в соответствии с функциональными и техническими требованиями к стандарту APCO 25 не должна превышать 500 мс (в режиме прямой связи - 250 мс, при связи через ретранслятор - 350 мс).

Наибольший интерес к данному стандарту проявляют специалисты МВД России. Пилотная сеть (пока не транкинговой, а конвенциональной радиосвязи) на основе двух базовых станций была развернута МВД России в Москве в 2001 г. В 2003 г. в Санкт-Петербурге к 300-летию города была развернута сеть диспетчерской радиосвязи на 300 абонентов в интересах различных силовых структур.

Система Tetrapol

Работы по созданию стандарта цифровой транкинговой радиосвязи Tetrapol были начаты в 1987 г., когда фирма Matra Communications заключила контракт с французской жандармерией на разработку и ввод в эксплуатацию сети цифровой радиосвязи Rubis. Сеть связи была введена в эксплуатацию в 1994 г. По данным фирмы Matra на сегодняшний день сеть французской жандармерии охватывает более половины территории Франции и обслуживает более 15 тыс. абонентов.

Системы связи стандарта Tetrapol имеют возможность работы в диапазоне частот от 70 до 520 МГц, который в соответствии со стандартом определяется как совокупность двух поддиапазонов: ниже 150 МГц (VHF) и выше 150 МГц (UHF). Большая часть радиоинтерфейсов для систем этих поддиапазонов является общей, различие заключается в использовании различных методов помехоустойчивого кодирования и кодового перемежения.

Скорость передачи информации в канале связи составляет 8000 бит/с.

В связи с тем, что с самого начала стандарт Tetrapol был ориентирован на обеспечение требований правоохранительных органов, в нем предусмотрены различные механизмы обеспечения безопасности связи, направленные на предотвращение таких угроз, как несанкционированный доступ в систему, прослушивание ведущихся переговоров, создание преднамеренных помех, анализ трафика конкретных абонентов и т. п.

В 1997 г. фирма Matra Communications выиграла тендер по созданию системы цифровой радиосвязи для королевской тайландской полиции. Контракт является частью заказа по модернизации полицейской радиосети, которая объединит 70 полицейских участков. Предполагается задействование самых современных возможностей системы, включая доступ к централизованной базе данных, электронную почту, сквозное шифрование информации, местоопределение. Имеются также сведения о развертывании нескольких систем в двух других странах юго-восточной Азии, а также в интересах полиции Мехико.

Система iDEN

Технология iDEN (integrated Digital Enhanced Network) была разработана компанией Motorola в начале 90-х годов. Первая коммерческая система на базе этой технологии была развернута в США компанией NEXTEL в 1994 г.

С точки зрения статуса стандарта iDEN можно охарактеризовать как корпоративный стандарт с открытой архитектурой. Это означает, что компания Motorola, сохраняя за собой все права по модификации системного протокола, предоставляет вместе с тем лицензии на производство компонентов системы различным производителям.

Данный стандарт разрабатывался для реализации интегрированных систем, обеспечивающих все виды подвижной радиосвязи: диспетчерской связи, мобильной телефонной связи, передачи текстовых сообщений и пакетов данных. Технология iDEN ориентирована на создание корпоративных сетей крупных организаций или коммерческих систем, предоставляющих услуги как организациям, так и частным лицам.

Система iDEN выполнена на базе технологии МДВР. В каждом частотном канале шириной 25 кГц передается 6 речевых каналов. Это достигается путем разбиения кадра длительностью 90 мс на временные интервалы по 15 мс, в каждом из которых передается информация своего канала.

В стандарте используется стандартный для Америки и Азии частотный диапазон 805-821/855-866 МГц. IDEN имеет самую высокую спектральную эффективность среди рассматриваемых стандартов цифровой транкинговой связи, он позволяет разместить в 1 МГц до 240 информационных каналов. Вместе с тем, размеры зон покрытия базовых станций (ячеек) в системах iDEN меньше, чем в системах других стандартов, что объясняется малой мощностью абонентских терминалов (0,6 Вт - для портативных станций и 3 Вт - для мобильных).

Первая коммерческая система, развернутая в 1994 г. компанией NEXTEL, в настоящее время является общенациональной и насчитывает около 5500 сайтов и 2,7 млн. абонентов. В США имеется другая сеть, оператором которой является компания Southern Co. Сети iDEN развернуты также в Канаде, Бразилии, Мексике, Колумбии, Аргентине, Японии, Сингапуре, Китае, Израиле и других странах. Общее число абонентов iDEN в мире на сегодня превышает 3 млн. человек.

В России системы iDEN не развернуты и нет сведений о разработках проектов сетей данного стандарта.

1.2 Операторы многозоновых транкинговых сетей

АМТ. Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай»). Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел». Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» - единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк». Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг». Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);

псевдотранкинговая сеть SmarTrunk II (с 1992 года);

многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк». Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье - для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко». Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных - в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

2. Перспективы р азвития транкинговой радиосвязи

Краткий сравнительный анализ данных стандартов цифровой транкинговой радиосвязи по основным рассмотренным критериям позволяет сделать определенные выводы о перспективности их развития, как в мире, так и в России.

Стандарт EDACS практически не имеет перспектив развития. По сравнению с другими стандартами, он имеет меньшую спектральную эффективность и менее широкие функциональные возможности. Компания Ericsson не планирует расширять возможности стандарта и практически свернула производство оборудования.

Стандарт iDEN не предусматривает многих специальных требований, а также, несмотря на высокую спектральную эффективность, ограничен необходимостью использования диапазона 800 МГц. Вероятно, что системы данного стандарта имеют определенный потенциал и будут еще развертываться и эксплуатироваться, в особенности в Северной и Южной Америке. В других регионах перспективы развертывания систем данного стандарта выглядят сомнительными.

Стандарт Tetrapol имеет хорошие технические показатели и достаточные функциональные возможности, однако так же, как и стандарты EDACS и iDEN, не обладает статусом открытого стандарта, что может существенно сдерживать его развитие в техническом плане, а также в части стоимости абонентского и стационарного оборудования.

Стандарты TETRA и APCO 25 обладают высокими техническими характеристиками и широкими функциональными возможностями, включая выполнение специальных требований силовых структур, имеют достаточную спектральную эффективность. Самым главным доводом в пользу этих систем является наличие статуса открытых стандартов.

В то же время, большинство экспертов склоняется к мнению, что рынок цифровой транкинговой радиосвязи будет завоеван стандартом TETRA. Данный стандарт пользуется широкой поддержкой большинства крупных мировых производителей оборудования и администраций связи различных стран. Последние события на отечественном рынке профессиональной радиосвязи позволяют сделать вывод, что и в России данный стандарт получит наиболее широкое распространение.

В настоящее время завершается разработка второй стадии стандарта (TETRA Release 2 (R2)), направленной на интеграцию с мобильными сетями 3-го поколения, кардинальное увеличение скорости передачи данных, переход от специализированных SIM-карт к универсальным, дальнейшее увеличение эффективности сетей связи и расширение возможных зон обслуживания.

2.1 Обзор проектов транкинговой радиосвязи в Европе

Многие европейские страны сделали свой выбор в пользу цифровых транкинговых стандартов для сетей профессиональной радиосвязи. В этой статье сделан краткий обзор реализованных и реализуемых проектов в Европе.

Великобритания уже начала внедрять и применять проекты на основе технологии TETRA. Команда проекта радиосети для служб общественной безопасности (Public Safety Radio Communication Project) создала сеть TETRA для полиции Великобритании. Несмотря на то, что эта сеть первоначально была создана для использования полицией, руководители проекта надеются, что вскоре пожарные бригады и бригады "скорой помощи" тоже присоединятся к числу ее пользователей. Сеть поддерживается специально созданной компанией-оператором Airwave.

Финляндия начала работать над сетью стандарта TETRA национального масштаба в 1998 г. Первая фаза проекта была запущена в эксплуатацию в январе 2001 г., и сейчас сеть действует почти на всей территории Финляндии. На данный момент сеть VIRVE используется различными пользователями, включающими полицию, пожарных, службу "скорой помощи", пограничные службы, службы береговой охраны и вооруженные силы.

Проект С2000 реализуется в Нидерландах. Сеть предназначена в основном для полиции, пожарных, службы "скорой помощи" и прочих общественных служб. Полное завершение строительства ожидается в 2004 г. Общее число базовых станций будет около 400. Ожидаемое число пользователей сети - 80 тыс.

Бельгия поддерживает проект под названием ASTRID (All-round Semi-cellular Trunking Radiocommunication system with Integrated Dispatchings). Так же как и С2000 в Нидерландах, этот проект имеет целью создание национальной сети TETRA. Планируемая сеть, в основном, предназначена для использования местной и федеральной полицией, пожарными, службой госбезопасности, службой "100" (Министерство здравоохранения) и обычными пользователями. Внедрение сети началось в 1998 г. Первоначальной целью было достижение национального радиопокрытия к концу 2003 г., однако проектирование сети затянулось. Основной причиной называются сложности в получении разрешений на установку мачт и антенных устройств.

Учитывая федеральную структуру Германии и разделение ответственности на национальном и региональном уровнях, процесс принятия решения о создании национальной сети был сложным и длительным. В 1996 г. власти различных регионов решили, что это будет цифровая сеть, основанная на европейском стандарте. Они, однако, не определили, какой именно стандарт должен использоваться. Вскоре после принятия этого решения в Берлине был создан первый пилотный проект на основе стандарта TETRA. Последующие отчеты рекомендовали устроить процедуру тендера для национальной сети на основе того же стандарта. Также сеть TETRA была создана в регионе Aachen. Эта сеть является частью так называемого "пилотного проекта трех стран" (Three Countries Trial). В рамках этого проекта оценивается эффективность сети TETRA при использовании ее несколькими государствами. Страны, вошедшие в этот проект: Бельгия, Германия и Нидерланды. Сети TETRA этих стран были объединены между собой для проведения тестирования.

Австрия, Италия, скандинавские страны, Ирландия (перечислены не все) также начали реализацию проектов сетей профессиональной радиосвязи на основе TETRA. Был организован совещательный орган, состоящий из представителей 13 стран, для обмена опытом, для выработки совместной позиции и оказания влияния на производителей, для решения частотных вопросов и для взаимной помощи. Представители совещательного органа провозгласили периодичность собраний два раза в год. Председателем органа является представитель Нидерландов.

Однако не все европейские страны остановили свой выбор на стандарте TETRA. Например, стандарт TETRAPOL, разработанный французской компанией MatraCommunications, был выбран для внедрения полицией Франции.

Также некоторое число небольших локальных сетей TETRA были реализованы в Испании, Чехии и Швейцарии.

2.2 Обзор перспектив развития транкинговой радиосвязи в России

Ведущей компанией на рынке транкинговой радиосвязи в России является ОАО "Тетрасвязь", образованное в 2004 году. «Тетрасвязь» предоставляет полный комплекс услуг по созданию сетей профессиональной цифровой радиосвязи TETRA от проектирования до запуска в эксплуатацию, включая предоставление услуг на базе существующих сетей.

"Тетрасвязь" - ведущий российский системный и сетевой интегратор, федеральный оператор услуг на базе систем ГЛОНАСС/TETRA по географии и числу абонентов, обладающий большим опытом и широкими возможностями по реализации масштабных телекоммуникационных проектов, собственными решениями для различных сегментов рынка. В 2007 году вошла в консорциум ATGroup. Зона профессионального присутствия охватывает 40 регионов, более 70 городов РФ. Головной офис находится в Москве, региональные представительства - в Санкт-Петербурге, Краснодаре, Нижнем Новгороде.

7-8 апреля в Москве состоялась Международная конференция «Проблемы модернизации телекоммуникационной инфраструктуры России и внедрение перспективных радиотехнологий», организованная Министерством связи и массовых коммуникаций РФ. Основной темой, вынесенной на обсуждение в ходе конференции, стала оценка современного состояния радиосвязи как важнейшего элемента инфраструктуры России, перспективы и направления ее дальнейшего развития.

На конференции с докладами выступили представители Минкомсвязи, территориальных управлений Роскомнадзора, научно-исследовательских и проектных институтов, организаций радиочастотной службы, компаний-лидеров телекоммуникационной отрасли, таких, как «Связьинвест», МТС, «Вымпелком», Motorola. Большой интерес аудитории вызвал доклад о современном состоянии и перспективах развития цифровой транкинговой радиосвязи в России, представленный федеральным оператором услуг профессиональной радиосвязи компанией «Тетрасвязь». Речь в докладе шла об европейском стандарте TETRA, который обладает рядом технологических и функциональных преимуществ по сравнению с сетями общего пользования и американским стандартом транкинговой связи APCO 25. На основе стандарта разрабатываются комплексные системы безопасности и управления как в мегаполисах, так и в российских регионах. При активном участии и внешнем контроле государственных организаций сети TETRA строятся в Московской, Владимирской, Курской областях, в Сочи - к Олимпиаде-2014, Владивостоке - к саммиту АТЭС-2012 для обеспечения эффективного взаимодействия правоохранительных служб

Как отмечается в докладе, реализация концепции развития стандарта TETRA в России до 2015 года связана с рядом ключевых факторов. Во-первых, симбиоз с российской системой ГЛОНАСС открывает новые перспективы использования TETRA как надежной транспортной среды в системах спутникового мониторинга, управления и диспетчеризации для экстренных служб и силовых ведомств. Во-вторых, обеспечение плавного перехода сетей на стандарт нового поколения TETRA-2 по мере появления релиза на рынке. В-третьих, постепенное создание объединенного пространства TETRA в России, формирующего зону безопасной жизнедеятельности в национальном масштабе.

Усиливается внимание со стороны государства к перспективным инвестиционным проектам в области телекоммуникаций, многие из которых связаны с такими масштабными имиджевыми мероприятиями, как, например, первая российская Зимняя Олимпиада и международный саммит стран Азиатско-Тихоокеанского региона.

Заключение

На рынке страны представлены практически все стандарты транкинговой подвижной радиосвязи, существующие на сегодня во всем мире. Россия - страна телекоммуникационных контрастов, и их надо устранять, если мы собрались занять прочные позиции на мировом рынке высоких телекоммуникационных технологий. Но, несмотря на все недостатки, отечественная индустрия высоких технологий демонстрирует неплохие 25-процентные темпы ежегодного прироста. Инвестирование денег в связь - это перспективные вложения в бизнес.

Развитие транкинговой радиосвязи незаслуженно (и не без помощи операторов сотовой радиосвязи) не получило должного роста в Российской Федерации в прошедшее десятилетие. Многие руководители, не понимая правильно разницу, сопоставляют профессиональную транкинговую радиосвязь с сотовой, и если речь заходит о стоимости абонентского оборудования (которая в два-три раза превышает стоимость абонентского оборудования мобильной радиосвязи), побеждает в итоге сотовая радиосвязь. Остается без внимания, что подвижная транкинговая радиосвязь - это, прежде всего, оперативная радиосвязь, где простым нажатием одной или нескольких клавиш происходит соединение абонентов.

Множество и других преимуществ у транкинговой радиосвязи перед сотовой: передача данных, безопасность связи, возможность проводить конференц-радиосвязь, нет беспокойства за трафик, так как зачастую плата (если это выделенная, коммерческая, сеть) проходит лишь абонентская, без учета трафика.

Нынешняя редакция Федерального закона Российской Федерации "О связи" предусматривает создание систем связи "двойного назначения". Однако о создании межведомственных систем радиосвязи в данной редакции умалчивается.

Государство, в собственности которого находится частотный диапазон, должно повлиять на развитие и модернизацию транкинговых сетей связи, вплоть до создания федеральных транкинговых сетей подвижной радиосвязи, выступить рефери в создании межведомственных систем транкинговой подвижной радиосвязи.

С писок использованных источников

1. Шлома А.М., Бакулин М.Г. «Новые алгоритмы формирования и обработки сигналов в системах подвижной связи» [Текст] Горячая Линия - Телеком, 2008г.- 344с.

2. Аннабел З.Д. «Мир телекоммуникаций. Обзор технологий и отрасли» [Текст] Олимп-Бизнес, 2002г.- 400с.

3. Довгий С.С. «Современные телекоммуникации. Технологии и экономика» [Текст] Эко-Трендз, 2003г.- 320с.

4. Шахгильдяна В.В. «Радиопередающие устройства: учебник для вузов» [Текст] Радио и связь, 2003г.- 560с.

5. Катунин, Г.В. Мамчев, В. Н. «Телекоммуникационные системы и сети. Том 2. Радиосвязь, радиовещание, телевидение. Учебное пособие» [Текст] Горячая линия - Телеком, 2004г.- 672 с.

6. Попов О.Б., Рихтер С.Г. «Цифровая обработка сигналов в трактах звукового вещания» [Текст] Горячая линия - Телеком, 2007г.- 341с.

7. Мамчев Г.В. «Основы радиосвязи и телевидения. Учебное пособие для вузов» [Текст] Горячая линия-Телеком, 2007г.- 416 с.

8. Мамаева Н.С. «Системы цифрового телевидения и радиовещания» [Текст] Горячая линия - Телеком, 2007г.- 254 с.

9. Галкин В.А., Григорьев Ю.А. «Учебное пособие для вузов, по спец. "Информатика и вычислительная техника"» [Текст] "МГТУ им. Баумана" - 608 с.

10. Крухмалев В.В., Гордиенко В.Н. «Основы построения телекоммуникационных систем и сетей» [Текст] М: BHV, 2005г. - 325 с.

Приложение 1

транкинговый радиосвязь оператор tetra

Обобщенные сведения о системах стандартов EDACS, TETRA, APCO 25, Tetrapol, iDEN и их технические характеристики

Характеристика стандарта (системы) связи

Разработчик стандарта

Ericsson (Швеция)

Matra Communications (Франция)

Статус стандарта

корпоративный

открытый

открытый

корпоративный

корпоративный с открытой архи- тектурой

Основные производители радиосредств

Nokia, Motorola, OTE, Rohde&Schwarz

Motorola, E.F.Johnson Inc., Transcrypt, ADI Limited

Matra, Nortel,CS Telecom

Возможный диапазон рабочих частот, МГц

138-174; 403-423;

Разнос между частотными каналами, кГц

12,5 (передача данных)

Эффективная полоса частот на один речевой канал, кГц

Вид модуляции

C4FM (12,5 кГц) CQPSK (6,25 кГц)

Метод речевого кодирования и скорость речепреобразования

адаптивное многоуровневое кодирование (преобразование 64Кбит/с и компрессия до 9,2 Кбит/с)

(4,8 Кбит/с)

(4,4 Кбит/с)

(7,2 Кбит/с)

Скорость передачи информации в канале,

7200 (28800 - при передаче 4-х информационных каналов на одной физичекой частоте)

9600 (до 32К при передаче данных в пакетном режиме)

Время установления канала связи, с

0,25 (в однозоновой системе)

0,2 с - при индив. вызове (min); 0,17 с - при групповом вызове (min)

0,25 - в режиме прямой связи; 0,35 - в режиме ретрансляции; 0,5 - в радио- подсистеме

не более 0,5

не более 0,5

Метод разделения каналов связи

Множественный доступ с временным разделением каналов (с использованием частотного разделения в многозоновых системах)

Частотный метод доступа к каналам связи

Частотный метод доступа к каналам связи

Множественный доступ с временным разделением каналов

Вид канала управления

выделенный

выделенный или распределенный (в зависимости от конфигурации сети)

выделенный

выделенный

Выделенный или распре- деленный (в зависимости от конфигурации сети)

Возможности шифрования информации

стандартный фирменный алгоритм сквозного шифрования

1) стандартные алгоритмы; 2) сквозное шифрование

4 уровня защиты информации

1) стандартные алгоритмы;

2) сквозное шифрование

нет сведений

Приложение 2

Функциональные возможности, предоставляемые системами стандартов цифровой транкинговой радиосвязи

Функциональные возможности системы связи

Поддержка основных видов вызова (индивид., групповой, широковещ.)

Выход на ТФОП

Полнодуплексные абонентские терминалы

Передача данных и доступ к централизованным базам данных

Режим прямой связи

Автоматическая регистрация мобильных абонентов

Персональный вызов

Доступ к фиксированным сетям IP

Передача статусных сообщений

Передача коротких сообщений

Поддержка режима передачи данных о местоположении от системы GPS

Факсимильная связь

Возможность установки открытого канала

Множественный доступ с использованием списка абонентов

Наличие стандартного режима ретрансляции сигналов

Наличие режима «двойного наблюдения»

Приложение 3

Выполнение специальных требований к системам радиосвязи служб общественной безопасности

Специальные услуги связи

Приоритет доступа

Система приоритетных вызовов

Динамическая перегруппировка

Избирательное прослушивание

Дистанционное прослушивание

Идентификация вызывающей стороны

Вызов, санкционированный диспетчером

Передача ключей по радиоканалу (OTAR)

Имитация активности абонентов

Дистанционное отключение абонента

Аутентификация абонентов

Приложение 4

Проекты ТЕТРА в России

Регион обслуживания

Заказчик

о. Валаам

Русская православная церковь

Ленинградская область

Ленинградская АЭС

г. Междуреченск, Кемеровская область

Угольная компания "Южный Кузбасс"

Rohde&Schwarz Bick Mobilfunk , ACCESSNET-T

г. Нижний Новгород

Главное управление дорожного и транспортного хозяйства Нижегородской области

Sepura, Motorola

г. Ноябрьск

ОАО "Сибнефть" ("Ноябрьскнефтегаз" и Омский НПЗ)

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola, Nokia

г. Санкт-Петербург

ЗАО "РадиоТел"

В процессе установки (заключение контракта)

Регион обслуживания

Заказчик

Производитель сетевой инфраструктуры, система

Производитель абонентского оборудования

Балтийский нефтепровод (Ярославль-Приморск)

Компания "Транснефть"

г. Москва

Министерство обороны

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola

Омская область

ОАО "Сибнефть" (Омский НПЗ)

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola, Nokia

Калининградская область

Министерство обороны

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Sepura, Motorola

Самарская область

("Средняя Волга")

Свердловская область

МПС Свердловская ж/д

Rohde&Schwarz Bick Mobilfunk, ACCESSNET-T

Тульская область

Черепетская ГРЭС

Motorola, Compact TETRA

Северо-Западный регион России

"Транснефть"

Метрополитен Санкт-Петербурга

Министерство транспорта

Поволжский регион

"Газпром"

Н.Новгород

Метрополитен г. Казань

Министерство транспорта

Размещено на Allbest.ru

Подобные документы

    Структура Кандыагашской дистанции сигнализации и связи. Необходимость перехода на цифровые стандарты радиосвязи. Проектирование и строительство системы TETRA на участке железной дороги Кандыагаш-Никельтау. Функции и технические характеристики стандарта.

    дипломная работа , добавлен 16.04.2014

    Сложность проведения мероприятий по противодействию террористическим угрозам. Программы развития системы радиосвязи органов внутренних дел. Характеристика систем радиосвязи ОВД. Радиотелефонная система общего пользования, сотовая и радиорелейная связь.

    реферат , добавлен 27.03.2009

    Состояние и перспективы развития средств беспроводной связи на железнодорожном транспорте. Оборудование сети мониторинга поездной радиосвязи в ОАО "РЖД" (ЕСМА). Структурная схема мониторинга, технические параметры радиостанций поездной радиосвязи.

