Приближенное вычисление квадратных корней. Как найти квадратный корень числа вручную

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10 √2 Ответ в принципе очень прост. Возьмем вместо √2 его приближение в виде конечной десятичной дрдби - это- рациональное число. Возводить в рациональную степень мы умеем; дело сводится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа. Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знаменатель рациональной дроби увеличится, но зато мы получим более точное приближение. Конечно, если взять приближенное значение √2 в виде очень длинной дроби, то возведение в степень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени - вполне доступный нам арифметический процесс; вычисляя, мы последовательно, один за другим, пишем знаки десятичной дроби. Но для того, чтобы возвести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего, они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений - процедура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы вычислим не только х = 10 √2 , но решим и другую задачу: 10 х = 2, или x = log 10 2. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.

Подумаем, как решить наши уравнения. Общая идея очень проста. Если вычислить 10 1 и 10 1/10 , и 10 1/100 , и 10 1/1000 , и т. д., а затем перемножить результаты, то мы получим 10 1,414… или l0 √2 Поступая так, мы решим любую задачу такого рода. Однако вместо 10 1/10 и т. д. мы будем вычислять 10 1/2 , и 10 1/4 и т. д. Прежде чем начинать вычисления, объясним еще, почему мы обращаемся к числу 10 чаще, чем к другим числам. Мы знаем, что значение таблиц логарифмов выходит далеко за рамки математической задачи вычисления корней, потому что

Это хорошо известно всем, кто пользовался таблицей логарифмов, чтобы перемножить числа. По какому же основанию b брать логарифмы? Это безразлично; ведь в основу таких вычислений положен только принцип, общее свойство логарифмической функции. Вычислив логарифмы один раз по какому-нибудь произвольному основанию, можно перейти к логарифмам по другому основанию при помощи умножения. Если умножить уравнение (22.3) на 61, то оно останется верным, поэтому если перемножить все числа в таблице логарифмов по основанию b на 61, то можно будет пользоваться и такой таблицей. Предположим, что нам известны логарифмы всех чисел по основанию b. Иначе говоря, можно решить уравнение b а = с для любого с; для этого существует таблица. Задача состоит в том, как найти логарифм этого же числа с по другому основанию, например x. Нам нужно решить уравнение х а’ = с. Это легко сделать, потому что х всегда можно представить так: х = b t . Найти t, зная х и b, просто: t = log b x. Подставим теперь х = b t в уравнение х а’ = с; оно перейдет в такое уравнение: (b t) а’ = b ta’ = c. Иными словами, произведение ta’ есть логарифм с по основанию b. Значит, а’ = a/t. Таким образом, логарифмы по основанию х равны произведениям логарифмов по основа нию b на постоянное число l/t. Следовательно, все таблицы логарифмов эквивалентны с точностью до умножения на число l/log b x. Это позволяет нам выбрать для составления таблиц любое основание, но мы решили, что удобнее всего взять за основание число 10. (Может возникнуть вопрос: не существует ли все-таки какого-нибудь естественного основания, при котором все выглядит как-то проще? Мы попытаемся ответить на этот вопрос позднее. Пока все логарифмы будут вычисляться по основанию 10.)

Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадратного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10 s - в третьем. Ясно, что 10 1 = 10. Возвести 10 в половинную степень легко -это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. (Квадратный корень лучше всего извлекать не тем способом, которому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вычислим N/a и среднее а’ =1/2; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.) Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает. Мы уже можем сказать, чему равно 10 0,5 , и знаем по крайней мере один логарифм.

Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить небольшие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 10 1/4 , что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250 -это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 10 0,75: ведь это 10 (0,5+0,25) , т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать почти все числа; перемножая числа из третьего столбца, мы получаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычисления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 10 1/1000 в 1000-ю степень, то мы снова получим 10; ясно, что 10 1/1000 не может быть большим числом: оно очень близко к единице. Более того, малые добавки к единице ведут себя так, будто их каждый раз делят на 2; поглядите-ка на таблицу повнимательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким бразом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень ∆/1024, когда ∆ стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511∆. Конечно, не в точности 0,0022511∆; чтобы вычислить эту добавку поточнее, делают такой трюк: вычитают из 10 s единицу и делят разность на показатель степени s. Отклонения полученного таким образом частного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (табл. 22.1) примерно равны. Сначала они сильно различаются, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким образом, мы спустимся еще на 26 единиц и найдем для предела 2,3025. (Позднее мы увидим, что правильнее было бы взять 2,3026, но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через I/I024.

Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изображена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, получится слишком большое число. Глядя на табл.. 22.1, можно сказать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4; разделим 2 на 1,778…, получится 1,124…; при делении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124…. Отыскав его, мы прибавим к результату 1/4 = 256/1024. Найдем в табл.22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124… . Это 1,074607. Отношение 1,124… к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:
2 = (1,77828) (1,074607) (1,036633). (1,0090350) (1,000573).
Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти, его логарифм, надо представить это число в виде 10∆/1024 ≈ 1 + 2,3025∆/1024. Отсюда легко найти, что ∆ = 0,254. Таким образом, наше произведение можно представить в виде десятки, возведенной в степень 1/1024 (266 + 32+16 + 4 + 0,254). Складывая и деля, мы получаем нужный логарифм: log 10 2 = 0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с ∆. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем
10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Составить таблицы логарифмов с точностью до четырнадцатого десятичного знака таким методом- дело очень трудное. Зато целых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных машин оказалось возможным составить таблицы логарифмов независимо от Мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт; если показатель степени ε очень мал, то очень легко вычислить 10 ε ; это просто 1+2,3025ε. Это значит, что 10 n/2,3025 = 1 + n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из логарифмов по основанию 10 простым умножением. Теперь настало время выяснить, не существует ли математически выделенного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой естественной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025…. Это соответствует переходу к новому основанию - натуральному, или основанию е. Заметим, что log e (l + n) ≈ n или е n ≈ 1 + n, когда n → 0.

Легко найти само число е; оно равно 101/ 2,3025 или 10 0,4342294… Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294… сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73 = 256 + 128 + 32 + 16 + 8 + 4 + 0,73. Число е поэтому равно произведению чисел
(1,77828) (1,33352) (1,074607) (1,036633) (1,018152) (1,009035) (1,001643) = 2,7184.
(Числа 0,73 нет в нашей таблице, но соответствующий ему результат можно представить в виде 1 + 2,3025∆/1024 и вы—числить при ∆ = 0,73.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррациональных чисел. Вот как надо обращаться с иррациональностями!

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Один из простейших способов вычисления корней заключается в использовании специальной таблицы . Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах - значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня - это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки - 1, по вертикали находим единицы - 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители . Простые множители - это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона . Его суть заключается в использовании приближённой формулы:

√R = √a + (R - a) / 2√a,

где R - число, корень которого нужно вычислить, a - ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен - 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 - 121) / 2 ∙ √121 = 11 - 10 / 22 ≈ 10,55.

Теперь проверим точность метода :

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 - 111,3025) / 2 ∙ √111,3025 = 10,55 - 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора .

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 - первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3-6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 - 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью . Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д.) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Задача. Комната квадратной формы имеет площадь, равную 20 кв. м. Найти её длину и ширину.

Так как комната квадратная, то её длина х равна её ширине. По условию задачи мы должны иметь:

и нам требуется найти арифметический корень из числа 20.

Очевидно, что х не может быть целым числом, так как , а между двумя соседними целыми числами 4 и 5 не содержится ни одного целого числа.

Наша задача имеет вполне определённый практический смысл, и её можно решить приближённо с требуемой точностью.

Покажем, как это можно сделать.

Мы указали два соседних целых числа 4 и 5 такие, что 42 меньше, а 52 больше, чем 20.

Число 4 называется приближённым квадратным корнем из 20 с точностью до 1 с недостатком, число 5 - приближённым корнем из 20 с точностью до 1 с избытком.

Рассмотрим теперь десятичные дроби, заключающиеся между 4 и 5 и имеющие целое число десятых долей:

Будем последовательно возводить эти дроби в квадрат, пока не получим числа, большего 20.

Итак, мы получили:

Числа 4,4 и 4,5 называются приближёнными значениями квадратного корня из 20 с точностью до 0,1 с недостатком и с избытком (соответственно).

Если нам недостаточна полученная точность, то поступим так: будем выписывать десятичные дроби, заключённые между 4,4 и 4,5 и содержащие целое число сотых долей, а затем будем последовательно возводить эти дроби в квадрат, пока не получим числа, большего 20.