    дипломная работа , добавлен 15.05.2014

    Радиосвязь - связь, в которой носителем сигнала используются радиоволны в пространстве; диапазоны частотной сетки односторонней и двухсторонней радиосвязи. Профессиональные радиостанции; отраслевая специфика и классификация решений мобильной радиосвязи.

    контрольная работа , добавлен 24.06.2012

    Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.

    презентация , добавлен 20.10.2014

    Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа , добавлен 24.06.2011

    Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа , добавлен 16.12.2012

    Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.

    контрольная работа , добавлен 18.09.2010

    Tехнико-эксплуатационная характеристика Гомельской дистанции сигнализации и связи. Цифровой стандарт радиосвязи GSM-R. Проектирование сети GSM-R на участке дороги Минск-Гудогай. Гигиеническая оценка и нормирование СВЧ-излучений, их влияние на человека.

    дипломная работа , добавлен 30.05.2013

    Изучение предназначения аппаратуры цифровой радиосвязи. Сравнение радиомодемов МЕТА и Риф Файндер-801 методом анализа иерархии. Расчет матриц сравнения и приоритетов, рыночной стоимости радиомодема. Методы передачи, кодирования и синхронизации сигнала.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Филиал Нижегородский

Электронная письменная предзащита

Дисциплина

Информатика и ВТ

Перспективы развития телекоммуникационных систем в России

Фамилия выпускника

Васильева Елена Александровна

Содержание

  • Введение
  • Основная часть
  • 1.2 Беспроводная связь
  • 2.3 Спутниковая связь РФ
  • 2.4 Интернет
  • 2.5 Сотовая связь в России
  • 3. Телекоммуникационные сети
  • 3.1 Современные тенденции развития телекоммуникационных сетей
  • 3.2 Транспортный уровень
  • 3.3 Беспроводный IP-доступ
  • Заключение
  • Глоссарий
  • Список использованных источников

Введение

На сегодняшний день потребность в общении, в передачи и хранении информации возникает всё в больше и больше, это связано с развитием человеческого общества.

Новые условия жизни дают нам понять, что информационная сфера деятельности человека является определяющим фактором интеллектуальной, экономической и оборонной возможностей государства и человеческого общества в целом.

Создание всей совокупности материальных и политических условий в области связи привели к взрыву в области информации и перевороту в образе мыслей и действий людей. В настоящее время люди, общаясь друг с другом, за счет интеллектуальной речевой активности снабжают ноополе, являющееся аналогом Интернета, морфологическими языковыми структурами, которые управляют жизнью на земле.

Актуальность данной темы состоит в том, что для развития общества, необходимо внедрение инновационных систем. Это связанно с тем, что человечество переходит на новый уровень общения и передачи информации. Теперь для того, что бы передать сообщение нет необходимости находиться на близком расстоянии. Есть возможность передавать информацию из разных точек планеты. Коммуникационные системы оказывают большое влияние на все сферы жизни человека. России необходимо финансировать развитее коммуникационных систем, т.к. государство стоит на ступень ниже, в сравнении с мировыми тенденциями. Развитие связи в начале ХХI века характеризуется следующими понятиями: универсализация, интеграция, интеллектуализация - в части технических средств и в сетевом плане; глобализация, персонализация - в части услуг. Прогресс в области связи основан на разработке и освоении новых телекоммуникационных технологий, а также на дальнейшем развитии и совершенствовании еще не исчерпавших свой потенциал существующих. Последние годы в России с точки зрения развития телекоммуникаций не были стабильными. Им предшествовал мировой кризис в области телекоммуникаций, который привел к снижению темпов роста. Тем не менее даже в этот период развивались и внедрялись новые телекоммуникационные технологии. В течение этого периода в рамках ОАО "Связьинвест" была проведена структуризация бывших сетей электросвязи в сторону их укрупнения, созданы сильные, высоко капитализированные, прибыльные и конкурентно-способные компании. В результате в России существует семь межрегиональных компаний (МРК), а на телекоммуникационном рынке действует около 6500 зарегистрированных новых операторов. В июне 2003 года Государственной думой РФ был принят новый федеральный закон "О связи", введенный в действие с 1 января 2004 года. С этим связано по существу завершение одного этапа развития связи в России и начало нового этапа.

Модернизация сетей наземного эфирного вещания путем перехода на цифровые технологии является мировой тенденцией, которой следует и Российская Федерация. Переход на цифровое вещание в России не только позволит обеспечить население многопрограммным вещанием заданного качества, но и окажет стимулирующее воздействие на развитие рынков СМИ, связи и производства отечественного теле - и радиооборудования, создание инфраструктуры производственно-внедренческих, сбытовых и сервисных организаций, дальнейшее развитие малого и среднего предпринимательства и развитие конкуренции в данной сфере. Основной целью, согласно Концепции развития телерадиовещания в Российской Федерации на 2008 - 2015 годы, является обеспечение населения многопрограммным вещанием с гарантированным предоставлением общедоступных телевизионных каналов и радиоканалов заданного качества, что позволит государству полнее реализовать конституционное право граждан на получение информации.

Объектом исследования данной выпускной квалификационной работы являются телекоммуникационные системы.

Предметом исследования является анализ развития телекоммуникационных систем.

Цель выполнения данной выпускной квалификационной работы является рассмотрение перспектив развития телекоммуникационных систем.

Основная часть.

телекоммуникационная сотовая спутниковая связь

1. История развития телекоммуникаций

1.1 Волоконно-оптические системы связи

Развитие электрических систем передачи информации началось с изобретения П.Л. Шиллингом в 1832 году телеграфной линии с использованием иголок. Медный провод использовался как линия связи. Такая линия обеспечивала скорость передачи информации - 3 бит/с (1/3 буквы). Первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы). В 1860 г. была изобретена печатающая телеграфная система. Она обеспечивала скорость - 10 бит/с (1 буква). Уже в 1874 г. система шестикратного телеграфного аппарата Бодо обеспечивала скорость передачи - 100 бит/с (10 букв). Первые телефонные линии были построены на основе изобретенного в 1876 году Беллом телефона. Они обеспечивали скорость передачи информации 1000 бит/с (1кбит/с - 100 букв).

Первая телефонная цепь использованная на практике была однопроводной с телефонными аппаратами, включенными на ее концах Громаков, Ю.А. Сотовые системы подвижной радиосвязи. Технологии электронных коммуникаций / Ю.А. Громаков. - М.: Эко-Трендз, 1994. С-132. . Такой способ требовал большого количества соединительных линий и самих телефонных аппаратов. Это устройство в последствии в 1878 году было заменили коммутатором, позволившим соединить несколько телефонных аппаратов через единое коммутационное поле. Первоначально используемые однопроводные цепи с заземленным проводом были заменены двухпроводными линиями передачи до 1900года. Несмотря на изобретение коммутатора, каждый абонент имел свою линию связи. Поэтому необходимо было придумать способ, позволяющий увеличить количество каналов без прокладки дополнительных тысяч километров проводов. Первая коммерческая система уплотнения была создана в США. Благодаря этому устройству в 1918 году между Балтимором и Питсбургом начала работать четырехканальная система с частотным разделением каналов. Большинство разработок было направлено на увеличение эффективности систем уплотнения воздушных линий и многопарных кабелей. Именно по этим двум средам передачи были организованы почти все телефонные цепи до второй мировой войны.

В 1920 году была изобретена шести-двенадцати канальная система передачи. Это увеличило скорость передачи информации в заданной полосе частот до 10 000бит/с, (10кбит/с - 1000 букв). Верхние граничные частоты воздушных и многопарных кабельных линий составляли соответственно 150 и 600 кГц. Потребности передачи больших объемов информации требовали создания широкополосных систем передачи.

В 30-40 годах ХХ века были введены в обращение коаксиальные кабели. В 1948 году между городами, находящимися на атлантическом и тихоокеанском побережьях США, была введена в эксплуатацию коаксиально-кабельная система L1. Эта система позволила увеличить полосу пропускания частот линейного тракта до 1,3 МГц, и это обеспечило передачу информации по 600 каналам.

После второй мировой войны начали проводить активные исследования по совершенствованию коаксиально-кабельных систем. Изначально коаксиальные цепи прокладывались отдельно, но позднее их объединили в несколько коаксиальных кабелей в общей защитной оболочке. Например, американская фирма Белл разработала в 60-е годы ХХ века межконтинентальную систему с шириной полосы 17,5 МГц (3600 каналов по коаксиальной цепи или "трубке").

В СССР, в то же время разрабатывалась система К-3600 на отечественном кабеле КМБ 8/6, имеющем 14 коаксиальных цепей в одной оболочке. Через какое-то время изобретают коаксиальную систему с шириной полосы пропускания 60 МГц. Это обеспечивало емкость 9000 каналов в каждой паре. В общей оболочке объединены 22 пары.

Коаксиальные кабельные системы большой емкости использовались для связи между двумя близко расположенными центрами с высокой плотностью населения. Однако стоимость строительства таких систем была высокой. Это происходило из-за малого расстояния между промежуточными усилителями и вследствие большой стоимости кабеля и его прокладки. По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией.

Ньютон впервые ввел понятие о свете как о потоке частиц.А. Эйнштейн на основе теории Планка возродил в новой форме в 1905 году корпускулярную теорию света, которую теперь принято называть квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения. Благодаря этому впоследствии были созданы квантовые усилители. В 1951 году советские ученые В.А. Фабрикант, М.М. Вудынский и Ф.А. Бутаева получили патент на открытие принципа действия оптического усилителя. В 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г.Н.Г. Басов и А.М. Прохоров предложили теоретически обоснованный проект молекулярного газового генератора. В 1954 году, независимо от них, Гордон, Цейгер и Таунс опубликовали сообщение о создании действующего квантового генератора на пучке молекул аммиака. В 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году этот усилитель был собран Сковелем, Фехером и Зайделем. Построенные до 1960 г. квантовые генераторы и усилители получили название мазеров. Это название происходит от первых букв английских слов "Microwave amplification by stimulated emission of radiation", что означает "усиление микроволн с помощью вынужденного излучения".

Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле - рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н.Г. Басовым, О.Н. Крохиным и Ю.М. Поповым Измайлов, Ю.Д. Развитие российской государственной группировки спутников связи и вещания / Ю.Д. Измайлов // Технологии и средства связи. Спутниковая связь и вещание. - 2008. - С. - 54 .

Первый газовый (гелий-неоновый) генератор был создан в 1961 году Джанаваном, Беннетом и Эрриотом. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. После создания первых мазеров и лазеров их стали использовать в системах связи.

Волоконная оптика появилась в начале 50-х годов как новое направление техники. В то же время стали делать тонкие двухслойные волокна из прозрачных материалов (стекло, кварц и др.). К этому времени было доказано, что если соответствующим образом выбрать оптические свойства внутренней и наружной частей такого волокна, то луч света, введенный во внутрь, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть, луч по прежнему будет удерживаться внутри сердечника. Таким образом, световой луч, попадая в оптическое волокно, способен распространяться по любой криволинейной траектории. Этот процесс аналогичен, текущему по металлическому проводу, электрическому току. Поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна очень гибкие и тонкие, но не смотря на это прочны (прочнее стальных нитей того же диаметра). Световоды 50-х годов были недостаточно прозрачны, и при длине 5-10 м свет в них полностью поглощался.

В 1966 г. была предложена идея о возможности использования световодов для целей связи. Благодаря техническим разработкам в 1970 г. было добыто сверхчистое кварцевое волокно, способное пропустить световой луч на расстояние до 2 км. В этом же году началось стремительное развитие волоконно-оптической связи. Появились новые методы изготовления волокон; создаются миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т.п.

К 1973-1974 гг. расстояние, проходимое лучом по оптоволокну, достигло 20 км, а к началу 80-х годов 200 км. В то же временя скорость передачи информации по ВОЛС возросла в несколько миллиардов бит/с. Выяснилось, что ВОЛС имеют целый ряд достоинств.

На световой сигнал не влияют внешние электромагнитные помехи. Сигнал невозможно подслушать или перехватить. Волоконные световоды имеют отличные технические и экономические показатели: применяемые материалы имеют малую удельную массу, не нуждаются в тяжелых металлических оболочках; просты при прокладке, монтаже, эксплуатации. Волоконные световоды, как и обычные электрические провода, можно закладывать в подземную кабельную канализацию, монтировать на высоковольтных ЛЭП или силовых сетях электропоездов, а также совмещать с любыми другими коммуникациями. В отличие от электрических цепей, характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий. В волоконных световодах не бывает искрение и замыкание, что открывает возможность использования их во взрывоопасных и подобных им производствах.

Важное значение в распространении ВОЛС имеет экономический фактор. В конце двадцатого века волоконные линии связи имели одинаковую стоимость с проводными линиями Фролов А.В., Фролов Г.В. Локальные сети персональных компьютеров. - М.: "Диалог-МИФИ"2002. С-45 . Но со временем, учитывая дефицит меди, положение непременно изменится. Это убеждение основано на неограниченных сырьевых ресурсах кварца, который является основным материалом световода, тогда как основу проводных линий составляют такие металлы, как медь и свинец. В настоящее время оптические линии связи доминируют во всех телекоммуникационных системах, начиная от магистральных сетей до домовой распределительной сети. Благодаря развитию оптико-волоконных линий связи активно внедряются мультисервисные системы, которые дают возможность довести до конечного потребителя в одном кабеле телефонию, телевидение и Интернет.

1.2 Беспроводная связь

Пейджинговая связь - это радиотелефонная связь когда, пересылка по телефону продиктованных абонентом-отправителем сообщений и прием их по радиоканалу абонентом-получателем обеспечивается с помощью пейджера - радиоприемника с жидкокристаллическим дисплеем. На пейджере высвечиваются принятые послания. Суть пейджинговой связи заключалась в том, что абонент посылает сообщение на коммутатор, где производится его запись, которая затем передается другому абоненту. Первый пейджер был разработан в 1956 году в Англии. В то время количество абонентов не могло превышать 57. Пейджеры содержали несколько настроенных контуров. Эти контуры отслеживали характерную последовательность низкочастотных сигналов, при получении которых устройство подавало звуковые сигналы. Пейджеры такого вида называют тональными. При получении тонового сигнала абонент должен был поднести устройство к уху и прослушать сообщение, которое передавал диспетчер.

Сети, в то время, носили местный характер и ими пользовались в основном врачи, служащие аэропортов. Некоторые подобные сети существуют и сегодня для нужд конкретных служб.

К концу 2000 года число владельцев пейджеров в европейских странах превысило 20 миллионов.

История пейджинговой связи началась в конце 1960-х годов еще в СССР. Системы персонального радиовызова широко использовались отдельными государственными структурами. Например пейджер использовался в 1980 году во время московской Олимпиады. Пейджер активно использовали в качестве инструмента общения до тех пор, пока не появились сотовые телефоны - средство двухсторонней связи.

С тех пор, как появилась сотовая связь, развитие пейджера остановилось. В больших городах пейджинговые компании закрылись, уступив место операторам сотовой связи. Лишь в некоторых регионах пейджинговая связь сохранилась, а число клиентов пейджинговых компаний не превышает ста тысяч.

Связь называют мобильной, если источник информации и получатель перемещаются в пространстве. Радиосвязь является мобильной. Первые радиостанции предназначались для связи с подвижными объектами-кораблями. Первый прибор радиосвязи созданный А.С. Поповым был установлен на броненосце "Адмирал Апраксин". В те годы беспроводная связь требовала громоздких приемопередающих устройств. Это тормозило распространение индивидуальной радиосвязи даже в Вооруженных силах, не говоря уже о частных клиентах.17 июня 1946 года в Сент Луисе, США, компания Southwestern Bell запускают первую радиотелефонную сеть для частных клиентов и тут же становится лидером телефонного бизнеса. Основанием аппаратуры являлись ламповые электронные приборы, из-за этого аппаратура была очень громоздкой и устанавливалась только в автомобилях. Но несмотря на это на видимые неудобства, количество пользователей мобильной связи стремительно росло. Это в свою очередь создало новую проблему. Радиостанции, работающие на близких по частоте каналах, создавали помехи друг другу. Это значительно ухудшало качество связи. Для массового внедрения требовалось решить эту проблему.

В 1947 году был изобретен транзистор, заменивший электронные лампы, и обладающий значительно меньшими размерами. Это оказало огромное значение для дальнейшего развития радиотелефонной связи и создало предпосылки широкого внедрения мобильного телефона. Но снизить влияние взаимных помех можно было только изменив принцип организации связи. Мур, М. Телекоммуникации М. Мур, Т. Притски, К. Риггс, П. Сауфвик. - СПб: БХВ-Петербург, 2005. С-90

В 40-е годы прошлого века, благодаря исследованию ультракоротковолнового диапазона волн, удалось установить его основное преимущество над короткими волнами - широкодиапазонность. Но имелся и серьезный недостаток - сильное поглощение радиоволн средой распространения. Ультракороткие радиоволны не способны огибать земную поверхность, поэтому связь обеспечивалась только на линии прямой видимости, и даже при мощном передатчик дальность связи достигала лишь 40 км. Именно этот недостаток в 1947 году использовал сотрудник американской компании Bell Laboratories Д. Ринг. Он предложил новую идею организации связи. Она заключалась в разделении пространства на небольшие участки - соты радиусом 1-5 километров и в отделении радиосвязи в пределах одной ячейки от связи между ячейками. Повторение частот позволило разрешить проблему использования частотного ресурса. Это позволяло использовать одни и те же частоты в разных сотах распределенных в пространстве. Эта конструкция выглядела так: в центре отдельной ячейки располагалась базовая приемно-передающая радиостанция, которая обеспечивала радиосвязь в пределах ячейки со всеми абонентами. Размеры соты определялись максимальной дальностью связи радиотелефонного аппарата с базовой станцией. Максимальный радиус получил название радиуса соты. Во время разговора сотовый радиотелефон соединяется с базовой станцией радиоканалом, по которому передается телефонный разговор. Абоненты связываются между собой через базовые станции, которые соединены друг с другом и с городской телефонной сетью общего пользования.

Для обеспечения бесперебойной связи при переходе абонента от одной зоны к другой потребовалось применение компьютерного контроля за телефонным сигналом, излучаемым абонентом. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Таким образом, центральной частью системы мобильной связи являются компьютеры, которые отыскивают абонента, находящегося в любой из сот, и подключают его к телефонной сети. Практическое применение сотовой связи стало возможным только после изобретения микропроцессоров и интегральных полупроводниковых микросхем, т.к. компьютерная техника была еще на таком уровне, что ее коммерческое применение в системах телефонной связи было затруднено.

Первый сотовый телефонный аппарат прототип современного аппарата сконструировал Мартин Купер (фирма Motorola, США) в 1973 году.

В 1983 году в Чикаго была запущена в работу сеть стандарта AMPS (Advanced Mobile Phone Service), который был разработан фирмой Bell Laboratories. В 1985 г., в Англии, был принят стандарт TACS (Total Access Communications System), являвшийся разновидностью американского AMPS. Через два года, из-за резко возросшего числа абонентов, был принят стандарт HTACS (Enhanced TACS), добавивший новые частоты и частично исправивший недостатки предшественника. Франция же стояла отдельно от всех и начала использовать собственный стандарт Radiocom-2000 с 1985 года. Следующим стал стандарт NMT-900, использующий частоты 900 МГц диапазона. Новая версия стала применяться в 1986 году. Она позволила увеличить число абонентов и улучшить стабильность системы. К концу 1980-х годов началось создание второго поколения систем сотовой связи, основанных на базе цифровых методов обработки сигналов.

В 1982 году Европейская Конференция Администраций Почт и Электросвязи (СЕРТ) создала группу под названием Groupe Special Mobile, целью которой была разработка единого европейского стандарта цифровой сотовой связи. Но только лишь через восемь лет были предложены спецификации стандарта. Просчитав перспективы развития сотовой связи в Европе и во всем мире, было принято решение выделить для нового стандарта и диапазон 1800 МГц. Этот стандарт получил название GSM - Global System for Mobile Communications. GSM 1800 МГц также носит название DCS-1800 (Digital Cellular System 1800). Стандарт GSM является цифровым стандартом сотовой связи. В нём реализовано временное разделение каналов (TDMA - множественный доступ с разделением по времени, шифрование сообщений, блочное кодирование, а также модуляция GMSK) (Gaussian Minimum Shift Keying). Райс Л. Эксперименты с локальными сетями: Пер. с англ. - М.: Мир,1999. - 268с.

Пескова, С.А. Сети и телекоммуникации - М., Изд-во Академия, 2007. С-143 В конце 90-х годов из-за развития Интернета многие пользователи сотовой связи захотели использовать свои телефоны как модемы, а существующих скоростей для этого было недостаточно. Чтобы поспеть за спросом своих клиентов в доступе к сети Интернет, инженеры изобретают WAP-протокол. WAP - это сокращенное название от Wireless Application Protocol, что переводится как протокол беспроводного доступа к приложениям. В принципе WAP - это упрощенная версия стандартного Интернет протокола HTTP, адаптированная под ограниченные ресурсы мобильных телефонов. Но этот протокол не дает возможность просматривать стандартные Интернет - страницы, они должны быть написаны на языке WML. Поэтому абоненты сотовых сетей получили весьма ограниченный доступ к Интернет-ресурсам. Еще одно неудобство состояло в том, что для доступа к WAP-сайтам использовался тот же канал связи, что и для передачи голоса, то есть пока вы загружаете или просматриваете страничку, канал связи занят, и с лицевого счета списываются те же деньги, что и во время разговора.

Производителям оборудования сотовой связи срочно пришлось искать способы увеличения скорости передачи данных. В результате этих изысканий на свет появилась технология HSCSD (High-Speed Circuit Switched Data), обеспечивающая скорость - до 43 килобит в секунду. С появлением GPRS вновь стали использовать WAP-протокол, так как доступ к небольшим по объему WAP-страницам становится во много раз дешевле, чем во времена CSD и HSCSD. Теперь многие операторы связи за небольшую ежемесячную абонентскую плату предоставляют неограниченный доступ к WAP-ресурсамсети.

С появлением GPRS сети сотовой связи перестали именоваться сетями второго поколения - 2G. Так произошло слияние сотового телефона, компьютера и сети Интернет. Разработчики и операторы предлагают нам все больше новых дополнительных услуг. Используя возможности GPRS, был создан новый формат передачи сообщений, который был назван MMS (Multimedia Messaging Service - Сервис Мультимедийных Сообщений). Он позволяет отправлять с сотового телефона не только текст, но и различную мультимедиа информацию, например, звукозаписи, фотографии и даже видеоклипы. Причем MMS-сообщение может быть передано как на другой телефон, поддерживающий этот формат, так и на электронную почту. С увеличением мощности процессоров телефонов, появляется возможность загружать и запускать на нем различные программы. Основным языком для их написания является язык Java2ME. Владельцам большинства современных телефонов теперь не составляет труда подключиться к сайту разработчиков Java2ME приложений и закачать на свой телефон, например, новую игру или другую необходимую программу. Также никого не удивит возможность подключения телефона к персональному компьютеру, для того чтобы, используя специальное программное обеспечение, чаще всего поставляемое вместе с трубкой, сохранить или отредактировать на ПК адресную книгу или органайзер; находясь в дороге, используя связку мобильный телефон + ноутбук, выйти в полноценный Интернет и просмотреть свою электронную почту. Однако наши потребности постоянно растут, объем передаваемой информации растет практически ежедневно. И все больше требований выдвигается к сотовым телефонам, вследствие чего ресурсов нынешних технологий становится недостаточно для удовлетворения наших возрастающих запросов.