Числа 4,47 и 4,48 называются приближёнными значениями квадратного корня из 20 с точностью до 0,01 с недостатком и с избытком.

Точно так же (если это нужно) можно получить приближённые значения с точностью до 0,001; это будут числа 4,472 и 4,473, так как , значит,

Итак, наша задача получила решение с точностью до трёх значащих цифр; такая точность вполне достаточна во многих практических измерениях. Можно считать, что

Дадим теперь общее определение приближённого корня.

Приближёнными значениями квадратного корня из данного числа с точностью до единицы называются два последовательных натуральных числа, из которых квадрат первого меньше, а квадрат второго больше данного числа.

Первое из этих чисел называется приближённым значением корня с недостатком, второе - приближённым значением корня с избытком.

Записывают приближённые значения корня так:

Вместо слов «приближённое значение квадратного корня» часто говорят просто «приближённый квадратный корень».

Чтобы найти приближённый корень с точностью до 1 с недостатком, надо найти наибольшее натуральное число, квадрат которого меньше подкоренного числа. Это можно сделать или путём испытаний, или пользуясь таблицами квадратов натуральных чисел.

Прибавив 1 к приближённому корню с недостатком, получим приближённый корень с избытком.

Определение. Приближёнными квадратными корнями с недостатком и с избытком из числа с точностью до 0,1 называются такие два числа, отличающиеся друг от друга на 0,1, из которых квадрат одного меньше, а квадрат другого больше данного числа.

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

Шаги

Разложение на простые множители

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  1. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  2. Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  3. Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
  4. Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик

    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как "7 95 20 78 91 82, 47 89 70".

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде "7 80, 14". Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере второй парой чисел является "80". Запишите "80" после 3. Затем, удвоенное число сверху справа дает 4. Запишите "4_×_=" снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 - слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа - это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите "54_×_=" снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 - 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

      Понимание процесса

      1. Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

        Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C - третьей и так далее.

        Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b - вторую пару цифр и так далее.

        Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

      2. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

        • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
      3. Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C - цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

        • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B² . Запомните, что 10A+B - это такое число, у которого цифра B означает единицы, а цифра A - десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² - это площадь всего квадрата, 100A² - площадь большого внутреннего квадрата, - площадь малого внутреннего квадрата, 10A×B - площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.

Приближенные вычисления с помощью дифференциала

На данном уроке мы рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала . Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью Простейшие задачи с производной , а именно параграфы о нахождении производной в точке и нахождении дифференциала в точке . Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.

Практикум состоит из двух частей:

– Приближенные вычисления с помощью дифференциала функции одной переменной.

– Приближенные вычисления с помощью полного дифференциала функции двух переменных.

Кому что нужно. На самом деле можно было разделить богатство на две кучи, по той причине, что второй пункт относится к приложениям функций нескольких переменных . Но что поделать, вот люблю я длинные статьи.

Приближенные вычисления
с помощью дифференциала функции одной переменной

Рассматриваемое задание и его геометрический смысл уже освещёны на уроке Что такое производная? , и сейчас мы ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через или через . Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала :

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: . Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:
– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве подбираем «хорошее» значение, чтобы корень извлекался нацело . Естественно, это значение должно быть как можно ближе к 67. В данном случае: . Действительно: .

Примечание: Когда с подбором всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор: .

Если , то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Сначала вычислим значение функции в точке . Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:
– тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке :

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению , вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение на микрокалькуляторе, чтобы выяснить, какое число принять за , а какое – за . Следует отметить, что в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена, калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из местного политехнического института году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физмате, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =)

Пример 3

в точке . Вычислить более точное значение функции в точке с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически то же самое задание, его запросто можно переформулировать так: «Вычислить приближенное значение с помощью дифференциала»

Решение: Используем знакомую формулу:
В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать .

Значение необходимо представить в виде . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается . И, следовательно: .

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке :

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Абсолютная и относительная погрешность вычислений

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.


После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность:

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

Вычислить приближенно с помощью дифференциала значение функции в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах . Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.

Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом:

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом: (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления
с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели:
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть – надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: . Общая закономерность такова – чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение : Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий – это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2: Решение: Используем формулу:
В данном случае: , ,

Таким образом:
Ответ:

Пример 4: Решение: Используем формулу:
В данном случае: , ,



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»