Именно для решения этих запросов и предназначены, достаточно недавно созданные сети третьего поколения 3G, в которых передача данных доминирует над голосовыми услугами.3G - это не стандарт связи, а общее название всех высокоскоростных сетей сотовой связи, которые вырастут и уже вырастают из ныне существующих. Огромные скорости передачи данных позволяют передавать прямо на телефон высококачественное видеоизображение, осуществлять постоянное соединение с Интернет и локальными сетями. Применение новых, усовершенствованных, систем защиты позволяет уже сегодня использовать телефон для проведения различных финансовых операций - мобильный телефон вполне способен заменить кредитную карту.

Вполне естественно, что сети третьего поколения не станут финальным этапом развития сотовой связи - как говориться, прогресс неумолим. Ныне проходящая интеграция различных видов связи (сотовой, спутниковой, телевизионной и т.д.), появление гибридных устройств, включающих в себя сотовый телефон, КПК, видеокамеру, безусловно, приведет к появлению сетей 4G, 5G. И о том, чем закончится это эволюционное развитие, сегодня вряд ли смогут рассказать даже писатели-фантасты.

На мировом уровне сейчас используется около 2 миллиардов единиц мобильных телефонов, из них больше двух третей подключены к стандарту GSM. Вторым по популярности идёт CDMA, остальные же представляют специфические стандарты, применяемые в основном в Азии. Сейчас в развитых странах сложилась ситуация "пресыщения", когда спрос перестаёт расти.

2. Основные направления в развитии телекоммуникаций

2.1 Перспективы развития цифрового телевидения

Стандартное российское телевидение уже давно устарело. Оно вещает в стандарте Secam и обеспечивает 25 кадров в секунду при черезстрочной развёртке изображения. Количество точек в этом формате составляет 720Ч576. Другие страны вещают в различных версиях форматов PAL, отличающихся от Secam только способом кодирования цвет.

Самые развитые в технической области телевидения страны считаются: Япония, Мексика, Канада, Южная Корея, Тайвань, США и даже Гондурас. Они вещают в современном стандарте NTSC 3.58. Стандарт NTSC 3.58 даёт 29.97 кадров в секунду, при этом количество вертикальных строк уменьшается с 576 до 480.

Пять-десять лет назад начали вести разработку нового телевизионного стандарта HDTV. Перевод аббревиатуры HDTV означает High Definition Television на русский язык - телевидение высокой четкости.

Разрешение обычного телевизора, 720Ч480 или 345 600 пикселей. Разработчики формата HDTV достигли разрешения 1920Ч1080 или 2 миллиона пикселей. При этом изображение не просто передается покадрово, а кадры как бы частично накладываются друг на друга, что ещё более усиливает эффект четкости изображения. И есть все основания утверждать, что через год-два большинство каналов будет транслироваться в форматеHD. Кабельное телевидение пока не транслирует HD сигнал, но очевидно, что конкуренция со стороны компаний спутникового телевидения заставит кабельщиков прийти к HDTV.

HD телевизионные приёмники делятся на два вида. Это так называемые HDTV Upgradeable и HDTV Built-in. HD телевизоры Built-in имеют встроенный Through-the-air ресивер. Это позволяет принимать на обычную комнатную или наружную антенну передачи в формате HD.

Все HD телевизоры, за редким исключением, имеют PIP (Picture-in-Picture) - устройство, позволяющее одновременно смотреть два или несколько телеканалов. Поэтому те, кто может приобрести HDTV с Built-in ресивером, могут, имея спутниковую тарелку и HDTV ресивер, смотреть одновременно в формате HD и программы спутникового телевидения и программы VHF - каналов. Райс Л. Эксперименты с локальными сетями: Пер. с англ. - М.: Мир,1999. С-45.

В наше время практически в каждом доме есть DVD-плеер. Но к сожалению, даже на HD-телевизорах ещё нет возможности получить HD качество изображения при просмотре видео DVD. Однако, DVD-плеер, имеющий функцию Progressive Scan, позволяет получить разрешение 1280Ч1080=1.382.400 пикселей, что является очень высоким и почти приближающимся к HD, в то время как при отсутствии Progressive Scan зритель получает всего лишь 960Ч720=691.200 пикселей. Такие диски называются HDCD. На один диск DVD вмещается 2 - 4 часа видео в формате Mpeg 2 с размером кадра 720Ч576 для PAL и 720Ч480 для NTSC и с 6-канальным звуком качества 64 Кбит/с на канал (это очень мало). Формат же HD предусматривает скорость видеопотока Mpeg 2 со скоростью 28.8 Мбит/с, что в 3-4 раза больше чем у DVD. Такого большого носителя информации сегодня ещё нет. Совсем недавно выпустили лазерные диски под названием Blue-Ray, на которых вмещается около 24 Гбайт. Эти диски, в отличие от обычных, считываются синим лазером, отсюда и соответствующее название. Российские производители уже представили на выставке информационных технологий в Брюсселе CeiBT новейший оптический диск на основе ферромагнетика, вмещающий в себя 1Тбайт (это 1000 Гбайт, т.е. это около 212 DVD дисков), размеры которого всего лишь 13 см в диаметре и 2 мм в толщину.

2.2 Текущее состояние и перспективы развития кабельных систем

Самыми распространенными направляющими системами на сегодняшний день остаются симметричные кабели. Основной особенностью симметричных кабелей является наличие цепей, которые состоят из двух проводников, имеющие одинаковые конструктивные и электрические свойства. Кабели используют для того, чтобы передавать электромагнитную энергию в диапазоне частот 0-1 ГГц. Симметричные кабели связи стали использовать в сфере абонентского доступа. Это стало актуальным в связи с тем, что пользователям телефонных и компьютерных сетей требуется недорогой высокоскоростной доступ к сети Интернет. Операторы связи стали использовать оборудование на основе xDSL-технологии, чтобы предоставить клиентам широкий спектр услуг. Технологии xDSL дают возможность увеличить скорость обмена данными по кабелям городской телефонной сети до 56 Мбит/с. Но обычный телефонный кабель для этого не подходит, так как не позволяет добиться 100 % уплотнения. Это происходит, потому что существуют пары в кабеле, не отвечающие требованиям современных цифровых систем передачи по параметрам взаимной помехозащищенности.

Кабель марки ТП на сегодняшнее время является самым употребляемым. После 1995 г. в строительстве кабельных систем связи произошли существенные изменения. Теперь при строительстве перестали применять кабели с жилами 0,32 мм. Основной объем кабелей приходится на производство кабелей с жилами 0,4/0,5/0,7 мм. Это связано с тем, что при строительстве в городах ведется точечная застройка и длина абонентских линий увеличивается. Изолированные жилы в кабеле обычно скручены в пары или четверки с шагом не более100 мм, причем в четверке две жилы, расположенные по диагонали, образуют рабочую пару. Число пар от 5 до 2400 определяется в зависимости от марки кабеля.

Кабели для сельской телефонной сети предназначены для линий межстанционной сети и абонентской связи. Они используются в системах передачи с временным разделением каналов с импульсно-кодовой модуляцией и обеспечивающих скорость 2,048 Мбит/с при постоянном напряжении дистанционного питания до 500 В. В России производят следующие марки кабелей: КСПП, КСППБ, КСПЗП, КСПЗПБ. Токопроводящие медные жилы диаметром 0,9 и 1,2 мм изолированы полиэтиленом толщиной соответственно 0,7 и 0,8 мм с допуском 0,1 мм. Четыре изолированные жилы скручиваются в четверку с шагом 150 и 170 мм. Две жилы, расположенные по диагонали, образуют рабочую пару.

Низкочастотные междугородные симметричные кабели применяются на относительно коротких соединительных линиях, а также для устройства кабельных вводов и вставок в воздушные линии, в том числе с цепями, уплотняемыми в спектре до 150 кГц, а также для устройства соединительных линий АТС и между АТС и МТС.

Симметричные низкочастотные кабели имеют токопроводящие жилы диаметром 0,9 и 1,2 мм, диаметр поверх изоляции 1,9 и 2,4 мм. Четыре жилы скручены в четверку вокруг полиэтиленового корделя - заполнителя с шагом не более 300 мм. Низкочастотные кабели в зависимости от марки предназначены для прокладки в телефонных канализациях, коллекторах, тоннелях, шахтах, по мостам и в мягких устойчивых грунтах без повышенного электромагнитного влияния и опасности повреждения грызунами или непосредственно в грунтах всех категорий, не агрессивных к стальной броне и не подвержены мерзлотным деформациям.

Междугородные высокочастотные кабели (ВЧ) предназначены для эксплуатации на магистральных линиях, во внутризоновых первичных сетях и соединительных линиях городских телефонных сетей (ГТС). В настоящее время эти ВЧ кабели используются как в аналоговых системах передачи типа К-60, так и в цифровых системах передачи со скоростью 8448 кбит/с и 34 368 кбит/с, или в аналоговых системах передачи в частотном диапазоне до 5 МГц, работающих при переменном напряжении дистанционного питания до 960 в или постоянном напряжении до 1000 В. Токопроводящие жилы кабелей изготавливаются из медной проволоки диаметром 1,2 мм, обмотанной цветной полистирольной нитью (корделем) диаметром 0,8 мм и полистирольной лентой толщиной 0,045 мм, наложенной с перекрытием в сторону, противоположную направлению обмотки нитью. Четыре жилы с изоляцией различного цвета скручивают в четверку с заполнением в центре круглой полистирольной нитью и обматывают цветной хлопчатобумажной или синтетической пряжей или лентой. Шаги скрутки изолированных жил в четверку различные и не превышают 300 мм.

На сегодняшний день городские телефонные кабели типа ТПП, ТППэп, ТПппЗП, ТППэп-НДГ по объему производства остаются на одной из лидирующих позиций на рынке кабельной продукции, хотя просматривается тенденция к уменьшению спроса на них, так как по своим свойствам продукция не соответствует требованиям современного рынка информационных технологий. Поэтому доля использования медного кабеля в сетях связи будет уменьшаться за счет использования волоконно-оптических и беспроводных технологий.

Применение оптического и медного кабеля постепенно устанавливается в определенной пропорции: оптические - на магистральных участках, медные - ближе к абонентам. По мнению специалистов, такая тенденция останется в течение 10-15 лет.

2.3 Спутниковая связь РФ

В рамках новой Федеральной космической программы России до 2015 года ГПКС осуществляет строительство и запуск новых космических аппаратов. Система базируется на трех спутниках серии Экспресс-РВ. Срок службы системы 15 лет. Спутники кроме телекоммуникацонного обслуживания помогут обеспечить передачу сервисной информации (карта, погода, дифференциальные поправки, ГЛОНАСС и GPS). Новый состав спутников обеспечивает взаимное резервирование космических аппаратов на всей орбитальной дуге. Это гарантирует развитие и функционирование систем спутниковой связи и телерадиовещания в интересах государственных пользователей на всей территории нашей страны. Мур, М. Телекоммуникации М. Мур, Т. Притски, К. Риггс, П. Сауфвик. - СПб: БХВ-Петербург, 2005С-78

Развитие сети спутниковой связи характеризуется частотным ресурсом российской спутниковой группировки. К ней относятся самые значимые для российского рынка спутники. Группа имеет международную регистрацию под названием "Спутниковые сети "Экспресс". Частотный ресурс спутников связи "Горизонт" (и их аналога - первой серии космических аппаратов (КА)"Экспресс") в расчет не принят, так как данные спутники работают за пределами гарантированного срока службы.

К 2007 году ГПКС полностью перевело все транслируемые телерадиопрограммы с аналоговых на цифровые технологии. Через спутники ГПКС программы телерадиовещания распространяются на пять вещательных зон, с учетом временного сдвига. Пакет общероссийских программ доступен на всей территории России, а международные версии программ - и в странах Азиатско-Тихоокеанского и Атлантического регионов.

В соответствии с государственной программой развития цифрового телерадиовещания до 2015 г. в России ГПКС вводит в эксплуатацию новый центр компрессии сигналов телерадиопрограмм. Трансляция потока осуществляется в стандарте DVB-S2 и по стандарту MPEG-4 part 10. В настоящее время формирование и подъем на спутники пакетов общероссийских телерадиопрограмм осуществляется в стандарте MPEG-2/DVB-S. При таком стандарте в транспондере размещены всего 8 программ стандартного качества. Стандарт MPEG-4 в сочетании с DVB-S2 дает возможность передавать до 20 программ стандартного качества или 10 программ телевидения высокого качества в одном транспондере. Внедрение стандарта MPEG-4 создаст условия для перехода к телевизионным программам нового качества - телевидению высокой четкости (ТВЧ). Это в последствии даст возможность непосредственного телевизионного вещания со спутника, на мобильные терминалы конечных пользователей, в том числе и в интерактивном режиме.

Спутники, создаваемые ГПКС, будут обладать транспондерами с повышенной энергетикой для развития телевидения. Они должны помочь решению различных задач по построению сетей телерадиовещания, включая эволюцию мобильного телевидения. В конфигурацию новых космических аппаратов заложены по три перенацеливаемых антенны: одна - C-диапазона, две другие - Ku-диапазона. Благодаря улучшению энергетических характеристик новых спутников на 3-5 дБ, по сравнению с эксплуатируемыми космическими аппаратами "Экспресс-АМ", появится возможность применять наземные антенны около метра в диаметре. Все это позволит ГКПС оперативно реагировать на быстро изняющиеся потребности рынка и выйти на неосвоенные регионы.

Операторы наземных сетей спутниковой связи делятся на три основные категории: операторы интерактивных VSAT-сетей; операторы сетей типа "точка - точка"; операторы крупных корпоративных сетей. Развитие операторов интерактивных VSAT - сетей началось в 2003 г. благодаря применению новых VSAT-технологий типа DVB-RCS.

Операторы сетей типа "точка-точка" сформировались в 1990-х годах. Эти компании зачастую создавались крупными операторами, которые контролировали наземные сети общего пользования. Но самыми динамично развивающимися являются операторы интерактивных VSAT-сетей, в собственности которых находятся центральные станции этих сетей (HUB). С 2003 г. по 2008 г. в России построено не менее 20 центральных станций. Мультисервисные услуги базируются на перспективной технологии IPTV. Основным фактором ее развития послужило наличие большого числа центральных станций интерактивных сетей VSAT и то, что данную услугу можно предоставлять по низкоскоростным каналам связи, которых в России подавляющее большинство.

Таким образом, развитие сети спутниковой связи в России базируется на расширении спутниковой группировки и на совершенствовании методов обработки сигнала не только на центральных наземных станциях, но и непосредственно на космических аппаратах. Таким образом спутниковая как фиксированная, так и мобильная спутниковая мультисервисная связь может занять существенную долю рынка инфотелекоммуникационных услуг.

2.4 Интернет

Наиболее популярное направление развития Всемирной паутины - создание семантической паутины. Семантическая паутина - это надстройка над Всемирной паутиной, которая делает информацию, размещённую в сети, понятной для компьютеров. Семантическая паутина - это такая концепция, при которой каждое человеческое слово описано языком, понятным компьютеру. Благодаря Семантической паутине для любых приложений доступна структурированная информация. Программы пользуются ресурсами независимо от платформы и от языков программирования. Программы смогут обрабатывать информацию, а также делать выводы и принимать решения. При широком внедрении и грамотном использовании это может вызвать переворот в Интернете. В семантической паутине используется формат RDF (англ. Resource Description Framework), основанный на синтаксисе XML и использует идентификаторы URI для обозначения ресурсов. Он используется для того чтобы, описываемый ресурс стал понятен компьютеру. Также внедрили новый язык запросов для скорейшего доступа к данным RDF - это RDFS (англ. RDF Schema) и SPARQL (англ. Protocol And RDF Query Language) (читается "спамркл").

В настоящее время Всемирная паутина развивается по двум направлениям: семантическая и социальная паутина. Семантическая паутина улучшает связность и адекватное понимание информации во Всемирной паутине по средством введения новейших форматов метаданных. Социальная паутина упорядочивает информацию поставляемую самими пользователями Паутины.

Одним из выдающихся открытий в сфере связи стала Интернет-телефония. Началом ее зарождения считается 15 февраля 1995 года. В этот день фирма VocalTec запустила в продажу свой первый soft-phone - программу, для обмена звуковыми сообщениями по сети IP. В октябре 1996 года Microsoft запустил первую версию NetMeeting. А уже в 1997 году телефонные соединения через Интернет стали вполне привычными для людей, находящихся в разных точках планеты.

Чем же отличается обычная междугородная и международная телефонная связь от интернет-телефонии? Во время разговора абонент занимает целый канал связи, не смотря на то, говорит он или молчит. Так происходит при передаче голоса по телефону обычным аналоговым способом.

Во время цифрового способа информацию можно передавать отдельными "пакетами". Благодаря этому один канал связи можно использовать для рассылки информации одновременно от многих абонентов. Такое временное "пакетное уплотнение" позволяет намного эффективнее использовать существующие каналы связи, "сжимать" их. На одном конце канала связи информация делится на пакеты, каждый из которых, подобно письму, снабжается своим индивидуальным адресом. По каналу связи пакеты многих абонентов передаются "вперемежку". На другом конце канала связи пакеты с одним адресом снова объединяются и направляются своему адресату. Такой пакетный принцип широко используется в сети Интернет.

Подключив к персональному компьютеру микрофон и наушники, пользователь при помощи Интернет-телефонии может позвонить любому абоненту, у которого подключен городской телефон. Оплата в этом случае будет взиматься только за пользование Интернетом. Прежде чем пользоваться Интернет-телефонией абоненту нужно установить специальную программу на свой компьютер.

Воспользоваться Интернет-телефонией можно даже не имея персонального компьютера. Достаточно подключить обычный городской телефон с тональным набором. При наборе номера каждая набранная цифра уходит в линию в виде переменных токов разной частоты. Таким тоновым режимом снабжен практически любой современный телефонный аппарат. Чтобы воспользоваться Интернет-телефонией при помощи телефонного аппарата необходимо приобрести кредитную карточку, и позвонить на центральный компьютер-сервер по номеру указанному на карточке. После того автомат сервера дает голосовые команды: кнопками телефонного аппарата набрать серийный номер и ключ карточки, а также код страны и телефонный номер своего собеседника. При разговоре сервер превращает аналоговый сигнал в цифровой, отправляет его в другой город, в находящийся там сервер, который снова преобразует цифровой сигнал в аналоговый и отправляет его нужному абоненту. При этом абоненты разговаривают как по обычному телефону.

В 2003 году была запущена программа Skype. Она очень проста в установке и использовании, при этом совершенно бесплатная. Программа позволяет не только разговаривать, но и видеть собеседников, находящихся у своих компьютеров в разных концах света. Для того чтобы при разговоре имелось видеоизображение собеседников, компьютер каждого из них должен быть снабжен web-камерой. Этот тип связи позволяет практически мгновенно связаться двум людям, находящимся в любых точках нашей планеты. При этом, несмотря на различные расстояния, у абонентов создается ощущение личного общения.

2.5 Сотовая связь в России

Первая в России сотовая сеть появилась в 1991 г., когда свою работу в аналоговом стандарте NMT-450i начала компания "Дельта Телеком".

За это время в нашей стране поработали различные фирмы, использовавшие все стандарты сотовой связи. Самым используемым продуктом, которые продавали эти сети, был голосовой трафик - об SMS, о дополнительных информационно-развлекательных сервисах задумывались мало, а для скоростной передачи данных не было ни скоростных протоколов, ни желания покупать соответствующее оборудование.

Из-за августовского кризиса 1998 г. операторы потеряли много клиентов, что пошатнуло экономику сотовых компаний. Чтобы спастись от разорения все сотовые операторы начали разработку проектов для потребителей с невысоким уровнем доходов. Первым среди них оказался "ВымпелКом", который осенью 1999 г. предложил не дорогой пакет услуг под названием "Би+".

В 2000 г. МТС и "ВымпелКом" первыми стали использовать в своих сетях WAP-сервис. С помощью WAP-сервиса абоненты могли загружать данные со специальных WAP-сайтов, размещенных в Интернете, воспользовавшись своим сотовым телефоном. Информация была такой же как на WEB-сайтах, но адаптирована для маленьких экранов сотовых телефонов. В период с 2000 по 2005 г. г. можно выделить две тенденции развития. Во-первых, по всей территории России стали развиваться GSM-компании.

Во-вторых, сотовые операторы стали активно бороться за корпоративных абонентов. Операторы организовали специальные отделы, которые привлекали крупных пользователей скидками, дополнительными льготами по оплате, индивидуальным набором услуг, а так же сервисами передачи данных по технологии GPRS. Оператор "СкайЛинк" был основан в июле 2003 г. для консолидации региональных операторов NMT-450 и реализации проекта по созданию единой федеральной сети сотовой связи стандарта IMT-MC-450 (технология CDMA2000 1X). "СкайЛинк" использует скоростную технологию передачи данных EV-DO (в среднем в 9-10 раз более быстрой, чем GPRS). Благодаря этому корпоративные клиенты, у которых есть реальная потребность в организации и использовании мобильного офиса без проводов, становятся его клиентами.

Сегодня мобильной связью охвачено огромное количество абонентов - по мнению аналитиков "Евросети", определяющих данный показатель по количеству продаж мобильных терминалов, это около 70% населения страны, а по данным IKS-Consulting и J`son&Partners, которые в качестве основы для анализа используют количество проданных SIM-карт, - все 100%. Однако свое дальнейшее развитие операторы видят в строительстве сетей следующего поколения (3G) - именно они призваны обеспечить более высокую, чем это может EDGE, скорость передачи данных. Будущее, по мнению аналитиков, именно за дополнительными сервисами (видеозвонки и передача "тяжелого" контента - фильмов, результатов видеонаблюдения, качественного звука в формате mp3 и т.д.), поскольку передача голоса, как доминирующая услуга, постепенно начинает терять вес - зарабатывать в этом сегменте операторам все сложнее.

"ВымпелКом" и другие сотовые операторы "большой тройки" в 2007 г получили лицензии на услуги сотовой связи 3G, включая Москву и Московскую область. Однако к развертыванию этих сетей в Москве операторы не могут приступить до согласования с Министерством обороны вопроса о высвобождении или совместном использовании радиочастот диапазона 2,1 ГГц, которые, в том числе, задействованы в системах ПВО.

Порядок выдачи разрешений на использование радиочастот требует совершенствования, считают эксперты, готовящие изменения в "стратегию-2020". "Сегодня из-за рассогласованности в работе регуляторов на получение разрешения на использование радиочастот оператору требуется в среднем один год. В то же время монтаж одной базовой станции <. > в среднем осуществляется за два месяца". Чтобы решить эту проблему, эксперты предлагают передать проведение экспертизы ЭМС и назначение номиналов частот в Минкомсвязи.

"Для следования мировым тенденциям развития отрасли необходимо проводить политику технологической нейтральности в вопросах использования радиочастотного спектра", - пишут эксперты и предлагают поправить соответствующим образом закон "О связи". Они предлагают также внести поправки в закон "О связи", чтобы полученная на торгах лицензия уже давала право на использование радиочастот, расширить основания для проведения аукционов. В апреле 2011 г. правительство утвердило план мероприятий по сокращению избыточного госрегулирования в отрасли связи. По нему в I квартале 2012 г. в таблицу распределения полос частот в России должны быть внесены изменения, которые разделят полосы совместного использования на полосы преимущественно гражданского и правительственного использования. В связи с этим предстоят большие баталии с военным ведомством, говорит близкий к ГКРЧ источник. По его словам, военные уже заявили, что хотят получить 90% из этих полос, но Минкомсвязи будет настаивать, чтобы полосы, используемые Минобороны для связи, а не для прямых военных нужд, например радиолокации, переводились в гражданский диапазон.

Подобные документы

    Технические и технологические тенденции развития электросвязи. Функциональные требования к архитектуре и концептуальная модель интеллектуальных сетей (IN), характеристика ее уровней. Состояние и перспективы развития сотовой связи, обзор ее стандартов.

    реферат , добавлен 11.08.2011

    Формирование современной инфраструктуры связи и телекоммуникаций в Российской Федерации. Направления развития цифрового, кабельного и мобильного телевидения. Наземные и спутниковые сети цифрового телерадиовещания. СЦТВ с микроволновым распределением.

    контрольная работа , добавлен 09.05.2014

    Изучение основного назначения симметричных кабелей, которые используются для передачи электромагнитной энергии в диапазоне частот 0-1 ГГц. Перспективы развития цифровых радиорелейных линий. Основные направления применения радиолиний. Технологии xDSL.

    реферат , добавлен 26.01.2011

    Изучение функционирования систем связи, которые можно разделить на: радиорелейные, тропосферные, спутниковые, волоконно-оптические. Изучение истории возникновения, сфер применения систем связи. Спутниковые ретрансляторы, магистральная спутниковая связь.

    реферат , добавлен 09.06.2010

    Понятие и структура коммуникаций. Способы перемещения информации. Динамика развития средств коммуникаций за последние годы: интернет, радио, телевидение, спутниковая и сотовая связь. Состояние и перспективы развития коммуникаций Оренбургской области.

    курсовая работа , добавлен 08.12.2014

    История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа , добавлен 23.03.2015

    Устройство жидкокристаллических, проекционных и плазменных телевизоров. Перспективы развития цифрового телевидения в России. Высокая четкость трансляций и интерактивное телевидение. Экономическая эффективность проекта внедрения цифрового телевидения.

    курсовая работа , добавлен 04.01.2012

    Классификации и наземные установки спутниковых систем. Расчет высокочастотной части ИСЗ - Земля. Основные проблемы в производстве и эксплуатации систем приема спутникового телевидения. Перспективы развития систем спутникового телевизионного вещания.

    дипломная работа , добавлен 18.05.2016

    Понятие сотовой связи, особенности ее современного развития. Типологическое районирование по уровню развития сотовой связи, динамика распространения на территории России. География развития и тенденции развития рынка сотовой связи в Российской Федерации.

    курсовая работа , добавлен 18.07.2011

    Перспектива развития волоконно-оптических систем передачи в области стационарных систем фиксированной связи. Расчет цифровой ВОСП: выбор топологии и структурной схемы, расчет скорости передачи, подбор кабеля, трассы прокладки и регенерационного участка.

Введение

Системы транкинговой радиосвязи, представляющие собой радиальнозоновые системы подвижной УКВ радиосвязи, осуществляющие автоматической распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности, транспортными и энергетическими компаниями различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи общего пользования, отличающихся друг от друга методом передачи речевой информации (аналоговые и цифровые), типом многостанционного доступа, временным или кодовым, способом поиска и назначения канала (с децентрализованным и централизованным управлением), типом канала управления (выделенный и распределенный) и другими характеристиками.

Мы живем в такое время, когда доступ к информации является важнейшим фактором обеспечения оперативности и эффективности работы организаций. Поэтому необходимо обеспечить соответствие уровня мобильного доступа к информации растущему уровню мобильности современных организаций. Это касается и доступа в Интернет, и использование решений на базе Интернета.

С начала 90-х гг. системы "СмартЗона" устанавливаются по всему миру. "Скотланд Ярд" и ЮКОС, муниципалитет Рима и МВД России, транспортные предприятия и коммерческие операторы по достоинству оценили возможности системы, способной обеспечить связь через границы не только городов или областей, но и стран. Каждый из многочисленных пользователей находит в системе достоинства, привлекательные для него в первую очередь. Засекречивание речи и передача данных, непрерываемый телефонный разговор и телеметрия, диспетчеризация парка абонентов и многое другое заставили более миллиона человек сделать выбор в пользу систем семейства "СмартНет", к которому относится "СмартЗона"

Современные цифровые транкинговые системы радиосвязи знаменуют новый этап в развитии подвижной радиосвязи в России, да и во всем мире. По сравнению с сотовыми системами подвижной радиосвязи транкинговые оказываются в ряде случаев более экономичными, отличаясь многообразием реализаций в рамках одного стандарта при использовании оборудования от различных фирм-производителей.

Главная задача данной курсовой работы рассмотреть перспективы развития транкинговой связи (различных стандартов) в мире и в России в целом.

1. Транкинговая радиосвязь. Основные понятия

Системы транкинговой радиосвязи, представляющие собой радиально-зоновые системы подвижной УКВ-радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети.

Цифровые стандарты транкинговой радиосвязи пока не получили широкого распространения в России, но уже сейчас можно говорить об их активном и успешном внедрении.

Цифровая транкинговая связь характеризуется такими характеристиками как (имеет такие преимущества как)

Высокая оперативность связи.

Передача данных.

Безопасность связи.

Услуги связи.

Возможность взаимодействия. Для служб общественной безопасности особенно актуальным является требование по обеспечению возможности взаимодействия подразделений различных ведомств для координации совместных действий при чрезвычайных ситуациях: стихийных бедствиях, террористических актах и т. п.

К наиболее популярным, заслужившим международное признание стандартам цифровой транкинговой радиосвязи, на основе которых во многих странах развернуты системы связи, относятся:, разработанный фирмой Ericsson;, разработанный Европейским институтом стандартов связи;25, разработанный Ассоциацией официальных представителей служб связи органов общественной безопасности;, разработанный фирмой Matra Communication (Франция);, разработанный фирмой Motorola (США).

Все эти стандарты отвечают современным требованиям к системам транкинговой радиосвязи. Они позволяют создавать различные конфигурации сетей связи: от простейших локальных однозоновых систем до сложных многозоновых систем регионального или национального уровня.

1.1 Общие сведения о стандартах цифровой транкинговой радиосвязи

Система EDACS

Одним из первых стандартов цифровой транкинговой радиосвязи был стандарт EDACS (Enhanced Digital Access Communication System), разработанный фирмой Ericsson (Швеция).

Цифровые системы EDACS выпускались на диапазоны частот 138-174 МГц, 403-423, 450-470 МГц и 806-870 МГц с разносом частот 30; 25; и 12,5 кГц.

Скорость передачи информации в рабочем канале соответствует 9600 бит/с.

Речевое кодирование в системе производится путем компрессии импульсно-кодовой последовательности со скоростью 64 Кбит/с, полученной с помощью аналого-цифрового преобразования сигнала с тактовой частотой 8 кГц и разрядностью 8 бит. Основными функциями стандарта EDACS, обеспечивающими специфику служб общественной безопасности, являются различные режимы вызова (групповой, индивидуальный, экстренный, статусный), динамическое управление приоритетностью вызовов (в системе может использоваться до 8 уровней приоритета), динамическая модификация групп абонентов (перегруппировка), дистанционное выключение радиостанций (при утере или краже радиосредств).

Одной из основных задач разработки системы было достижение высокой надежности и отказоустойчивости сетей связи на основе данного стандарта.

На сегодняшний день в мире развернуто большое количество сетей стандарта EDACS, в числе которых есть многозоновые сети связи, используемые службами общественной безопасности различных стран. В России функционирует около десяти сетей данного стандарта. Вместе с тем фирма Ericsson не проводит работ по совершенствованию системы EDACS, прекратила поставки оборудования для развертывания новых сетей данного стандарта и только поддерживает функционирование действующих сетей.

Система TETRAпредставляет собой стандарт цифровой транкинговой радиосвязи, состоящий из ряда спецификаций, разработанных Европейским институтом телекоммуникационных стандартов ETSI (European Telecommunications Standards Institute). Стандарт TETRA создавался как единый общеевропейский цифровой стандарт. В настоящее время TETRA расшифровывается как Наземное транкинговое радио (TErrestrial Trunked RAdio).- открытый стандарт, т. е. предполагается, что оборудование различных производителей будет совместимо.

В стандарт TETRA входят спецификации беспроводного интерфейса, интерфейсов между сетью TETRA и цифровой сетью с интеграцией услуг (ISDN), телефонной сетью общего пользования, сетью передачи данных, учрежденческими АТС и т. п.

Радиоинтерфейс стандарта TETRA предполагает работу в стандартной сетке частот с шагом 25 кГц. Необходимый минимальный дуплексный разнос радиоканалов - 10 МГц. Для систем стандарта TETRA могут использоваться некоторые поддиапазоны частот. В странах Европы за службами безопасности закреплены диапазоны 380-385/390-395 МГц, а для коммерческих организаций предусмотрены диапазоны 410-430/450-470 МГц. В Азии для систем TETRA используется диапазон 806-870 МГц.

Стандарт TETRA обеспечивает два уровня безопасности передаваемой информации:

стандартный уровень, использующий шифрование радиоинтерфейса (обеспечивается уровень защиты информации, аналогичный системе сотовой связи GSM);

высокий уровень, использующий сквозное шифрование (от источника до получателя).

Сети TETRA развернуты в Европе, Северной и Южной Америке, Китае, Юго-Восточной Азии, Австралии, Африке.

Система APCO 25

Стандарт APCO 25 разработан Ассоциацией официальных представителей служб связи органов общественной безопасности (Association of Public safety Communications Officials-international), которая объединяет пользователей систем связи, работающих в службах общественной безопасности.

Стандарт APCO 25 предусматривает возможность работы в любом из стандартных диапазонов частот, используемых системами подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц.

Заложенная в стандарте APCO 25 система идентификации абонентов позволяет адресовать в одной сети не менее 2 миллионов радиостанций и до 65 тысяч групп. При этом задержка при установлении канала связи в подсистеме в соответствии с функциональными и техническими требованиями к стандарту APCO 25 не должна превышать 500 мс (в режиме прямой связи - 250 мс, при связи через ретранслятор - 350 мс).

Наибольший интерес к данному стандарту проявляют специалисты МВД России. Пилотная сеть (пока не транкинговой, а конвенциональной радиосвязи) на основе двух базовых станций была развернута МВД России в Москве в 2001 г. В 2003 г. в Санкт-Петербурге к 300-летию города была развернута сеть диспетчерской радиосвязи на 300 абонентов в интересах различных силовых структур.

Система Tetrapol

Работы по созданию стандарта цифровой транкинговой радиосвязи Tetrapol были начаты в 1987 г., когда фирма Matra Communications заключила контракт с французской жандармерией на разработку и ввод в эксплуатацию сети цифровой радиосвязи Rubis. Сеть связи была введена в эксплуатацию в 1994 г. По данным фирмы Matra на сегодняшний день сеть французской жандармерии охватывает более половины территории Франции и обслуживает более 15 тыс. абонентов.

Системы связи стандарта Tetrapol имеют возможность работы в диапазоне частот от 70 до 520 МГц, который в соответствии со стандартом определяется как совокупность двух поддиапазонов: ниже 150 МГц (VHF) и выше 150 МГц (UHF). Большая часть радиоинтерфейсов для систем этих поддиапазонов является общей, различие заключается в использовании различных методов помехоустойчивого кодирования и кодового перемежения.

Скорость передачи информации в канале связи составляет 8000 бит/с.

В связи с тем, что с самого начала стандарт Tetrapol был ориентирован на обеспечение требований правоохранительных органов, в нем предусмотрены различные механизмы обеспечения безопасности связи, направленные на предотвращение таких угроз, как несанкционированный доступ в систему, прослушивание ведущихся переговоров, создание преднамеренных помех, анализ трафика конкретных абонентов и т. п.

В 1997 г. фирма Matra Communications выиграла тендер по созданию системы цифровой радиосвязи для королевской тайландской полиции. Контракт является частью заказа по модернизации полицейской радиосети, которая объединит 70 полицейских участков. Предполагается задействование самых современных возможностей системы, включая доступ к централизованной базе данных, электронную почту, сквозное шифрование информации, местоопределение. Имеются также сведения о развертывании нескольких систем в двух других странах юго-восточной Азии, а также в интересах полиции Мехико.

Система iDEN

Технология iDEN (integrated Digital Enhanced Network) была разработана компанией Motorola в начале 90-х годов. Первая коммерческая система на базе этой технологии была развернута в США компанией NEXTEL в 1994 г.

С точки зрения статуса стандарта iDEN можно охарактеризовать как корпоративный стандарт с открытой архитектурой. Это означает, что компания Motorola, сохраняя за собой все права по модификации системного протокола, предоставляет вместе с тем лицензии на производство компонентов системы различным производителям.

Данный стандарт разрабатывался для реализации интегрированных систем, обеспечивающих все виды подвижной радиосвязи: диспетчерской связи, мобильной телефонной связи, передачи текстовых сообщений и пакетов данных. Технология iDEN ориентирована на создание корпоративных сетей крупных организаций или коммерческих систем, предоставляющих услуги как организациям, так и частным лицам.

Система iDEN выполнена на базе технологии МДВР. В каждом частотном канале шириной 25 кГц передается 6 речевых каналов. Это достигается путем разбиения кадра длительностью 90 мс на временные интервалы по 15 мс, в каждом из которых передается информация своего канала.

В стандарте используется стандартный для Америки и Азии частотный диапазон 805-821/855-866 МГц. IDEN имеет самую высокую спектральную эффективность среди рассматриваемых стандартов цифровой транкинговой связи, он позволяет разместить в 1 МГц до 240 информационных каналов. Вместе с тем, размеры зон покрытия базовых станций (ячеек) в системах iDEN меньше, чем в системах других стандартов, что объясняется малой мощностью абонентских терминалов (0,6 Вт - для портативных станций и 3 Вт - для мобильных).

Первая коммерческая система, развернутая в 1994 г. компанией NEXTEL, в настоящее время является общенациональной и насчитывает около 5500 сайтов и 2,7 млн. абонентов. В США имеется другая сеть, оператором которой является компания Southern Co. Сети iDEN развернуты также в Канаде, Бразилии, Мексике, Колумбии, Аргентине, Японии, Сингапуре, Китае, Израиле и других странах. Общее число абонентов iDEN в мире на сегодня превышает 3 млн. человек.

В России системы iDEN не развернуты и нет сведений о разработках проектов сетей данного стандарта.

.2 Операторы многозоновых транкинговых сетей

АМТ. Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай»). Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел». Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» - единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк». Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг». Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);

псевдотранкинговая сеть SmarTrunk II (с 1992 года);

многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк». Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье - для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко». Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных - в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

2. Перспективы развития транкинговой радиосвязи

Краткий сравнительный анализ данных стандартов цифровой транкинговой радиосвязи по основным рассмотренным критериям позволяет сделать определенные выводы о перспективности их развития, как в мире, так и в России.

Стандарт EDACS практически не имеет перспектив развития. По сравнению с другими стандартами, он имеет меньшую спектральную эффективность и менее широкие функциональные возможности. Компания Ericsson не планирует расширять возможности стандарта и практически свернула производство оборудования.

Стандарт iDEN не предусматривает многих специальных требований, а также, несмотря на высокую спектральную эффективность, ограничен необходимостью использования диапазона 800 МГц. Вероятно, что системы данного стандарта имеют определенный потенциал и будут еще развертываться и эксплуатироваться, в особенности в Северной и Южной Америке. В других регионах перспективы развертывания систем данного стандарта выглядят сомнительными.

Стандарты TETRA и APCO 25 обладают высокими техническими характеристиками и широкими функциональными возможностями, включая выполнение специальных требований силовых структур, имеют достаточную спектральную эффективность. Самым главным доводом в пользу этих систем является наличие статуса открытых стандартов.

В то же время, большинство экспертов склоняется к мнению, что рынок цифровой транкинговой радиосвязи будет завоеван стандартом TETRA. Данный стандарт пользуется широкой поддержкой большинства крупных мировых производителей оборудования и администраций связи различных стран. Последние события на отечественном рынке профессиональной радиосвязи позволяют сделать вывод, что и в России данный стандарт получит наиболее широкое распространение.

В настоящее время завершается разработка второй стадии стандарта (TETRA Release 2 (R2)), направленной на интеграцию с мобильными сетями 3-го поколения, кардинальное увеличение скорости передачи данных, переход от специализированных SIM-карт к универсальным, дальнейшее увеличение эффективности сетей связи и расширение возможных зон обслуживания.

.1 Обзор проектов транкинговой радиосвязи в Европе

Многие европейские страны сделали свой выбор в пользу цифровых транкинговых стандартов для сетей профессиональной радиосвязи. В этой статье сделан краткий обзор реализованных и реализуемых проектов в Европе.

Великобритания уже начала внедрять и применять проекты на основе технологии TETRA. Команда проекта радиосети для служб общественной безопасности (Public Safety Radio Communication Project) создала сеть TETRA для полиции Великобритании. Несмотря на то, что эта сеть первоначально была создана для использования полицией, руководители проекта надеются, что вскоре пожарные бригады и бригады "скорой помощи" тоже присоединятся к числу ее пользователей. Сеть поддерживается специально созданной компанией-оператором Airwave.

Финляндия начала работать над сетью стандарта TETRA национального масштаба в 1998 г. Первая фаза проекта была запущена в эксплуатацию в январе 2001 г., и сейчас сеть действует почти на всей территории Финляндии. На данный момент сеть VIRVE используется различными пользователями, включающими полицию, пожарных, службу "скорой помощи", пограничные службы, службы береговой охраны и вооруженные силы.

Проект С2000 реализуется в Нидерландах. Сеть предназначена в основном для полиции, пожарных, службы "скорой помощи" и прочих общественных служб. Полное завершение строительства ожидается в 2004 г. Общее число базовых станций будет около 400. Ожидаемое число пользователей сети - 80 тыс.

Бельгия поддерживает проект под названием ASTRID (All-round Semi-cellular Trunking Radiocommunication system with Integrated Dispatchings). Так же как и С2000 в Нидерландах, этот проект имеет целью создание национальной сети TETRA. Планируемая сеть, в основном, предназначена для использования местной и федеральной полицией, пожарными, службой госбезопасности, службой "100" (Министерство здравоохранения) и обычными пользователями. Внедрение сети началось в 1998 г. Первоначальной целью было достижение национального радиопокрытия к концу 2003 г., однако проектирование сети затянулось. Основной причиной называются сложности в получении разрешений на установку мачт и антенных устройств.

Учитывая федеральную структуру Германии и разделение ответственности на национальном и региональном уровнях, процесс принятия решения о создании национальной сети был сложным и длительным. В 1996 г. власти различных регионов решили, что это будет цифровая сеть, основанная на европейском стандарте. Они, однако, не определили, какой именно стандарт должен использоваться. Вскоре после принятия этого решения в Берлине был создан первый пилотный проект на основе стандарта TETRA. Последующие отчеты рекомендовали устроить процедуру тендера для национальной сети на основе того же стандарта. Также сеть TETRA была создана в регионе Aachen. Эта сеть является частью так называемого "пилотного проекта трех стран" (Three Countries Trial). В рамках этого проекта оценивается эффективность сети TETRA при использовании ее несколькими государствами. Страны, вошедшие в этот проект: Бельгия, Германия и Нидерланды. Сети TETRA этих стран были объединены между собой для проведения тестирования.

Австрия, Италия, скандинавские страны, Ирландия (перечислены не все) также начали реализацию проектов сетей профессиональной радиосвязи на основе TETRA. Был организован совещательный орган, состоящий из представителей 13 стран, для обмена опытом, для выработки совместной позиции и оказания влияния на производителей, для решения частотных вопросов и для взаимной помощи. Представители совещательного органа провозгласили периодичность собраний два раза в год. Председателем органа является представитель Нидерландов.

Однако не все европейские страны остановили свой выбор на стандарте TETRA. Например, стандарт TETRAPOL, разработанный французской компанией MatraCommunications, был выбран для внедрения полицией Франции.

Также некоторое число небольших локальных сетей TETRA были реализованы в Испании, Чехии и Швейцарии.

2.2 Обзор перспектив развития транкинговой радиосвязи в России

Ведущей компанией на рынке транкинговой радиосвязи в России является ОАО "Тетрасвязь", образованное в 2004 году. «Тетрасвязь» предоставляет полный комплекс услуг по созданию сетей профессиональной цифровой радиосвязи TETRA от проектирования до запуска в эксплуатацию, включая предоставление услуг на базе существующих сетей.

"Тетрасвязь" - ведущий российский системный и сетевой интегратор, федеральный оператор услуг на базе систем ГЛОНАСС/TETRA по географии и числу абонентов, обладающий большим опытом и широкими возможностями по реализации масштабных телекоммуникационных проектов, собственными решениями для различных сегментов рынка. В 2007 году вошла в консорциум ATGroup. Зона профессионального присутствия охватывает 40 регионов, более 70 городов РФ. Головной офис находится в Москве, региональные представительства - в Санкт-Петербурге, Краснодаре, Нижнем Новгороде.

8 апреля в Москве состоялась Международная конференция «Проблемы модернизации телекоммуникационной инфраструктуры России и внедрение перспективных радиотехнологий», организованная Министерством связи и массовых коммуникаций РФ. Основной темой, вынесенной на обсуждение в ходе конференции, стала оценка современного состояния радиосвязи как важнейшего элемента инфраструктуры России, перспективы и направления ее дальнейшего развития.

На конференции с докладами выступили представители Минкомсвязи, территориальных управлений Роскомнадзора, научно-исследовательских и проектных институтов, организаций радиочастотной службы, компаний-лидеров телекоммуникационной отрасли, таких, как «Связьинвест», МТС, «Вымпелком», Motorola. Большой интерес аудитории вызвал доклад о современном состоянии и перспективах развития цифровой транкинговой радиосвязи в России, представленный федеральным оператором услуг профессиональной радиосвязи компанией «Тетрасвязь». Речь в докладе шла об европейском стандарте TETRA, который обладает рядом технологических и функциональных преимуществ по сравнению с сетями общего пользования и американским стандартом транкинговой связи APCO 25. На основе стандарта разрабатываются комплексные системы безопасности и управления как в мегаполисах, так и в российских регионах. При активном участии и внешнем контроле государственных организаций сети TETRA строятся в Московской, Владимирской, Курской областях, в Сочи - к Олимпиаде-2014, Владивостоке - к саммиту АТЭС-2012 для обеспечения эффективного взаимодействия правоохранительных служб

Как отмечается в докладе, реализация концепции развития стандарта TETRA в России до 2015 года связана с рядом ключевых факторов. Во-первых, симбиоз с российской системой ГЛОНАСС открывает новые перспективы использования TETRA как надежной транспортной среды в системах спутникового мониторинга, управления и диспетчеризации для экстренных служб и силовых ведомств. Во-вторых, обеспечение плавного перехода сетей на стандарт нового поколения TETRA-2 по мере появления релиза на рынке. В-третьих, постепенное создание объединенного пространства TETRA в России, формирующего зону безопасной жизнедеятельности в национальном масштабе.

Усиливается внимание со стороны государства к перспективным инвестиционным проектам в области телекоммуникаций, многие из которых связаны с такими масштабными имиджевыми мероприятиями, как, например, первая российская Зимняя Олимпиада и международный саммит стран Азиатско-Тихоокеанского региона.

Заключение

На рынке страны представлены практически все стандарты транкинговой подвижной радиосвязи, существующие на сегодня во всем мире. Россия - страна телекоммуникационных контрастов, и их надо устранять, если мы собрались занять прочные позиции на мировом рынке высоких телекоммуникационных технологий. Но, несмотря на все недостатки, отечественная индустрия высоких технологий демонстрирует неплохие 25-процентные темпы ежегодного прироста. Инвестирование денег в связь - это перспективные вложения в бизнес.

Развитие транкинговой радиосвязи незаслуженно (и не без помощи операторов сотовой радиосвязи) не получило должного роста в Российской Федерации в прошедшее десятилетие. Многие руководители, не понимая правильно разницу, сопоставляют профессиональную транкинговую радиосвязь с сотовой, и если речь заходит о стоимости абонентского оборудования (которая в два-три раза превышает стоимость абонентского оборудования мобильной радиосвязи), побеждает в итоге сотовая радиосвязь. Остается без внимания, что подвижная транкинговая радиосвязь - это, прежде всего, оперативная радиосвязь, где простым нажатием одной или нескольких клавиш происходит соединение абонентов.

Множество и других преимуществ у транкинговой радиосвязи перед сотовой: передача данных, безопасность связи, возможность проводить конференц-радиосвязь, нет беспокойства за трафик, так как зачастую плата (если это выделенная, коммерческая, сеть) проходит лишь абонентская, без учета трафика.

Нынешняя редакция Федерального закона Российской Федерации "О связи" предусматривает создание систем связи "двойного назначения". Однако о создании межведомственных систем радиосвязи в данной редакции умалчивается.

Государство, в собственности которого находится частотный диапазон, должно повлиять на развитие и модернизацию транкинговых сетей связи, вплоть до создания федеральных транкинговых сетей подвижной радиосвязи, выступить рефери в создании межведомственных систем транкинговой подвижной радиосвязи.

Список использованных источников

1.Шлома А.М., Бакулин М.Г. «Новые алгоритмы формирования и обработки сигналов в системах подвижной связи» [Текст] Горячая Линия - Телеком, 2008г.- 344с.

.Аннабел З.Д. «Мир телекоммуникаций. Обзор технологий и отрасли» [Текст] Олимп-Бизнес, 2002г.- 400с.

.Довгий С.С. «Современные телекоммуникации. Технологии и экономика» [Текст] Эко-Трендз, 2003г.- 320с.

.Шахгильдяна В.В. «Радиопередающие устройства: учебник для вузов» [Текст] Радио и связь, 2003г.- 560с.

.Катунин, Г.В. Мамчев, В. Н. «Телекоммуникационные системы и сети. Том 2. Радиосвязь, радиовещание, телевидение. Учебное пособие» [Текст] Горячая линия - Телеком, 2004г.- 672 с.

.Попов О.Б., Рихтер С.Г. «Цифровая обработка сигналов в трактах звукового вещания» [Текст] Горячая линия - Телеком, 2007г.- 341с.

.Мамчев Г.В. «Основы радиосвязи и телевидения. Учебное пособие для вузов» [Текст] Горячая линия-Телеком, 2007г.- 416 с.

.Мамаева Н.С. «Системы цифрового телевидения и радиовещания» [Текст] Горячая линия - Телеком, 2007г.- 254 с.

.Галкин В.А., Григорьев Ю.А. «Учебное пособие для вузов, по спец. "Информатика и вычислительная техника"» [Текст] "МГТУ им. Баумана" - 608 с.

.Крухмалев В.В., Гордиенко В.Н. «Основы построения телекоммуникационных систем и сетей» [Текст] М: BHV, 2005г. - 325 с.

Приложение 1

транкинговый радиосвязь оператор tetra

Обобщенные сведения о системах стандартов EDACS, TETRA, APCO 25, Tetrapol, iDEN и их технические характеристики

№ п/пХарактеристика стандарта (системы) связиEDACSTETRAAPCO25TetrapolIDEN1Разработчик стандартаEricsson (Швеция)ETSIAPCOMatra Communications (Франция)Motorola2Статус стандартакорпоративныйоткрытыйоткрытыйкорпоративныйкорпоративный с открытой архи- тектурой3Основные производители радиосредствEricssonNokia, Motorola, OTE, Rohde&SchwarzMotorola, E.F.Johnson Inc., Transcrypt, ADI LimitedMatra, Nortel,CS TelecomMotorola4Возможный диапазон рабочих частот, МГц138-174; 403-423; 450-470; 806-870138-174; 403-423; 450-470; 806-870138-174; 406-512; 746-86970-520805-821/ 855-8665Разнос между частотными каналами, кГц25; 12,5 (передача данных)812,5; 6,2512,5; 10256Эффективная полоса частот на один речевой канал, кГц256,2512,5; 6,2512,5; 104,1677Вид модуляцииFMp/4-DQPSKC4FM (12,5 кГц) CQPSK (6,25 кГц)GMSK (BT=0,25)M16-QAM8Метод речевого кодирования и скорость речепреобразованияадаптивное многоуровневое кодирование (преобразование 64Кбит/с и компрессия до 9,2 Кбит/с)CELP (4,8 Кбит/с)IMBE (4,4 Кбит/с)RPCELP (6 Кбит/с)VSELP (7,2 Кбит/с)9Скорость передачи информации в канале, бит/с96007200 (28800 - при передаче 4-х информационных каналов на одной физичекой частоте)960080009600 (до 32К при передаче данных в пакетном режиме)10Время установления канала связи, с0,25 (в однозоновой системе)0,2 с - при индив. вызове (min); 0,17 с - при групповом вызове (min)0,25 - в режиме прямой связи; 0,35 - в режиме ретрансляции; 0,5 - в радио- подсистемене более 0,5не более 0,511Метод разделения каналов связиЧастотный метод доступа к каналам связиМножественный доступ с временным разделением каналов (с использованием частотного разделения в многозоновых системах)Частотный метод доступа к каналам связиЧастотный метод доступа к каналам связиМножественный доступ с временным разделением каналов12Вид канала управлениявыделенныйвыделенный или распределенный (в зависимости от конфигурации сети)выделенныйвыделенныйВыделенный или распре- деленный (в зависимости от конфигурации сети)13Возможности шифрования информациистандартный фирменный алгоритм сквозного шифрования1) стандартные алгоритмы; 2) сквозное шифрование4 уровня защиты информации1) стандартные алгоритмы; 2) сквозное шифрованиенет сведений

Приложение 2

Функциональные возможности, предоставляемые системами стандартов цифровой транкинговой радиосвязи

№ п/пФункциональные возможности системы связиEDACSTETRAAPCO25TetrapolIDEN1Поддержка основных видов вызова (индивид., групповой, широковещ.)+++++2Выход на ТФОП+++++3Полнодуплексные абонентские терминалы++--+4Передача данных и доступ к централизованным базам данных+++++5Режим прямой связи++++н/с6Автоматическая регистрация мобильных абонентов+++++7Персональный вызов-++++8Доступ к фиксированным сетям IP+++++9Передача статусных сообщений+++++10Передача коротких сообщений-++++11Поддержка режима передачи данных о местоположении от системы GPS++н/с+н/с12Факсимильная связь-++++13Возможность установки открытого канала-+н/с+-14Множественный доступ с использованием списка абонентов-++++15Наличие стандартного режима ретрансляции сигналовн/с+++н/с16Наличие режима «двойного наблюдения»-+н/с+н/с

Приложение 3

Выполнение специальных требований к системам радиосвязи служб общественной безопасности

№Специальные услуги связиEDACSTETRAAPCO25Tetrapol1Приоритет доступа++++2Система приоритетных вызовов++++3Динамическая перегруппировка++++4Избирательное прослушивание++++5Дистанционное прослушивание-+н/с+6Идентификация вызывающей стороны++++7Вызов, санкционированный диспетчером++++8Передача ключей по радиоканалу (OTAR)-+++9Имитация активности абонентов---+10Дистанционное отключение абонентан/с+++11Аутентификация абонентовн/с+++

Приложение 4

Проекты ТЕТРА в России

Регион обслуживанияЗаказчикПроизводитель сетевой инфраструктуры, системаПроизводитель абонентского оборудованияо. ВалаамРусская православная церковьMotorola, Compact TETRAMotorolaЛенинградская областьЛенинградская АЭСMotorola, Compact TETRAMotorolaг. Междуреченск, Кемеровская областьУгольная компания "Южный Кузбасс"Rohde&Schwarz Bick Mobilfunk , ACCESSNET-TSepura Nokiaг. Нижний НовгородГлавное управление дорожного и транспортного хозяйства Нижегородской областиRohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepura, Motorolaг. НоябрьскОАО "Сибнефть" ("Ноябрьскнефтегаз" и Омский НПЗ)Rohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepura, Motorola, Nokiaг. Санкт-ПетербургЗАО "РадиоТел"Nokia, TBS400Nokia, Motorola

В процессе установки (заключение контракта)

Регион обслуживания ЗаказчикПроизводитель сетевой инфраструктуры, системаПроизводитель абонентского оборудованияБалтийский нефтепровод (Ярославль-Приморск)Компания "Транснефть"OTE , ElettraOTEг. МоскваМинистерство обороныRohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepura, MotorolaОмская областьОАО "Сибнефть" (Омский НПЗ)Rohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepura, Motorola, NokiaКалининградская областьМинистерство обороныRohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepura, MotorolaСамарская область ("Средняя Волга")ФСК ЕЭСOTE, ElettraOTEСвердловская областьМПС Свердловская ж/дRohde&Schwarz Bick Mobilfunk, ACCESSNET-TSepuraТульская областьЧерепетская ГРЭСMotorola, Compact TETRAMotorolaСеверо-Западный регион России"Транснефть"OTE, Elettra,OTE, SepuraМетрополитен Санкт-ПетербургаМинистерство транспортаOTE. ElettraOTEПоволжский регион"Газпром"OTEOTEН.НовгородГУДТХMotorolaMotorolaМоскваАМТOTE, ElettraNokiaМетрополитен г. КазаньМинистерство транспортаMotorolaMotorola


Транскрипт

1 ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ Государственное образовательное учреждение высшего профессионального образования «Санкт Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича» «Архангельский колледж телекоммуникаций (филиал) Санкт Петербургского государственного университета телекоммуникаций им. проф. М.А. Бонч-Бруевича» Энергоснабжение телекоммуникационных систем Программа, контрольное задание и методические указания по его выполнению для студентов заочной формы обучения по специальностям: 70- Средства связи с подвижными объектами; 709- Многоканальные телекоммуникационные системы; 7 -Радиосвязь, радиовещание и телевидение; 73 -Сети связи и системы коммутации. Архангельск 03

2 Электроснабжение телекоммуникационных систем. Рабочая программа. Контрольное задание для студентов заочного отделения. Составил: Попова О.М. АКТ (филиал) СПбГУТ, Архангельск. 03. Рассмотрено и рекомендовано цикловой комиссией Общепрофессиональных дисциплин Архангельского колледжа телекоммуникаций (филиал) СПбГУТ им. проф. М.А. Бонч Бруевича. Архангельский колледж телекоммуникаций (филиал) Санкт Петербургского государственного университета телекоммуникаций им. проф. М.А. Бонч Бруевича, 03. Усл. печ. л. 0,44

3 Пояснительная записка Предмет «Энергоснабжение телекоммуникационных систем» - обязательная дисциплина в цикле общепрофессиональных дисциплин для специальностей: 709 Многоканальные телекоммуникационные системы, 7 Радиосвязь, радиовещание и телевидение, 73 Сети связи и системы коммутации, 70 Средства связи с подвижными объектами. Целью изучения данной дисциплины является теоретическая и практическая подготовка студентов в области энергоснабжения телекоммуникационных систем в такой степени, чтобы они могли обеспечить грамотную эксплуатацию устройств электропитания, своевременно обнаружить и устранить неисправности, восстановить работу оборудования электропитания, оценить эффективность и энергоёмкость оборудования электропитающей установки. В результате освоения дисциплины обучающийся должен знать: источники электрической энергии для питания различных устройств, используемых в организациях связи, электроснабжение и системы электропитания организаций связи. должен уметь: контролировать режимы работы электропитающей установки, читать структурные схемы, применять знания на практике, осуществлять мониторинг работоспособности бесперебойных источников питания. В целях изучения учебного материала предусмотрено выполнение одной домашней контрольной работы, самостоятельная работа студентов по учебно-методической карте. Номера учебников, указанные в учебнометодической карте, соответствуют номерам учебников в списке литературы, приведённом в конце методических указаний..

4 Учебно-методическая карта дисциплины «Энергоснабжение телекоммуникационных систем» Наименование разделов и тем Количество часов обзор ные лабора торные само стоят. работа Раздел. Общие сведения об электропитании устройств связи Тема. Современное состояние устройств электропитания. Виды источников энергии Тема. Трёхфазная система 0. Раздел. Автономные источники питания Тема.. Аккумуляторы Тема. Непосредственные преобразователи энергии Раздел 3 Электромагнитные устройства электропитания Тема 3. Электрические реакторы Учебная литература индекс стр Тема 3. Трансформаторы Раздел 4. Выпрямление переменного тока Тема 4. Схемы выпрямителей Тема 4. Работа выпрямителя на различные виды нагрузок Тема 4.3 Управляемые выпрямители 0. Раздел. Преобразователи напряжения

5 Тема. Сглаживающие фильтры 0. Тема. Преобразователи напряжения Раздел 6. Стабилизаторы напряжения и тока Тема 6. Параметрические стабилизаторы напряжения и тока Тема 6. Компенсационные стабилизаторы постоянного напряжения Тема 6.3 Компенсационные стабилизаторы с импульсным регулированием Раздел 7. Выпрямительные устройства Тема 7. Источники вторичного электропитания Тема 7. Выпрямительные устройства с бестрансформаторным входом Раздел 8. Система электроснабжения предприятия связи Тема 8. Энергоснабжение предприятий связи Тема 8. Коррекция коэффициента мощности Раздел 9. Электропитание аппаратуры предприятий связи

6 Тема 9. Системы электропитания аппаратуры связи Тема 9. Система бесперебойного питания постоянного тока Тема 9.3 Система бесперебойного питания переменного тока Раздел. Электроустановка предприятия связи Тема. Электропитание аппаратуры (по специальности) Специальность 70 Электропитание аппаратуры средств связи с подвижными объектами Специальность 709 Электропитание аппаратуры НУП и НРП Специальность 7 Электропитание аппаратуры систем радиосвязи и вещания Специальность 73 Электропитание аппаратуры АТС Тема. Система контроля и управления оборудованием электроустановок Тема.3 Безопасность электроснабжения. Заземление Тема.4 Расчёт и выбор оборудования электроустановок бесперебойного питания Всего по дисциплине 8 36

7 РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ЭНЕРГОСНАБЖЕНИЕ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ» Раздел Общие сведения об электропитании устройств связи Тема. Современное состояние устройств электропитания. Виды источников энергии Введение. Сущность, роль и место дисциплины в процессе подготовки к профессиональной деятельности. Цель и задачи развития энергетики, электроники и техники связи. Перспективы развития электропитания. Первичные источники энергии, их применение. Вторичные источники энергии, их применение. Тема. Трёхфазная система Получение трёхфазного тока. Соединение фаз генератора и потребителя звездой. Соединение фаз генератора и потребителя треугольником. В результате изучения раздела студент должен знать: основные источники электроснабжения, соотношение между фазными и линейными значениями напряжений и токов при различных схемах соединениий. Раздел Автономные источники питания Тема. Аккумуляторы Свинцово-кислотные аккумуляторы, классификация, конструкция. Работа свинцового аккумулятора. Электрические параметры свинцового аккумулятора Особенности эксплуатации аккумуляторов. Современные типы аккумуляторов. Лабораторная работа «Изучение конструкции аккумулятора» Тема. Непосредственные преобразователи энергии Гальванические элементы. Термоэлектрические генераторы. Солнечные батареи. Атомные батареи. В результате изучения раздела студент должен иметь представление: об источниках энергии постоянного тока, об области применения этих источников; знать: конструкцию аккумуляторов, основные

8 электрические характеристики аккумуляторов, особенности их эксплуатации; уметь: расшифровать условное обозначение аккумуляторов. Раздел 3 Электромагнитные устройства электропитания Тема 3. Электрические реакторы Магнитопровод. Магнитные материалы. Дроссели. Тема 3. Трансформаторы Принцип действия трансформатора, классификация трансформаторов. Режимы работы трансформатора. Конструкция силовых однофазных трансформаторов. Трёхфазные трансформаторы. Лабораторная работа «Исследование работы однофазного трансформатора» В результате изучения раздела 3 студент должен иметь представление: о классификации трансформаторов, об устройстве и назначении дросселей и трансформаторов; знать: принцип действия трансформатора, особенности конструкции трёхфазного трансформатора, соотношения между фазными и линейными значениями напряжений и токов при различных схемах соединения обмоток. Раздел 4 Выпрямление переменного тока Тема 4. Схемы выпрямителей Классификация выпрямителей. Основные параметры выпрямителей. Структурная схема выпрямителя. Однофазная однополупериодная схема выпрямления. Однофазная мостовая схема выпрямления. Трёхфазные схемы выпрямления, каскадные схемы выпрямления. Лабораторная работа 3 «Исследование однофазных схем выпрямления» Практическая работа «Расчёт выпрямителя» Тема 4. Работа выпрямителя на различные виды нагрузок Влияние характера нагрузки на режим работы выпрямителя. Особенности работы выпрямителя на ёмкостную нагрузку. Особенности работы выпрямителя на индуктивную нагрузку. Схема умножения напряжения. Работа схем выпрямления на аккумуляторную батарею.

9 Тема 4.3 Управляемые выпрямители Структурная схема управляемого выпрямителя. Способы управления тиристорами. Однофазная схема выпрямления на тиристорах. Трёхфазная мостовая схема выпрямления на тиристорах. Лабораторная работа 4 «Исследование схемы выпрямления на тиристорах» В результате изучения раздела 4 студент должен знать: работу схем выпрямления однофазного и трёхфазного тока; особенности работы управляемых выпрямителей; иметь представление: об особенностях работы выпрямителя на резистивную и реактивную нагрузки; об элементах, используемых в схемах выпрямления. Раздел Преобразователи напряжения Тема. Сглаживающие фильтры Пульсация выпрямленного напряжения, её влияние на работу аппаратуры связи. Требования к сглаживающим фильтрам. Параметры сглаживающего фильтра. Индуктивный, ёмкостной фильтры. Сглаживающие RC-фильтры. Г-образный LC- фильтр. Многозвенный LC сглаживающий фильтр. Резонансные фильтры. Активные сглаживающие фильтры. Лабораторная работа «Исследование свойств сглаживающих фильтров» Тема. Преобразователи напряжения Классификация преобразователей напряжения. Структурная схема преобразователя напряжения. Транзисторные преобразователи напряжения. Тиристорные преобразователи напряжения. Лабораторная работа 6 «Исследование преобразователей напряжения постоянного тока» В результате изучения раздела студент должен иметь представление: о пульсации напряжения, её влиянии на работу аппаратуры, об источниках вторичного электропитания, об использовании инверторов и конверторов; знать: устройство, условия эффективной работы сглаживающих фильтров; работу преобразователей постоянного тока.

10 Раздел 6 Стабилизаторы напряжения и тока Тема 6. Параметрические стабилизаторы напряжения и тока Классификация стабилизаторов. Основные параметры стабилизаторов. Параметрические стабилизаторы постоянного напряжения, тока. Тема 6. Компенсационные стабилизаторы постоянного напряжения Структурные схемы компенсационных стабилизаторов с непрерывным регулированием. Стабилизатор напряжения последовательного типа. Компенсационные стабилизаторы в интегральном исполнении. Тема 6.3 Компенсационные стабилизаторы с импульсным регулированием Классификация импульсных стабилизаторов. Структурная схема импульсного стабилизатора Схемы силовой части импульсного стабилизатора. Двухпозиционный импульсный стабилизатор напряжения постоянного тока. Стабилизатор напряжения с широтно импульсным регулированием тока. Лабораторная работа 7 «Исследование компенсационного стабилизатора постоянного напряжения» В результате изучения раздела 6 студент должен иметь представление: о дестабилизирующих факторах, об элементах, используемых в стабилизаторах; знать: особенности работы стабилизаторов, основные характеристики стабилизаторов. Раздел 7 Выпрямительные устройства Тема 7. Источники вторичного электропитания Общие сведения о выпрямительных устройствах. Структурная схема выпрямительного устройств серии ВУТ. Структурные схемы источников вторичного электропитания со стабилизацией выходного напряжения. Лабораторная работа 8 «Изучение выпрямительного устройства ВУТ» Тема 7. Выпрямительные устройства с бестрансформаторным входом Назначение и технические характеристики ВБВ- 60. Структурные схемы ВБВ. Принципиальная схема выпрямителя ВБВ. Работа силовой части схемы. Стабилизация и регулировка выходного напряжения.

11 Лабораторная работа 9 «Изучение выпрямительного устройства ВБВ» В результате изучения раздела 7 студент должен иметь представление: о номенклатуре ВУТ, ВБВ, об особенности работы выпрямителей с бестрансформаторным входом; знать: структурную схему силовой части выпрямителей, конструкцию, способы стабилизации напряжения, основы технической эксплуатации. Раздел 8 Система электроснабжения предприятия связи Тема 8.Энергоснабжение предприятий связи Электроустановки предприятий связи. Назначение. Состав. Классификация электроприёмников по условиям надёжности электроснабжения. Структурные схемы энергоснабжения потребителей первой и второй категории. Собственные электростанции. Трансформаторные подстанции. Лабораторная работа «Изучение в коммутационно - распределительного оборудования переменного тока» Тема 8. Коррекция коэффициента мощности Коэффициент мощности. Конденсаторная установка. Пассивные корректоры коэффициента мощности. Коррекция коэффициента мощности в ВБВ. В результате изучения раздела 8 студент должен иметь представление: о классификации электроустановок потребителей по условиям электроснабжения, о назначении коррекции коэффициента мощности, способы его повышения; знать: назначение основных элементов электроустановок; уметь: составлять схему электроустановки для конкретной ситуации. Раздел 9 Электропитание аппаратуры предприятий связи Тема 9. Системы электропитания аппаратуры связи Классификация систем электропитания. Буферная система электропитания. Способы улучшения качества питания буферной системы. Безаккумуляторная система электропитания.

12 Тема 9. Система бесперебойного питания постоянного тока Назначение установки и принцип действия СБП. Структурная схема УБП постоянного тока. Устройства электропитания постоянного тока (УЭПС) Лабораторная работа «Исследование устройства бесперебойного электропитания постоянного тока (УЭПС)» Тема 9.3 Система бесперебойного питания переменного тока Классификация источников бесперебойного питания. Источник бесперебойного питания с двойным преобразованием. Выпрямитель преобразователя. Инвертор преобразователя. Недостатки ИБП и способы их устранения. Лабораторная работа «Изучение тиристорного инвертора ИТ-0/» Лабораторная работа 3 «Исследование ИБП переменного тока» В результате изучения раздела 9 студент должен иметь представление: о современных электропитающих установках; знать: системы электропитания аппаратуры связи, режимы работы электропитающих установок, состав и назначение электропитающих установок и установки бесперебойного питания. Раздел Электроустановка предприятия связи Тема. Электропитание аппаратуры (по специальности) Специальность 70. Электропитание аппаратуры средств связи с подвижными объектам Особенности электропитания аппаратуры средств связи с подвижными объектами. Электропитающая установка базовых станций и центра коммутации. Электропитание мобильных телефонов. Специальность 709. Электропитание аппаратуры НУП и НРП Электроустановка обслуживаемого усилительного пункта. Организация дистанционного питания. Схемы и параметры цепей дистанционного питания. Особенности построения электроустановки электропитания НРП ВОЛС. Структурная схема электроустановки на НРП ВОЛС.

13 Специальность 7. Электропитание аппаратуры систем радиосвязи и вещания Электроустановка РРЛ станции. Электроустановка телевизионного центра. Электропитание оборудования радиопередающих центров. Специальность 73. Электропитание аппаратуры АТС Электропитание аппаратуры АТС. Особенности электропитания электронных АТС. Структурная схема электропитания электронной АТС. Тема. Система контроля и управления оборудованием электроустановок Системы электропитания предприятий связи. Основные положения системы. Структура системы контроля и управления. Инфраструктура обмена информацией. Тема.3. Безопасность электроснабжения. Заземление Общие требования безопасности. Функции систем безопасности, зависящие от электроснабжения. Электробезопасность. Пожарная безопасность. Информационная безопасность. Типы систем заземления. Электрическое соединение заземляемых частей оборудования. Защита оборудования от импульсных токов и перенапряжений. Устройства защитного отключения источника. Лабораторная работа 4 «Ознакомление с действующей электроустановкой предприятия связи (по специальности)» Тема.4 Расчёт и выбор оборудования электроустановок бесперебойного питания Исходные данные расчёта. Расчёт и выбор типа аккумулятора. Расчёт и выбор выпрямителей. Расчёт токораспределительной сети постоянного тока. В результате изучения раздела 9 студент должен иметь представление: об электроустановках базовых станций и центра коммутации (специальность 70), об электроустановках предприятий радиосвязи и вещания (специальность 7), об электроустановках электронных АТС (специальность 73), об особенностях организации дистанционного питания на ВОЛС (специальность 709), общие требования и меры электробезопасности; знать: об особенностях электропитания аппаратуры средств связи с подвижными объектами

14 (специальность 70), схемы организации дистанционного питания (специальность 709), особенности электропитания электронных АТС (специальность 73), особенности электропитания предприятий радиосвязи (специальность 7), назначение и типы систем заземления; уметь: выбирать тип и количество выпрямителей, аккумуляторов. Общие указания по выполнению и оформлению контрольных работ Вариант контрольного задания выбирается в соответствии с индивидуальным шифром студентов. Перед выполнением задания следует изучить соответствующие разделы учебника. 3 Ознакомиться с методическими указаниями по выполнению данного контрольного задания. 4 Контрольную работу следует выполнять аккуратно в отдельной тетради в клетку, соблюдая поля. Допустимо выполнять контрольную работу с помощью компьютера в формате А4. При оформлении работы необходимо соблюдать следующие правила: записать полное условие задачи и исходные данные для расчета; расчеты в задачах должны сопровождаться необходимыми краткими пояснениями; формулы, по которым ведется расчёт, должны быть представлены в общем виде, а символы, входящие в формулу, должны быть пояснены; результат расчёта должен быть вычислен с точностью до трёх значащих цифр, не считая нулей впереди них; графическое изображение и условное обозначение элементов схем, должны быть выполнены в соответствии с требованием ГОСТ; рисунки следует нумеровать в порядке их следования и сопровождать подрисуночными надписями; в конце работы следует указать список используемой литературы, издательство, год издания,необходима личная подпись студента и дата выполнения работы; работа высылается на рецензирование в соответствии с учебным графиком.

15 Контрольное задание ЗАДАЧА Начертить схему выпрямителя, указанного для Вашего варианта в таблице и с помощью временных диаграмм пояснить принцип ее работы. Рассчитать заданный выпрямитель по следующим пунктам: Выбрать тип кремниевых диодов. Определить действующие значения напряжения и тока во вторичной обмотке трансформатора. 3 Определить коэффициент трансформации силового трансформатора. 4 Определить коэффициент полезного действия (КПД) выпрямителя. Определить коэффициент пульсации Km. 6 Определить частоту пульсации f основной (первой) гармоники. Данные для расчёта приведены в таблице. Таблица Исходные данные Исходные данные Выпрямленное напряжение U 0, В Выпрямленный ток I 0, А 3 Схема выпрямления Номер варианта Однофазная мостовая Однофазная двухполупериодная с выводом средней точки трансформатора Трехфазная однополупериодная (схема Миткевича), соединение обмоток трансформато ра Трехфазная мостовая (схема Ларионова), соединение обмоток трансформатора 4 Напряжение сети U c, В Частота сети f с, Гц Коэффициент пульсации первой гармоники на нагрузке (на выходе фильтра) К ПВЫХ 0,00 0,00 0,003 0,009 0,004 0,00 0,00 0,003 0,00 0,00

16 Методические указания по решению задачи Прежде чем приступить к решению задачи, следует изучить рекомендованные в тексте программы страницы учебника. Для выбора типа кремниевых диодов необходимо определить обратное напряжение на диоде U ОБР и средний прямой ток через диод I СР. Данные для их расчёта приведены в табл.. Тип кремниевого диода выбирают по табл. 3, исходя из расчетов значений U ОБР и I СР, таким образом, чтобы допустимые значения соответствующих величин для выбранного типа превосходили рассчитанные, U ОБР max >U ОБР; I ПР СР > I СР. Расчёт действующих значений напряжения U и тока I во вторичной обмотке трансформатора определяется по формулам таблицы. 3 Коэффициент трансформации силового трансформатора рассчитывается по формуле: U ктр, () U где U действующее значение фазного напряжения в первичной обмотке трансформатора, принимается равным напряжению сети U C, В; U действующее значение напряжения во вторичной обмотке трансформатора, В (см. п.). 4 Расчёт КПД выпрямителя. Коэффициент полезного действия выпрямителя без учёта сглаживающего фильтра определяется по формуле: Р0, () Р Р Р 0 ТР Д где Р 0= U 0 I 0 активная мощность на нагрузке, Вт; -потери мощности в трансформаторе, Вт; Р ТР Р Д -потери мощности в диодах, Вт. 4. Расчёт потерь мощности в трансформаторе определяется по формуле 3: Р Р, (3) ТР где Р ТР -расчётная мощность трансформатора, определяется по данным таблицы для заданной схемы выпрямителя, Вт; - кпд трансформатора, для расчётов принимается равным 0,8. ТР ТР

17 Таблица Параметры Обратное напряжение на диоде Uобр Среднее значение прямого тока через диод Iср 3 Фазность выпрямителя m 4 Действующее значение напряжения вторичной обмотки трансформатора U Действующее значение тока вторичной обмотки трансформатора I 6 Действующее значение тока первичной обмотки трансформатора I 7 Расчетная мощность трансформатора Ртр однофазная мостовая однофазная двухполупериодная с выводом средней точки трансформатора Схемы выпрямления трёхфазная однополупериодная (-) трехфазная мостовая (-) 7 Uо 3,4 Uо, Uо Uо 0, Io 0, Io 0,33 Io 0,33 Io 3 6, Uо, Uо 0,8 Uо 0,43 Uо Io 0,707 Io 0,8 Io 0,8 Io, Po,34 Po,34 Po Po

18 Таблица 3 Тип диодов U обр max Iпр.ср Uпр.ср Iобр.ср Тип диодов U обр max Iпр.ср Uпр.ср Iобр.ср Д4 Д4А Д4Б Д ДА ДБ Д3 Д3А Д3Б Д3 Д3А Д3Б Д33 Д33Б Д34Б Д4 Д4А Д4Б Д43 Д43А Д43Б Д4 Д4А Д4Б Д46 Д46А Д46Б Д47 Д47Б Д48Б КД0А КД0Г Д30 Д303 Д304 Д30 Д0А Д0Б Д0В Д0Г КД0А КД0В КД0Д КД0Ж КД0К, 3, 0,9 0,9 0, 0,3 0, 0,3 0,8 0,8 0,8,0, КД0М КД0Р КД03А КД03Б КД03В КД03Г КД03Д КД06А КД06Б КД06В КД08А КДА КДБ КДВ КДГ КД3А КД3Б КД3В КД3Г Д6А Д6Б Д0А Д0Б Д0В Д0Г Д0Д Д0Е Д0Ж Д0И Д- Д-6 Д- Д-3 Д-40 В В В0 ДЛ- ДЛ-6 ДЛ- ДЛ-3 ДЛ-40 ВЛ ВЛ ВЛ,,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 0,7 0,7 0,7 0, 0, 0, 0, 0, 0,0 0,0 4,0 6,0 6,0,0,0,0,0 4,0 4,0 4,0,0 8,9

19 4. Расчёт потерь мощности в диодах зависит от схемы выпрямления: для трёхфазной однополупериодной схемы выпрямления и схемы выпрямления однофазного тока с выводом средней точки трансформатора потери мощности в диодах рассчитываются по формуле 4, Вт: Рд = Uпр.ср Io, (4) где Uпp.cp - допустимое прямое напряжение на выбранном диоде, В (см. таблицу 3). в мостовых схемах выпрямления ток протекает по двум последовательно включённым диодам, поэтому потери мощности в диодах определяются по формуле, Вт: Рд = Uпр.ср Io. () Коэффициент пульсации основной (первой) гармоники на выходе выпрямителя рассчитывается по формуле 6: К П m. (6) 6 Частота пульсации основной (первой) гармоники f,гц определяется по формуле 7: f = m fc, (7) где m число импульсов выпрямленного тока за период (см. табл.); fc - частота сети, Гц. ЗАДАЧА Рассчитать сглаживающий Г - образный LC - фильтр, включенный после выпрямителя, по следующим пунктам: Определить коэффициент сглаживания q. Определить параметры элементов сглаживающего фильтра. 3 Начертить схему рассчитанного Г - образного LC - фильтра, учитывая количество звеньев в фильтре. Данные для расчёта приведены в табл.. Методические указания по решению задачи Расчёт параметров элементов сглаживающего LC - фильтра, включённого на выходе выпрямителя (задача), производится в следующем порядке.. Рассчитать коэффициент сглаживания q по формуле 8: К К q= П ПВЫХ, (8)

20 где Kп - коэффициент пульсации первой гармоники на входе фильтра (на выходе выпрямителя), определяется для заданной схемы выпрямителя по формуле 6; Кп.вых - коэффициент пульсации первой гармоники на выходе фильтра (на нагрузке), см. табл.. По рассчитанному значению q выбирается количество звеньев LC - фильтра. Если q <, то применяется однозвенный LC - фильтр, и в этом случае qзв= q, где qзв - коэффициент сглаживания одного звена LC - фильтра. Если q >, то применяется двухзвенный LC - фильтр. Так как использование однотипных деталей более экономично, чем разнотипных, то в обоих звеньях двухзвенного фильтра включаются одинаковые элементы L и С. В этом случае коэффициент сглаживания каждого звена определяется по формуле 9: qзв q. (9). Рассчитать значения индуктивности и ёмкости сглаживающего фильтра. Одним из условий выбора индуктивности дросселя фильтра является обеспечение индуктивной реакции фильтра на выпрямитель. Минимальное значение индуктивности дросселя, удовлетворяющее этому условию, определяется по формуле, Гн: L U0 (m) m I 3.34 f ДРmin Величина ёмкости фильтра рассчитывается по формуле, мкф: (qзв) С m L ДР min Из таблицы 4 следует выбрать тип конденсатора с номинальной ёмкостью, исходя из рассчитанного значения ёмкости С и номинального напряжения конденсатора U HОM, величина которого определяется по формуле: 0 C () () U ном >, U 0. () Если в таблице 4 на нужное напряжение не окажется конденсатора с рассчитанной ёмкостью, то следует выбрать конденсатор с максимальной номинальной ёмкостью на рассчитанное номинальное напряжение и включить от двух до пяти таких конденсаторов параллельно друг другу. При этом может оказаться, что общая ёмкость пяти параллельно включённых конденсаторов С ОБЩ В несколько раз (...) меньше рассчитанного значения ёмкости фильтра С. Получение расчётного значения ёмкости фильтра путём дальнейшего увеличения количества конденсаторов нецелесообразно, поэтому общую ёмкость С ОБЩ выбранных конденсаторов считают номинальной ёмкостью фильтра.

21 В этом следует величину индуктивности L ДР min следует увеличить во столько же раз, во сколько раз С ОБЩ меньше рассчитанной ёмкости фильтра С, поскольку необходимо соблюсти условие LC = const..3 Изобразить схему сглаживающего фильтра с учётом количества звеньев и числа параллельно включённых конденсаторов в каждом звене фильтра, которые получились в результате Вашего расчёта. Таблица 4 - Конденсаторы с оксидным диэлектриком Тип Номинальное напряжение, В К 0-6, К 0-8 6, К К 0-3А К К, Номинальная емкость, мкф; ; 47; 0; 0; 470; 00; 00; 000 ; ; ; 47; 0; 0; 470; 00; 000 ; 47; ; ; 47; 0; 0; 470; 00; 00; 000 ;,; 4,7; ; 47; 0; 00 ;,; 4,7; ; 0 ;,; 4,7; ; ; 47; 0; ; ; ; ; ; ; 000; 000; ; 000; ; 4700; ; ; 00 ; ; 47; 0; 0; 470 ; ; 47; 0; 0; 470 4,7; ; ; 47; 0; 0,; 4,7; ; ; 47; 0; 0 000; 000; ; ; 000; ; 00; 00; 3300; ; 40; 0; 330; 470; 680; 00; 000; 00 47; 68; 0; 0; 0; 330; 470; 680; 00 47; 68; 0; 0; 0; 330; ; 0; 0; 470; 00; 00; 4700; ; 0; 0; 470; 00; 00; 4700; 000 ; 47; 0; 0; 470; 00; 00 ; 47; 0; 0; 470; 00; 00 ; 47; 0; 0; 470; 00; 00 4,7; ; ; 47; 0; 0 ; ; 4,7; ; ; 47; 0

22 ЗАДАЧА 3 Рассчитать электропитающую установку ЭПУ-60 (ЭПУ-48) по следующим пунктам: Выбрать тип и количество аккумуляторов в батарее, необходимых для аварийного питания нагрузки. Расшифровать обозначение выбранных аккумуляторов. Выбрать тип установки электропитания предприятия связи (УЭПС) и количество выпрямительных устройств типа ВБВ. 3 Рассчитать энергетические параметры выпрямительно-аккумуляторной установки. Данные для расчёта приведены в таблице. Таблица Исходные данные Ток нагрузки I н, А Номинальное напряжение U ном, В Категория электроснабжения Первая потребителя Температура электролита, t o 4 0 Номер варианта Особая группа Первая Особая группа Iк Первая Особая группа Iк Первая Особая группа Iк Первая Особая группа Iк Методические указания к решению задачи 3 Расчёт и выбор аккумуляторной батареи. Расчёт ёмкости аккумуляторной батареи Аккумуляторная батарея обеспечивает электропитание нагрузки в аварийном режиме. Необходимая ёмкость свинцово-кислотной батареи OP Z S (с жидким электролитом), приведённая к нормальным условиям разряда, определяется по формуле 3, А ч: Iнагрtp Qt, (3) [ 0, 008(t 0)]

23 где Q t - расчётная ёмкость батареи в ампер-часах, приведённая к нормальной температуре электролита (0 0 С), А ч; I НАГР ток нагрузки, указанный в исходных данных, А; t р время разряда батареи в часах, зависит от категории электроснабжения: для потребителей особой группы первой категории - часа, для потребителей первой категории-8 часов, ч; -коэффициент отбора ёмкости, зависящий от времени разряда, t р; при t p =ч q =0,94 при t p =8ч q =0,64 t o - фактическая температура электролита, указанная в исходных данных.. Выбор типа аккумулятора. Поскольку аккумуляторная батарея состоит из двух параллельных групп, то получившуюся величину ёмкости необходимо разделить на два. Выбор типа аккумулятора производится по таблице 6. Например, расчётную ёмкость батареи Q t =800А ч делим на два и выбираем аккумулятор типа 6 OP Z S 40 с номинальной ёмкостью Q ном =40А ч. Выбирается аккумулятор, номинальная ёмкость которого должна превышать расчётную. В выбранном типе аккумулятора первое число кода соответствует количеству положительных пластин, буквенное обозначение расшифровывается как «стационарные необслуживаемые аккумуляторы с трубчатыми положительными пластинами», последнее число показывает номинальную ёмкость Q НОМ аккумулятора при -часовом разряде номинальным током..3 Количество элементов в одной группе аккумуляторной батареи определяется по формуле 4: U НОМ n= (4) где U ном =60 (48) - номинальное напряжение на нагрузке, В; номинальное напряжение одного аккумулятора, В.

24 Таблица 6 Тип элемента 3 ОР Z S 0 Ёмкость, А ч Разрядный ток, А часы часы 3 0, 3 0, ОР Z S 00 ОР Z S 0 6 ОР Z S 300 ОР Z S 30 6 ОР Z S 40 7 ОР Z S ОР Z S ОР Z S 800 ОР Z S 00 ОР Z S 00 ОР Z S 00 ОР Z S 87 6 ОР Z S ОР Z S 00 4 ОР Z S Расчёт и выбор установки злектропитания предприятия связи (УЭПС). Расчёт тока нагрузки УЭПС. Выпрямительная установка должна обеспечить питание нагрузки и заряд аккумуляторной батареи после её разряда при отключении

25 электроэнергии. Поэтому суммарный ток ЭПУ (I ЭПУ) должен составлять сумму тока нагрузки (I НАГР) и тока заряда батареи (I ЗАР.). Ток заряда двух группы батареи рассчитывается по формуле, А I ЗАР= 0. Q ном () где Q ном - номинальная ёмкость выбранного аккумулятора, А ч Ток нагрузки выпрямительной установки определяется по формуле6, А I ЭПУ = I НАГР + I ЗАР (6). Из таблицы 7 следует выбрать устройство типа УЭПС-3 или УЭПС-3К на Uном=60В или 48В и величину I ЭПУ с выпрямителями ВБВ (выпрямительные устройства с бестрансформаторным входом). Например, при расчётном токе I ЭПУ =0А,U НОМ =60В выбираем УЭПС-3 60/ М. В выбранном типе УЭПС-3: цифра 60 означает номинальное напряжение, В; цифра 0- максимальный выходной ток при полной комплектации выпрямителями, А; цифры 06- максимальное количество выпрямителей устанавливаемых в устройстве; цифры 06- количество выпрямителей, установленных в устройстве; индекс М- модернизированный. Таблица 7 Тип устройства УЭПС-3 60/ М Выпрямители ВБВ Тип Количество, шт. ВБВ 60/ -3К 6 УЭПС-3 60/300--М УЭПС-3К 60/80-44 УЭПС-3 48/ М УЭПС-3 48/360--М УЭПС-3К 48/0-44 ВБВ 60/ -3К ВБВ 60/0-3К ВБВ 48/30-3К ВБВ 48/30-3К ВБВ48/ -3К Количество выпрямителей (модулей) необходимое для комплектации УЭПС, выбирается из условия 7: I ЭПУ ВУ (7) IВБВ

26 где к ву -число параллельно включённых выпрямительных модулей; I ВБВ максимальный ток одного выпрямителя, А К выбранному рабочему комплекту ВБВ следует добавить одно резервное того же типа. Типы и основные электрические характеристики выпрямителей приведены в таблице 8. Таблица 8 Тип выпрямит еля ВБВ-60/ 3К ВБВ-60/0 3К ВБВ-60/30 К ВБВ- 48/30-3К ВБВ- 48/-3К Основные электрические характеристики Диапазон Максималь Диапазон регулировки ная изменения выходного выходная выходного напряжения, мощность, тока, А В Вт КПД,9 0,9 0,99 40,9 0,9 Коэффициент мощности 0,99 0,98 Примечание: условное обозначение типа выпрямителя, приведённого в таблице 4, расшифровывается следующим образом: ВБВ- выпрямительные устройства с бестрансформаторным входом; цифра в числителе-номинальное выходное напряжение, В; цифра в знаменателе-максимальный ток нагрузки, А; цифра 3(или) номер исполнения; буква К- наличие корректора коэффициента мощности. 3 Расчёт энергетических параметров выпрямительно-аккумуляторной установки. 3. Максимальная потребляемая мощность УЭПС-3 от сети переменного тока, с учётом КПД выпрямительного устройства, рассчитывается по формуле 8, квт: где ВБВ ЭПУ НОМ Р мах = ВБВ - КПД выпрямительного устройства. I U (8)

27 3. Полная мощность, потребляемая установкой от сети переменного тока, рассчитывается по формуле 9, кв А: Р МАХ Р S = cos, (9) где cosφ -коэффициент мощности выбранного типа ВБВ. ЗАДАЧА 4 Начертить электрическую функциональную схему ЭПУ-60 (48) по данным полученным в задаче 3. Указать состав и назначение основного оборудования ЭПУ. 3 Рассмотреть цепи питания нагрузки по схеме ЭПУ. Пояснить, как осуществляется бесперебойное питание аппаратуры связи от ЭПУ: 3. при наличии сети переменного тока (нормальный режим), (для вариантов с по 4); 3. при пропадании сети переменного тока (аварийный режим), (для вариантов с по 7); 3.3 при восстановлении сети переменного тока (послеаварийный режим), назначение (для вариантов с 8 по); Методические указания по выполнению задачи 4 Типовая схема ЭПУ-60 приведена на рисунке. На схеме следует изобразить то количество выпрямительных модулей (ВБВ), которое получилось в результате Вашего расчёта. Типовая схема ЭПУ-48 строится аналогично. На рисунке представлена структурная схема ЭПУ-60, называемая буферной модульной системой электропитания. Особенностью таких систем является параллельное подключение аккумуляторной батареи к выходу выпрямителей и питаемой нагрузке. В состав ЭПУ-60 (48) входят: комплект выпрямительных устройств типа ВБВ, состоящий из К модулей для электропитания аппаратуры связи, заряда и подзаряда аккумуляторной батареи; автоматические выключатели А- А-К для подключения выпрямителей к вводному щиту переменного тока ЩПТА; автоматические выключатели А- А-К для подключения выхода выпрямителей к аккумуляторной батарее и нагрузке; двухгруппная аккумуляторная батарея АБ иаб; автомат (контактор) глубоко разряда АГР для отключения аккумуляторной батареи от аппаратуры при глубоком разряде; батарейные автоматические выключатели АБ, АБ для подключения аккумуляторной батареи к нагрузке;

28 токовые шунты для измерения тока в цепи аккумуляторных батарей Ш и в цепи нагрузок Ш; автоматические выключатели Аn- Аn-m для подключения нагрузки; контроллер для контроля за состоянием выпрямителей, автоматических выключателей, предохранителей; для контроля за напряжением и током аккумуляторной батареи и нагрузки; её отключением при глубоком разряде; температурой окружающей среды; за ёмкостью аккумуляторной батареи, наличием всех трёх фаз питающей сети. При отключении любого из автоматов или срабатывании защиты на дисплее контроллера появляется соответствующая информация. Рисунок - Схема электрическая функциональная ЭПУ-60 Работа ЭПУ В нормальном режиме электропитание аппаратуры связи и непрерывный подзаряд аккумуляторной батареи осуществляется от рабочих ВБВ. Автоматические выключатели А- А-К и А- А-К замкнуты. В аварийном режиме питание аппаратуры осуществляется от разряжающейся аккумуляторной батареи. Для того, чтобы не допустить сульфатации аккумуляторов в результате недопустимого их глубоко разряда,

29 в систему электропитания вводится контактор АГР, отключающий батарею от аппаратуры. При восстановлении электроснабжения выпрямительные устройства обеспечивают питание аппаратуры и заряд аккумуляторной батареи без отключения её от нагрузки. Достоинства буферной модульной системы электропитания: высокое качество вырабатываемой энергии, так как используются сглаживающие стабилизирующие свойства аккумуляторной батареи, подключённой параллельно нагрузке; минимальное количество устройств, входящих в состав ЭПУ, что обеспечивает низкую стоимость и высокую надёжность; высокий КПД, практически равный КПД ВБВ; высокий коэффициент мощности (в случае применения выпрямителей с корректором коэффициент мощности). Список используемых источников: Электропитание устройств и систем телекоммуникаций; Учебное пособие для вузов /В.М. Бушуев, В.А. Деминский, Л.Ф. Захаров и др.- Москва: Горячая линия-телеком, 009. Щедрин, Н.Н. Энергоснабжение телекоммуникационных систем: Учебное пособие для СПО. Учебное пособие для СПО. Москва: УМЦ Федерального агентства связи, 0. Дополнительные источники: Сизых, Г. Н.Электропитание устройств связи [Текст]: учебник для техникумов / Г. Н. Сизых. - Москва: Радио и связь, с. Хиленко, В. И. Электропитание устройств связи [Текст]: учебник / В. И. Хиленко, А. В. Хиленко. - Москва: Радио и связь, с. 3 Материалы сайта завода «Ферроприбор». 4 Материалы сайта НПП ГАММАМЕТ».


ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования Санкт Петербургский государственный университет телекоммуникаций им.проф.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ Составлен в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по направлению 210700.62 и Положением

Устройства предназначены для электропитания аппаратуры связи различного назначения номинальным напряжением 24, 48 или 60 В постоянного тока в буфере с аккумуляторной батареей или без нее и представляют

Базовые узлы ИВЭП ИВЭП представляют собой сочетание различных функциональных узлов электроники, выполняющих различные виды преобразования электрической энергии, а именно: выпрямление; фильтрацию; трансформацию

1 Лекции профессора Полевского В.И. Выпрямители синусоидального тока Вольтамперная характеристика электропреобразовательного диода На рис. 1.1. представлена вольтамперная характеристика (ВАХ) электропреобразовательного

Лабораторная работа 1.1а Исследование работы выпрямительного устройства 1 Цель работы 1. Изучение принципов структурного, функционального, схемотехнического построения и функционирования выпрямительных

1. РАСЧЕТ ВЫПРЯМИТЕЛЯ Ц е л ь р а б о т ы: расчет выпрямителя для питания промышленной установки. В качестве исходных данных используются номинальное значение выпрямленного напряжения U d н и выпрямленного

75 Лекция 8 ВЫПРЯМИТЕЛИ (ПРОДОЛЖЕНИЕ) План 1. Введение 2. Однополупериодный управляемый выпрямитель 3. Двухполупериодные управляемые выпрямители 4. Сглаживающие фильтры 5. Потери и КПД выпрямителей 6.

Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,

Общие сведения АНАЛИЗ СХЕМ ВЫПРЯМЛЕНИЯ ПЕРЕМЕННОГО ТОКА ВЫСОКОГО НАПРЯЖЕНИЯ Во многих областях науки и техники требуются источники энергии постоянного тока. Потребителям энергии постоянного тока являются

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Радиоэлектроника и телекоммуникации»

Баранов Н.Н., д.т.н., проф. Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур РАН, Москва, РФ Крюков К.В., асс. Национальный исследовательский университет

Лабораторная работа 1.3 Исследование энергетических характеристик выпрямительных устройств для питания телекоммуникационного оборудования 1. Цель работы 1.1 Определить наиболее эффективный преобразователь

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ ГОУ СПО «Бахчисарайский колледж строительства, архитектуры и дизайна» Электротехника и электроника методические указания и контрольные задания

ОГЛАВЛЕНИЕ Введение 3 Глава 1. ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВОЙ ПРЕОБРАЗОВАТЕЛЬНОЙ ТЕХНИКИ ОСНОВНОЙ СПОСОБ ПРЕОБРАЗОВАНИЯ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 1.1. Предмет преобразовательной техники... 5 1.2.

РАСЧЕТ ВЫПРЯМИТЕЛЕЙ 1.1. Состав и основные параметры выпрямителей Электрический (ВП) предназначен для преобразования переменного тока в постоянный. В общем случае схема ВП содержит трансформатор, вентили,

Лабораторная работа 2 Исследование преобразовательных устройств: инвертора,конвертора в программной среде моделирования электронных схем Electronics Workbench 5.12. Цель работы: Ознакомиться с работой

Тема: Сглаживающие фильтры План 1. Пассивные сглаживающие фильтры 2. Активный сглаживающий фильтр Пассивные сглаживающие фильтры Активно-индуктивный (R-L) сглаживающий фильтр Он представляет собой катушку

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ИЗУЧЕНИЕ ОДНОФАЗНОГО ВЫПРЯМИТЕЛЯ Методические указания по выполнению

ООО Завод «Калининградгазавтоматика» Техническая информация Зарядно-выпрямительные устройства серии SDC Калининград 2014 16 1. ОБЩИЕ ДАННЫЕ Зарядно-выпрямительные устройства (ВЗУ), выпускаемые ООО Завод

Соловьев И.Н., Гранков И.Е. ИНВАРИАНТНЫЙ К НАГРУЗКЕ ИНВЕРТОР Актуальной, сегодня, является задача обеспечения работы инвертора с нагрузками различных типов. Работа инвертора с линейными нагрузками достаточно

Устройства УЭПС-3 (3К) предназначены для электропитания аппаратуры связи различного назначения постоянным током номинального напряжения 24, 48 или 60 В с аккумуляторной батареей или без нее и представляют

Стойки СУЭП-2 предназначены для электропитания аппаратуры связи большой мощности постоянным током номинального напряжения 48 или 60 В. Условное обозначение стоек СУЭП-2: СУЭП-2 ХХ / ХХХ ХХ ХХ ХХ 0 отсутствие

Вариант 1. 1. Назначение, устройство, принцип действия, условное графическое обозначение и вольт-амперная характеристика электровакуумного диода. 2. Назначение и структурная схема выпрямителей. Основные

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 системы и технологии» Тема 1. Линейные цепи постоянного тока. 1. Основные понятия: электрическая цепь, элементы электрической цепи, участок электрической цепи. 2. Классификация

7. ВЫБОР ОСНОВНЫХ ЭЛЕМЕНТОВ ЭЛЕКТРОПРИВОДА На основании требований, предъявляемых к электроприводу, и анализа результатов предварительной проверки двигателя по производительности, нагреву и обеспечению

Лабораторная работа 1 Источники вторичного питания Целью работы является исследование основных параметров источника вторичного питания электронной аппаратуры на базе однофазного двухполупериодного выпрямителя.

Основы функционирования преобразовательной электронной техники Выпрямители и инверторы ВЫПРЯМИТЕЛИ НА ДИОДАХ Показатели выпрямленного напряжения во многом определяются как схемой выпрямления, так и используемыми

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра прикладной химии

Контрольная работа 1 по разделу «Выпрямители» Вариант 1 1. Назовите основные параметры и компоненты выпрямителей. Приведите базовые схемы неуправляемых выпрямителей и поясните их сравнительные отличия

2 3 4 СОДЕРЖАНИЕ стр. 1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 6 3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 13 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ

1 ЛАБОРАТОРНАЯ РАБОТА 2 ИССЛЕДОВАНИЕ ОДНОФАЗНЫХ ВЫПРЯМИТЕЛЕЙ Цели работы: 1. Исследование процессов в однофазных схемах выпрямления. 2. Исследование влияния сглаживающего фильтра на основные характеристики

Электрооборудование и электронные системы транспортных средств ДМ_Э_02_02_04 «Выпрямители» Автомеханик 5-го разряда филиал КСТМиА УО «РИПО» Минск 2016 Занятие 1. Содержание 1. Основные сведения о выпрямителях.

1.ОСНОВНЫЕ СВЕДЕНИЯ ЭЛЕКТРОННЫЕ ВЫПРЯМИТЕЛИ В ы п р я м и т е л я м и называют электронные устройства, предназначенные для преобразования энергии переменного тока в энергию постоянного тока. Выпрямители

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Лекция 7 ВЫПРЯМИТЕЛИ План 1. Источники вторичного электропитания 2. Однополупериодный выпрямитель 3. Двухполупериодные выпрямители 4. Трехфазные выпрямители 67 1. Источники вторичного электропитания Источники

Введение РАЗДЕЛ I Общая электротехника Глава 1. Электрические цепи постоянного тока 1.1. Основные понятия электромагнитного поля 1.2. Пассивные элементы цепей и их характеристики 1.3. Активные элементы

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК H02M 7/06 (2006.01) 170 594 (13) U1 R U 1 7 0 5 9 4 U 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22)

ИСТОЧНИКИ ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ Oleg Stukach TP, 30 Lenin Avenue, Tomsk, 634050, Russia E-mail: [email protected] Более 1/3 всей вырабатываемой электроэнергии используется потребителями постоянного тока

Устройства УЭПС-2 (2К) предназначены для электропитания аппаратуры связи различного назначения постоянным током с номинальным напряжением 24, 48 или 60 В, с аккумуляторной батареей или без нее и представляют

БЛОКИ ПИТАНИЯ БПС-3000-380/24В-100А-14 БПС-3000-380/48В-60А-14 БПС-3000-380/60В-50А-14 БПС-3000-380/110В-25А-14 БПС-3000-380/220В-15А-14 руководство по эксплуатации СОДЕРЖАНИЕ 1. Назначение... 3 2. Технические

1. Организационно методические указания 1.1. Цели и задачи изучения дисциплины Дисциплина «Электропитание и элементы электромеханики» является общеинженерной и является теоретической основой, на которой

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Факультет радиотехники и электроники УТВЕРЖДАЮ

7. Стойки универсальные электропитающие СУЭП-2 Щит токораспределительный ЩТР 60/600-4 Стойки СУЭП-2 предназначены для электропитания аппаратуры связи большой мощности постоянным током номинального напряжения

КОНТРОЛЬНЫЕ ЗАДАНИЯ И ВОПРОСЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ ПО ДИСЦИПЛИНЕ (ДЛЯ ТЕКУЩЕЙ АТТЕСТАЦИИ И КОНТРОЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ) 1. ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА 1.1 Электромеханические

Руководство по эксплуатации на выпрямители ВБВ 60/2-2М, ВБВ 48/2-2М, ВБВ 24/4-2М, ВБВ 12/4-2М СОДЕРЖАНИЕ 1. Техническое описание 2 1.1 Назначение 2 1.2 Технические данные 2 1.3 Состав выпрямителей, назначение

Согласно учебному плану направления 241000.62 (18.03.02) «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», профиль «Охрана окружающей среды и рациональное использование

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (1) МПК H02J 7/34 (06.01) 168 497 (13) U1 R U 1 6 8 4 9 7 U 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И. РАЗЗАКОВА Кафедра «Электроэнергетика» им. Дж. Апышева ИЗУЧЕНИЕ ВЫПРЯМИТЕЛЬНЫХ УСТРОЙСТВ

Белов Н. В., Волков Ю. С. Электротехника и основы электроники: Учебное пособие. 1-е изд. ISBN 978-5-8114-1225-9 Год выпуска 2012 Тираж 1500 экз. Формат 16,5 23,5 см Переплет: твердый Страниц 432 Цена 1

СОДЕРЖАНИЕ 1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ стр. 4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 5 3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ 1 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ

105 Лекция 11 ИМПУЛЬСНЫЕ ПРЕОБРАЗОВАТЕЛИ С ГАЛЬВАНИЧЕСКИМ РАЗДЕЛЕНИЕМ ВХОДА И ВЫХОДА План 1. Введение. Прямоходовые преобразователи 3. Обратноходовой преобразователь 4. Синхронное выпрямление 5. Корректоры

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» «Утверждаю» Проректор по УМР.О. Штриплинг 2013. Р

ОГЛАВЛЕНИЕ Предисловие...5 Введение... 6 Ч А С Т Ь П Е Р В А Я ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ Глава 1. Электрические цепи постоянного тока...10 1.1. Величины, характеризующие электрическое состояние цепи.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный

НАЗНАЧЕНИЕ Модульные комплектные установки постоянного оперативного тока типа «УОТ М» Техническое описание Модульные комплектные установки оперативного тока серии «УОТ М» применяются для бесперебойного

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Практически все системы поездной радиосвязи, станционной Связи с подвижными объектами, ремонтно-оперативной, служебно-оперативной радиосвязи и т. п. реализуются в диапазонах 2, 160, |530 и 450 МГц на радиостанциях с угловой модуляцией с фиксиро­ванным закреплением каналов связи. Лишь в некоторых подсисте­мах системы «Транспорт» предусматривалось использование прин­ципа равнодоступных каналов (транкинга).

Совершенствование сетей технологической железнодорожной радиосвязи ведется в два этапа с учетом этапов развития сети связи железных дорог и создания единой интегрированной цифровой сети связи.

Первый этап.

Внедрение поездной радиосвязи гектометрового диапазо­на (2 МГц) на основе модернизированных радиосредств: РС-46М, РС-23М, СР-234М, УС-2/4М, двухдиапазонных радиостанций РВ-1М, РВ-1.1М.

Внедрение поездной диспетчерской дуплексной радиосвязи систе­мы «Транспорт» диапазона 330 МГц на основных направлениях сети железных дорог Сибири и Дальнего Востока, что позволит органи­зовать сети радиосвязи при использовании на локомотивах трех- диапазонных радиостанций РВ-1М.

Поездная диспетчерская радиосвязь создается в двух диапазо­нах - дециметровом (330 МГц) и гектометровом (2 МГц).

В диапазоне 330 МГц организуется основной канал диспетчерской связи, обеспечивающий непрерывную радиосвязь ДНЦ, ЭЧЦ и поезд­ного диспетчера по локомотивам (ТНЦ) с машинистами поездных ло­комотивов в пределах всего диспетчерского участка.

Сеть дуплексной поездной диспетчерской радиосвязи обеспечи­вает тестовую проверку исправности стационарной и возимой ап­паратуры с отображением результатов контроля. В гектометровом диапазоне организуется резервный канал диспетчерской связи, ис­пользуемый в основном для радиотелефонных переговоров диспет­черов с машинистами.

Связь машинистов поездных локомотивов с ДСП и по переез­дам организуется в гектометровом (2 МГц) и метровом (160 МГц) диапазонах.

Связь машинистов поездных локомотивов с дежурными по локомо­тивным депо, стрелками военизированной охраны, руководителями ре­монтных работ с различными категориями абонентов, оснащенных носимыми радиостанциями организуется в метровом диапазоне волн (160 МГц) с возможностью приема на возимой радиостанции фиксированных команд и сообщений от специализированных на­польных устройств или носимых радиостанций («Внимание, пере­езд», «Ремонт пути», «Пожар в поезде», «ЧП в поезде» и др.).

Связь машинистов поездных локомотивов с машинистами встречных и вслед идущих поездов организуется в гектометровом и метровом диапазонах волн и с помощниками машинистов при вы­ходе последних из кабины локомотива - в диапазоне метровых волн. Помощники машинистов при этом должны иметь носимые радиостанции.

Связь начальника (бригадира) пассажирского поезда с машинистом поездного локомотива, с дежурными по станциям и переездам и различ­ными категориями работников, оснащенных носимыми радиостанция­ми (дежурные по перрону, по вокзалу, сотрудники милиции и др.) организуется в метровом диапазоне волн (160 МГц).

Внутрипоездная сеть связи и громкоговорящего оповещения обеспечивает передачу информации пассажирам поезда и связь на­чальника поезда с членами бригады.

3. Разработка и внедрение поездной диспетчерской радиосвязи ПРС460 на основных направлениях сети дорог Европейской части России и районов Урала. При этом на подвижных объектах желез­нодорожного транспорта будут устанавливаться двухдиапазонные дуплексно-симплексные радиостанции дециметрового (460 МГц) и метрового (160 МГц) диапазонов. В переходный период будут оставаться в эксплуатации радиостанции гектометрового диапазо­на 42РТМ-А2-ЧМ (ЖР-К-ЛП) или РК-1.

Станционная и ремонтно-оперативная радиосвязь (РОРС) с использованием закрепленных каналов в диапазоне метровых волн (160 МГц). Тенденция развития РОРС связана с внедрением сетей, использующих равнодоступные каналы (транкинговых сетей).

Радиосвязь с использованием равнодоступных каналов в диа­пазоне дециметровых (460 МГц) волн.

В транкинговые сети должны включаться абоненты руководя­щего состава, а также абоненты следующих сетей станционной и ремонтно-оперативной связи: ремонтных служб пути, электроснаб­жения, связи и СЦБ; работников военизированной охраны; началь­ника пассажирского поезда с дежурными по вокзалам, линейными пунктами милиции; службы капитального строительства; площа­док погрузочно-разгрузочных работ; грузовой и коммерческой ра­боты; радиосетей локомотивного хозяйства; пунктов коммерческого осмотра вагонов; транспортно-экспедиционных предприятий по до­ставке контейнеров и грузов; радиосети пожарных и восстанови­тельных поездов.

Второй этап.

Создание цифровых сотовых сетей подвижной радиосвязи, при­нятых МСЖД (GSM-R) в соответствии с Рекомендациями UIC-751.4, которые позволят организовать каналы, обеспечивающие переда­чу ответственных команд в системе управления движением поездов; поездной диспетчерской радиосвязи для обеспечения связи диспет­черского аппарата с машинистами поездных локомотивов; поезд­ной технологической радиосвязи для решения всех технологичес­ких задач, включая станционную и ремонтно-оперативную радиосвязь (кроме маневровой и горочной связи), а также радио­связь обслуживания пассажиров за счет избыточной емкости поез­дной технологической радиосвязи и с выходом в сеть ЖАТС.

Организация связи обслуживания пассажиров и внутрипоездной радиосвязи с использованием средств железнодорожной технологической радиосвязи, сухопутной подвижной радиосвязи общего пользования и подвижной спутниковой связи.

Внутрипоездная радиосвязь должна строиться в соответствии с Рекомендациями МСЖД (ТЛС-568 с учетом требований к поезд­ной радиосвязи ШС-751.3) и обеспечивать:

Громкоговорящее оповещение пассажиров в пределах всего по­езда начальником поезда и поездным диспетчером с использовани­ем поездной диспетчерской радиосвязи; в пределах вагона - про­водником поезда;

Связь начальника поезда с проводниками и машинистами локомотива в пределах поезда, а на остановках - ив пределах перронов;

Связь пассажиров поезда с абонентами ЖАТС, абонентами в других поездах, выход в телефонную сеть общего пользования; связь с абонентами, входящими в систему железнодорожной технологи­ческой поездной радиосвязи, работающей в режиме цифровых тран- кинговых радиосетей и/или в системе GSM-R.

Необходимость совершенствования технологической радиосвя­зи обусловлена следующими задачами, стоящими перед железно­дорожным транспортом:

Совершенствование структуры управления и технологии рабо­ты транспорта;

Повышение производительности труда работников и сокраще­ние эксплуатационных расходов;

Повышение безопасности движения на основе развития систем управления движением поездов по радиоканалу;

Повышение качества обслуживания пассажиров, развитие сфе­ры услуг и коммерческих пассажирских перевозок.

Требования, предъявляемые эксплуатационными службами желез­нодорожного транспорта к системе технологической радиосвязи:

Наращивание числа абонентов сетей железнодорожной радио­связи и оснащение радиосредствами работников всех служб МПС;

Расширение зон связи и повышение надежности связи диспетчер­ского аппарата при организации поездной и маневровой радиосвязи;

Организация сетей радиосвязи работников ремонтных и эксп­луатационных подразделений;

Предоставление ряду категорий абонентов железнодорожного транспорта мобильных (носимых) радиотерминалов с обеспечени­ем возможности установления оперативной связи в телефонном ре­жиме или режиме передачи данных с аппаратом МПС, управлений и отделений дорог по сети общетехнологической связи МПС.

На современном этапе развития подвижной железнодорожной радиосвязи могут быть существенно изменены технологии ее исполь­зования. До настоящего времени радиосвязь применялась преиму­щественно в радиотелефонном режиме и только в отдельных тех­нологических процессах, например, для управления маневровыми" локомотивами или локомотивами соединенных поездов - в режи­ме передачи телеметрической информации.

В настоящее время значительное внимание должно уделяться ре­шению задач автоматизации управления движением поездов по ра­диоканалу, мониторинга технологических процессов транспорта и информационного обеспечения автоматизированных систем управ­ления.

Анализ возможностей современных средств подвижной радио­связи показывает, что их использование позволяет обеспечить ре­шение многих прикладных задач, в частности:

Автоматическое управление маневровыми и горочными локо­мотивами на станциях;

Контроль и передача диагностической информации о состоя­нии поезда и локомотива в депо, центры технического обслужива­ния;

Оповещение машинистов поездов и бортовых средств управле­ния с помощью аппаратуры контроля технического состояния под­вижного состава на ходу поезда (ДИСК, ПОНАБ и др.);

Интервальное регулирование движением поездов, в том числе для высокоскоростных магистралей,

Полуавтоматическая блокировка на малодеятельных линиях;

Пожарная и охранная сигнализация в депо, местах отстоя под­вижного состава;

Организация радиотелефонной связи, передачи факсимильной, видеоинформации с места проведения восстановительных работ с обеспечением возможности ведения переговоров и передачи ин­формации на уровень МПС России, управлений и отделений же­лезных дорог;

Оповещение ремонтных бригад и машинистов поездов о при­ближении к месту проведения ремонтных работ;

Передача телеметрической информации для управления стаци­онарными объектами электроснабжения, тяговыми подстанциями, шлагбаумами на неохраняемых переездах, компрессорными стан­циями и др.;

Управление соединенными поездами повышенной массы и длины;

Идентификация и контроль местоположения поездов по сты­кам дорог, границам диспетчерских участков и станций с переда­чей данных о поезде, включая сведения из натурного листа в реаль­ном масштабе времени в диспетчерский центр управления дороги в систему ДИСПАРК и др.

Контроль местоположения поездов, перевозящих особо ценные и опасные грузы;

Услуги доступа к системе «Экспресс-3» для заказа и приобрете­ния билетов в поездах.

На основании детального изучения и анализа потребностей всех служб железнодорожного транспорта в передаче речевой ин­формации и данных и с целью обеспечения совершенствования управления перевозочным процессом на основе удовлетворения этих потребностей разработаны «Эксплуатационно-технические требования к цифровой системе радиосвязи железнодорожного транспорта России».

Цифровые системы радиосвязи

В связи с модернизацией систем технологической радиосвязи МПС России осуществляет переход к цифровым системам. На ста­дии испытаний находятся система транкинговой связи стандарта TETRA и система сотовой связи GSM-R.

Общая характеристика стандарта TETRA, Стандарт TETRA описывает цифровую систему радиосвязи, предоставляющую ши­рокий спектр телекоммуникационных услуг. В их число входят ин­дивидуальные и групповые вызовы, выход в телефонную сеть об­щего пользования, передача данных, а также различные дополнительные службы.

Важнейшее свойство стандарта TETRA заключается в том, что он позволяет организовать одновременную работу множества не­зависимых виртуальных сетей, принадлежащих различным ве­домствам и организациям, в рамках одной и той же системы. Або­ненты каждой из них, общаясь между собой, никак не будут ощущать присутствие «чужих» сетей. В то же время при необходимости (на­пример, в чрезвычайных ситуациях) можно оперативно организо­вать их взаимодействие.

Стандарт TETRA обеспечивает надежную защиту информации. Для этого предусмотрена система мер, включая обязательное шиф­рование радиопереговоров. Несанкционированный доступ в систе­му стандарта TETRA невозможен - при каждом соединении або­нент и сеть проводят взаимную проверку подлинности, используя криптостойкий алгоритм. Пользователи, предъявляющие повышен­ные требования к конфиденциальности, могут воспользоваться ус­лугой сквозной передачи зашифрованной информации - этот ме­тод исключает перехват сообщений не только в эфире, но и в сетевой инфраструктуре.

Системы стандарта TETRA предоставляют абонентам широкий спектр услуг передачи данных - от пересылки коротких текстовых сообщений до организации каналов, позволяющих вести обмен ин­формацией со скоростью 28,8 кбит/с. Абонент сети TETRA может одновременно пользоваться услугами речевой связи и передачи дан­ных. Кроме того, абонентские радиостанции TETRA, имеющие встроенный графический дисплей и поддерживающие протокол WAP (Wireless Application Protocol - протокол беспроводных при­ложений), могут обращаться к информационным ресурсам ведом­ственных. корпоративных сетей и Интернет.

Стандарт TETRA позволяет назначить каждому абоненту опре­деленный уровень приоритета. Пользователи, имеющие высокий приоритет, располагают безусловным правом доступа в сеть-даже если все каналы окажутся занятыми, система при поступлении зап­роса немедленно разорвет одно из текущих соединений и предоста­вит канал связи. В стандарте TETRA используются специальные методы обработки речевого сигнала, которые обеспечивают не толь­ко верную передачу тембра голоса, но и сохранение разборчивости при работе в условиях сильных внешних шумов (например, на стройплощадках, железнодорожных станциях и т.д.). В момент перехода абонента из одной зоны обслуживания в другую разго­вор не прерывается.

Таким образом, стандарт TETRA позволяет создавать цифро­вые сети радиосвязи, в полной мере отвечающие потребностям са­мых разных абонентов. Несмотря на то, что стандарт включает се­годня все необходимые производителям спецификации, работы по его расширению продолжаются. Так, ведется разработка техноло­гии, которая позволит значительно увеличить дальность радиосвя­зи - до 100 км. Кроме того, совершенствуется спецификация TETRA PDO - специальная версия стандарта, ориентированная только на пакетную передачу данных.

В соответствии со спецификацией V+D, реализующейся в стан­дарте TETRA, пользователю для передачи данных предоставляет­ся одна из трех услуг: передача данных с коммутацией цепей (CD), передача коммутируемых пакетов данных (PD) и передача корот­ких сообщений (SDS). Метод CD в основном предназначен для транспортировки больших объемов данных поверх основного тра­фика канала, причем в каждом канале шириной 25 кГц задействуется один из четырех тайм-слотов. Именно в этом случае стандарт TETRA обеспечивает нужное качество обслуживания, так как по требованию можно зарезервировать необходимую полосу пропус­кания. Если пользователю необходимо повысить пропускную спо­собность, можно объединить два-четыре временных слота и уста­новить канал связи сквозным из конца в конец, а для повышения скорости пользователю придется понижать степень защищенности такого канала.

Что касается режима PD, то на сегодняшний день это наиболее интересный и перспективный метод, что связано в основном с об­щемировыми тенденциями, в частности, с сетью Интернет. Тоталь­ное распространение IP-протокола и, как следствие, приложений, базирующихся на IP, нашло свое применение и в сетях TETRA. В данном случае мобильная радиостанция выступает в качестве IP- клиента, а сеть TETRA- в качестве транспортной среды. Такая схема отличается повышенными гибкостью и надежностью за счет существования различных путей доставки радиосигнала, готовно­сти к увеличенному трафику, возможности подсоединения к радио­станции практически любого компьютерного оборудования и, ес­тественно, поддержки стандартных продуктов и приложений.

Функциональные схемы построения различных сетей связи стан­дарта TETRA представляются как совокупность элементов сети, со­единенных определенными интерфейсами. Сети стандарта TETRA содержат следующие основные элементы:

Базовая приемопередающая станция BTS (Base Transceiver Station) - базовая стационарная радиостанция, обеспечивающая связь в определенной зоне (ячейке). Такая станция выполняет ос­новные функции, связанные с передачей радиосигналов: сопряже­ние с мобильными станциями, шифрование линий связи, простран­ственно-разнесенный прием, управление выходной мощностью мобильных радиостанций, управление радиоканалами;

Устройство управления базовой станцией BCF (Base Station Control Function) - элемент сети с возможностями коммутации, ко­торый управляет несколькими базовыми станциями и обеспечивает доступ к внешним сетям, а также используется с целью подключе­ния диспетчерских пультов и терминалов для эксплуатационного и технического обслуживания;

Контроллер базовой станции BSC(Base Station Controller) - элемент сети с большими по сравнению с устройством BCF ком­мутационными возможностями, позволяющий обмениваться дан­ными между несколькими BCF. BSC имеет гибкую модульную структуру, позволяющую использовать большое число интерфей­сов разного типа;

Диспетчерский пульт - устройство, подключаемое к контрол­леру базовой станции по проводной линии и обеспечивающее об­мен информацией между оператором (диспетчером сети) и други­ми пользователями сети. Часто используется для широковещатель­ной передачи информации, создания групп пользователей и т.п.;

Мобильная станция MS (Mobile Station) - радиостанция, ис­пользуемая подвижными абонентами;

Стационарная радиостанция FRS (Fixed Radio Station) - ра­диостанция, используемая абонентом в определенном месте;

Терминал технического обслуживания и эксплуатации - тер­минал, подключаемый к устройству управления базовой станцией BCF и предназначенный для контроля за состоянием системы, про­ведения диагностики неисправностей, учета тарификационной ин­формации, внесения изменений в базу данных абонентов и т.п. С помощью таких терминалов реализуется функция управления ло­кальной сетью LNM (Local Network Management). Благодаря мо­дульному принципу разработки оборудования, сети связи стандар­та TETRA могут быть реализованы с разными иерархическими уровнями и различной географической протяженностью (от локаль­ных до национальных). Функции управления базой данных и ком­мутации распределяются по всей сети, что обеспечивает быструю передачу вызовов и сохранение ограниченной работоспособности сети даже при потере связи с ее отдельными элементами.

На национальном или региональном уровне структура сети мо­жет быть реализована на основе сравнительно небольших, но пол­ных подсетей TETRA, соединенных между собой с помощью меж­системного интерфейса ISI для создания общей сети. При этом возможно централизованное управление сетью. Вариант построе­ния такой сети показан на рис. 21.7.

Каждая подсеть TETRA выполняет свои функции управления и коммутации, а также предоставляет возможность для централизо­ванного управления более высокого уровня. Структура подсети за­висит от нагрузки, а также от требований к эффективности уста­новления связи. В случае, если не требуется резервирование каналов, возможно и достаточно создание подсети по конфигурации звезды. При использовании линейных трактов подсеть TETRA может быть реализована в виде длинной линии (цепи). В этом случае каждый модуль устройства управления базовой станцией BCF наряду с тре­буемой дальностью связи обеспечивает локальный доступ к вне­шним сетям. Простейшая конфигурация подсети TETRA включает только один модуль BCF.

В сетях связи стандарта TETRA предусматриваются различные способы обеспечения отказоустойчивости, позволяющие в случае отказа отдельных элементов сети сохранять полную или частичную работоспособность, возможно - с ухудшением ряда параметров,

таких, как время установления соединения и т.д. Для сетей нацио­нального уровня, как правило, используется несколько альтерна­тивных маршрутов соединения сетей регионального уровня. В ре­гиональных сетях подобные альтернативные маршруты используются для соединения контроллеров базовых станций. Кро­ме этого, для региональных сетей предусматривается взаимное ко­пирование баз данных в контроллерах базовых станций.

Общая характеристика GSM-R. Система радиосвязи GSM-R разработана на основе сотового стандарта GSM и ориентирована на удовлетворение потребностей европейских железных дорог в обмене информацией с подвижными объектами, а также на созда­ние условий для реализации систем управления движением с исполь­зованием радиоканалов за счет применения полос шириной 4 МГц в диапазонах 876-880 МГц и 921-925 МГц (рис. 21.8).

Железнодорожный участок разбивается на несколько районов, покрываемых распорядительными центрами RBC. В системе фор­мируются команды управления, осуществляется контроль скорос­ти, определяется местоположение поезда. Во время связи между поездом и центром RBC возможна дуплексная передача. Например, центр передает разрешение для движения поезда, а поезд - инфор­мацию о своем местонахождении.

Стандарт GSM был принят Международным союзом железных дорог (МСЖД) в 1993 г. в качестве базовой технологии для реали­зации железнодорожной системы цифровой связи. Но так как дан­ный стандарт не обладал сервисом, необходимым для профессио­нальных систем, то в 1993 г. МСЖД сделал запрос в ETSI (European Telecommunication Standards Institute) на реализацию дополнитель­ных свойств ASCI. Они включают в себя расширенные многоуров­невые приоритеты, резервирование, услуги широковещательного речевого оповещения и речевого группового вызова. Наряду с ASCI для удовлетворения требований железных дорог на услуги поезд­ной, маневровой радиосвязи, передачи данных для управления дви­жением поездов, телеуправления и т.д. должны быть реализованы функциональная адресация, адресация в зависимости от текущего местоположения и обработка вызовов с высоким приоритетом.

Сеть GSM-R можно разделить на несколько подсистем:

Бортовые устройства;

Стационарные устройства;

Центр управления.

Разделение задач между тремя управляющими подсистемами осуществляется следующим образом:

Центр управления берет на себя управление маршрутами и обес­печивает поездам бесконфликтное назначение участков пути (регу­лирование порядка следования поездов);

Бортовые устройства выдают задания стационарным устрой­ствам в соответствии с назначенными им маршрутами и контроли­руют движение поездов;

Стационарные устройства выполняют, в свою очередь, функ­ции управления и контроля стрелок, подходов к пассажирским плат­формам и переездам.

Каждая из подсистем имеет свой доступ к сети радиосвязи и спо­собна взаимодействовать с другими подсистемами. Распределение функций обеспечения безопасности между несколькими подсистема­ми потребовало формирования единой базы данных. Это необходи­мо прежде всего для согласования данных на поездах и в центре уп­равления. Поэтому подсистемы работают с данными единого атласа линии, содержащего всю описывающую эту линию информацию. К ней относятся, наряду с топологическими сведениями (модель ли­нии, местоположение стрелок и переездов), данные о максимально допустимых скоростях и адресации в системе радиосвязи.

Сеть GSM-R состоит из сотов, расположенных вдоль железной дороги или на территории станции. Каждая ячейка сотов оборудует­ся одним или несколькими приемопередатчиками в зависимости от нагрузки. Каждый контроллер базовой станции прикреплен к опре­деленным номерам сотов. Контроллеры базовых станций соединены с центром управления MSC (Mobile Switching Center)/VLR (Visitor Location Register). MSC устанавливает внешние соединения и обеспечивает интерфейс с другими сетями (рис. 21.9), где использо­ваны следующие сокращения:

AUC (Authentication Center) - центр аутенфикации;

BSC (Base Station Controller) - контроллер базовой станции;

BTS (Base Station System) - приемопередатчик базовой станции;

GCR (Group Call Register) - регистр группировки вызовов;

EIR (Equipment Identification Register) - регистр идентифика­ции оборудования;

SMS (Short Message Service) - служба коротких сообщений;

VMS (Visitor Management Server) - сервер управления переме­щениями;

OSS (Operation System Server) - сервер центра управления;

ОМС (Operation and Maintenance Center) - центр управления и обслуживания;

SCP (Service Control Point) - пункт управления услугами связи;

IN (Intelligent Networks) - интеллектуальная сеть;

PABX (Private Automatic Branch Exchange) - автоматический коммутатор выделенных каналов.

Все сетевые компоненты в стандарте GSM-R взаимодействуют в соответствии с системой сигнализации ITU-T SS.No (CCITT SS №7).

Центр коммутации обслуживает группу сотов и обеспечивает все виды соединений подвижной станции.


ЛИТЕРАТУРЫ

1. Архипов Е. В., Гуревич В. Н. Справочник электромонтера СЦБ. М.: Транспорт, 1999. -351 с.

2. Буканов М.А. Безопасность движения поездов (в условиях нару­шения нормальной работы устройств СЦБ и связи). М.: Транспорт,- 112 с.

3. Волков В.М., Зоръко А.П., Прокофьев В.А. Технологическая телефонная свяязь на железнодорожном транспорте. М.: Транс­порт, 1990. -293 с.

4. Волков В.М., Лебединский А.К., Павловский А. А., Юркин Ю.В. / Под ред. В.М. Волкова. Автоматическая телефонная связь на желез­нодорожном транспорте. М.: Транспорт, 1996. - 342 с.

5. Гапеев В.И., Пищик Ф.П., Егоренко В И. Обеспечение безопасно­сти движения и предупреждения травматизма на железнодорожном транспорте. Минск, 1994. - 310с.

6. Грачев Г.Н., Колюжный К.О., Липовецкий Ю.А., Цывин М.Е. Кодовая автоблокировка на электронной элементной базе / Авто­матика, телемеханика и связь, №7, 1995. - С. 28-29.

7. Казаков А. А., Бубнов В.Д., Казаков Е. А. Автоматизированные системы интервального регулирования движения поездов. М.: Транспорт, 1995.- 320 с.

8. Козлов П.А. Курс - на комплексную автоматизацию сортиро­вочных станций // Автоматика, связь, информатика, №1, 2001. - С. 6-9.

9. Кондратьева Л. А., Борисов Б.Б. Устройства автоматики, теле­механики и связи на железнодорожном транспорте. М.: Транспорт,-407 с.

10. Косова В. В. Оперативно-технологическая связь отделения желез- нойдороги. М.: Транспорт, 1993. - 144 с.

11. Кравцов Ю.А., Нестеров В.Л., Леку та Г. Ф. Системы железнодо- оожной автоматики и телемеханики. М.: Транспорт, 1996. - 400 с.

12. Иванова Т.Н. Абонентские терминалы и компьютерная теле­фония. М.: Эко-Трендз, 1999. - 240 с.

13. Инструкция по движению поездов и маневровой работе на железных дорогах Российской Федерации: ЦД-790 / МПС России. М.: Техинформ, 2000. - 317 с.

14. Инструкция по обеспечению безопасности движения поездов при производстве работ по техническому обслуживанию и ремонту устройств СЦБ: ЦЩ/530 / МПС России. М.: Трансиздат, 1998. - 96 с.

15. Инструкция по сигнализации на железных дорогах Российс­кой Федерации / МПС России. М.: Транспорт, 2000. - 128 с.

16. Инструкция по эксплуатации железнодорожных переездов МПС России: ЦП/483 / МПС России. М.: Транспорт, 1997. - 103 с.

17. Петров А. Ф. Устройство заграждения железнодорожного пере­езда // Автоматика, связь, информатика, №7, 1998. - С. 24-28.

18. Правила технической эксплуатации железных дорог Российской Федерации /МПС России. М.:Техинформ, 2000. - 190 с.

19. Сапожников В. В., Елкин Б.Н., Кокурин И.М., Кондратенко Л. Ф., Кононов В.А. Станционные системы автоматики и телемеханики. М.: Транспорт, 1997. - 432 с.

20. Слепое Н.Н. Синхронные цифровые сети SDH. М.: Эко-Трендз, 1998, - 148 с.

21. Соколов С. В. Автоматизированное рабочее место поездного дис­петчера - АРМ ДНЦ «Сетунь» / Автоматика, связь, информатика, №5, 2001, -С. 13-16.

22. Современные телекоммуникации железнодорожного транспор­та / Под ред. Г.В. Горелова. - УМК МПС РФ, 2000. - 577 с.

23. Убайдуллаев P.P. Волоконно-оптические сети. М.: Эко-Трендз,- 240 с.

24. Чернин М.А., Протопопов О.В. Автоматизированная система дис­петчерского контроля // Автоматика, связь, информатика, №10,- 48 с.

25. Щиголев С. А., Талалаев В.И., Шевцов В. А., Сергеев Б. С. Алго­ритм функционирования системы УКП СО и увязка с полуавтомати­ческой блокировкой // Автоматика, связь, информатика, №5,1999. - С. 10-14.

ВВЕДЕНИЕ 3

СИСТЕМЫ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ

Глава 1. Элементы систем регулирования движения 6

Классификация систем 6

Общие сведения об элементах систем 9

Общие сведения о реле 11

Реле постоянного тока 16

Реле переменного тока 24

Трансмиттеры и электронные приборы 26

Глава 2. Светофоры 31

Назначение, виды и места установки светофоров 31

Сигнализация светофоров 37

Классификация и устройство светофоров 43

Глава 3. Электропитание устройств автоматики и телемеханики.. 46

Аппаратура электропитания 46

Системы электропитания 49

Глава 4. Рельсовые цепи 52

Устройство, принцип действия и назначение рельсовых цепей.. 52

Классификация рельсовых цепей 56

Основные режимы работы рельсовых цепей 58

Надежность работы рельсовых цепей 61

Схемы рельсовых цепей 63

Глава 5. Полуавтоматическая блокировка 73

Назначение и принципы построения

полуавтоматической блокировки 73

Способы фиксации проследования

и контроля прибытия поезда 78

Релейная полуавтоматическая блокировка системы ГТСС 80

Глава 6. Автоматическая блокировка 91

Общие сведения и классификация систем автоблокировки 91

Системы сигнализации 94

Принципы построения автоблокировки постоянного тока 97

Принципы построения двухпутной

автоблокировки переменного тока 107

Глава 7. Автоматическая локомотивная

сигнализация и автостопы 119

Общие сведения 119

Автоматическая локомотивная

сигнализация непрерывного типа 121

Автоматическая локомотивная сигнализация

единого ряда с непрерывным каналом связи 129

Система автоматического управления тормозами 130

Глава 8. Ограждающие устройства на переездах 133

Назначение и виды автоматических

ограждающих устройств на переезде 133

Управление переездными светофорами

и автоматическими шлагбаумами 139

Устройство заграждения железнодорожного переезда 143

Глава 9. Электрическая централизация стрелок и сигналов 147

Назначение и классификация систем

электрической централизации 147

Оборудование станции устройствами

релейной централизации 151

Стрелочные электроприводы 170

Схемы управления стрелками 175

Релейная централизация промежуточных станций 179

Релейная централизация для средних и крупных станций 189

Принципы построения блочной

маршрутно-релейной централизации 201

Микропроцессорные системы ЭЦ 211

Глава 10. Механизация и автоматизация

работы сортировочных горок 223

Принципы механизации и автоматизации

работы сортировочных станций 223

Горочные вагонные замедлители 227

Горочный пульт управления 229

Комплексная автоматизация

работы сортировочных станций 237

Действия дежурного по горке при нарушении нормальной работы

устройств автоматизации и механизации 241

Глава 11. Диспетчерская централизация 244

Общие сведения 244

Аппараты управления и контроля 246

Основные требования, предъявляемые

к поездному диспетчеру и дежурному по станции 254

Глава 12. Диспетчерский контроль

за движением поездов и системы технической диагностики 256

Общие сведения 256

Система частотного диспетчерского контроля 258

Автоматизированная система

диспетчерского контроля АСДК 261

Система телеконтроля 262

Системы контроля состояния

подвижного состава на ходу поезда 264

Глава 13. Безопасность движения поездов

при неисправности устройств СЦБ 271

Обеспечение безопасного движения поездов

при полуавтоматической блокировке 271

Организация безопасного движения поездов при АБ 274

Организация безопасного движения на переездах 277

Организация безопасного движения

поездов при неисправности устройств ЭЦ 281

Раздел II СВЯЗЬ

Глава 14. Особенности и назначение железнодорожной связи 291

Состояние сети связи МПС России 291

Основные понятия и определения 292

Виды железнодорожной связи и их назначение 293

Перспективы развития телекоммуникаций

на железнодорожном транспорте 295

Глава 15. Линии связи 297

Назначение и классификация линий связи 297

Воздушные и кабельные линии связи 298

Волоконно-оптические линии связи 302

Глава 16. Телефонные аппараты и коммутаторы 306

Принцип телефонной передачи речи.

Схема двусторонней телефонной передачи 306

Конструкция телефонных аппаратов.

Телефонные аппараты технологической связи 309

Телефонные коммутаторы.

Назначение и принцип действия 313

Коммутаторы оперативной

и оперативно-технологической связи 315

Цифровые телефонные аппараты и коммутаторы 319

Глава 17. Телеграфная связь и передача данных 324

Принцип организации и назначение телеграфной связи 324

Телеграфные аппараты.

Автоматическая телеграфная связь 328

Создание сети передачи данных железных дорог России 334

Глава 18. Автоматическая телефонная связь

на железнодорожном транспорте 339

Принципы автоматической коммутации.

Общие сведения о системах АТС 339

АТС координатной системы и квазиэлектронные АТС 344

Цифровые АТС 347

Аппаратура оперативно-технологической

связи с временной коммутацией 349

Глава 19. Многоканачьные системы передачи 352

Особенности каналов связи и методы их уплотнения 352

Аналоговые многоканальные системы передачи 358

Цифровые многоканальные системы передачи 360

Цифровая первичная сеть 360

Глава 20. Технологическая телефонная связь

на железнодорожном транспорте 367

Классификация и назначение

технологической связи 367

Системы избирательного вызова 375

Магистральная и дорожная технологическая связь 382

Оперативно-технологическая связь

отделения железной дороги 385

Станционная технологическая связь 391

Единая цифровая платформа для организации общетехнологической и оперативно-технологической связи 395

Глава 21. Радиосвязь 399

Основные понятия 399

Станционная радиосвязь 402

Поездная радиосвязь 404

21.4. Ремонтно-оперативная радиосвязь 406

Радиорелейная связь 408

Перспективы развития железнодорожной радиосвязи 411

Цифровые системы радиосвязи 416

СПИСОК ЛИТЕРАТУРЫ 425


В приведенных единицах.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»