Принцип работы ядерного двигателя для ракеты. В космос на атомной тяге

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Осторожно много букв.

Летный образец космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ) в России планируется создать к 2025 году. Соответствующие работы заложены в проекте Федеральной космической программы на 2016–2025 годы (ФКП-25), направленной Роскосмосом на согласование в министерства.

Ядерные системы электроэнергии считают основными перспективными источниками энергии в космосе при планировании масштабных межпланетных экспедиций. Обеспечить мегаваттные мощности в космосе в перспективе позволит ЯЭДУ, созданием которой сейчас занимаются предприятия «Росатома».

Все работы по созданию ЯЭДУ идут в соответствии с запланированными сроками. Мы можем с большой долей уверенности говорить, что работы будут сданы в срок, предусмотренный целевой программой, - говорит руководитель проекта департамента коммуникаций госкорпорации «Росатом» Андрей Иванов.

За последнее время в рамках проекта пройдено два важных этапа: создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения. Также успешно завершены технологические испытания корпуса реактора будущего космического энергоблока. В рамках этих испытаний корпус подвергали избыточному давлению и проводили 3D-измерения в зонах основного металла, кольцевого сварного соединения и конического перехода.

Принцип действия. История создания.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США. С начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1994 году, СССР - в 1988-м. Закрытию работ во многом способствовала чернобыльская катастрофа, которая негативно настроила общественное мнение в отношении использования ядерной энергии. К тому же испытания ядерных установок в космосе не всегда проходили штатно: в 1978 году советский спутник «Космос-954» вошел в атмосферу и развалился, разбросав тысячи радиоактивных осколков на территории в 100 тыс. кв. км в северо-западных районах Канады. Советский Союз выплатил Канаде денежную компенсацию в объеме более $10 млн.

В мае 1988 года две организации - Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы - сделали совместное предложение о запрещении использования ядерной энергии в космосе. Формальных последствий то предложение не получило, однако с тех пор ни одна страна не производила запусков космических аппаратов с ядерными энергетическими установками на борту.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики - высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении.

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Реактор.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.
В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их - монокристаллический сплав тугоплавких металлов на основе молибдена.

Этому топливу придется работать при очень высоких температурах. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию - нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

Холодильник.

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе? Единственная возможность - охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет. Уникальность проекта в использовании специального теплоносителя - гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия.

Двигатель.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом "вытягиваются" ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации "Росатом" на создание самого реактора. Другие 3,955 млрд - ФГУП "Центр Келдыша" на создание ядерной - энергодвигательной установки. Еще 5,8 млрд рублей - для РКК "Энергия", где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета.

Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?

Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.

Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.

Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе - серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.

То есть критичными оказались два параметра - запредельная температура и выбросы радиации?

Анатолий Коротеев: В общем, да. В силу этих и некоторых других причин работы у нас и в США были прекращены или приостановлены - оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных - от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.

Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.

Мудреная схема. По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?

Анатолий Коротеев: Главное - выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.

Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.

Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.

В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.

Ведутся ли сейчас подобные работы в других странах?

Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.

Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.

Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.

Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.

Ядерный ракетный двигатель - ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела - порядка 8-50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа - твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым - режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Советские и американские ученые разрабатывали ракетные двигатели на ядерном топливе с середины XX века. Дальше прототипов и единичных испытаний эти разработки не продвинулись, но сейчас единственная ракетная двигательная установка, которая использует ядерную энергию, создается в России. «Реактор» изучил историю попыток внедрения ядерных ракетных двигателей.

Когда человечество только начало покорять космос, перед учеными встала задача энергообеспечения космических аппаратов. Исследователи обратили внимание на возможность использования ядерной энергии в космосе, создав концепцию ядерного ракетного двигателя. Такой двигатель должен был использовать энергию деления или синтеза ядер для создания реактивной тяги.

В СССР уже в 1947 году начались работы по созданию ядерного ракетного двигателя. В 1953 году советские специалисты отмечали, что «использование атомной энергии позволит получить практически неограниченные дальности и резко снизить полетный вес ракет» (цитата по изданию «Ядерные ракетные двигатели » под редакцией А.С. Коротеева, М, 2001). Тогда двигательные установки на ядерной энергии предназначались, в первую очередь, для оснащения баллистических ракет, поэтому интерес правительства к разработкам был большим. Президент США Джон Кеннеди в 1961 году назвал национальную программу по созданию ракеты с ядерным ракетным двигателем (Project Rover) одним из четырех приоритетных направлений в завоевании космоса.

Реактор KIWI, 1959 год. Фото: NASA.

В конце 1950-х американские ученые создали реакторы KIWI. Они много раз были испытаны, разработчики сделали большое количество модификаций. Часто при испытаниях происходили неудачи, например, однажды произошло разрушение активной зоны двигателя и обнаружилась большая утечка водорода.

В начале 1960-х как в США, так и в СССР были созданы предпосылки для реализации планов по созданию ядерных ракетных двигателей, но каждая страна шла своей дорогой. США создавали много конструкций твердофазных реакторов для таких двигателей и испытывали их на открытых стендах. СССР вел отработку тепловыделяющей сборки и других элементов двигателя, готовя производственную, испытательную, кадровую базу для более широкого «наступления».

Схема ЯРД NERVA. Иллюстрация: NASA.

В США уже в 1962 году президент Кеннеди заявил, что «ядерная ракета не будет применяться в первых полетах на Луну», поэтому стоит направлять средства, выделяемые на освоение космоса, на другие разработки. На рубеже 1960-1970-х были испытаны еще два реактора (PEWEE в 1968 году и NF-1 в 1972 году) в рамках программы NERVA . Но финансирование было сосредоточено на лунной программе, поэтому программа США по созданию ядерных двигателей сокращалась в объеме, и в 1972 году была закрыта.

Фильм NASA про ядерный реактивный двигатель NERVA.

В Советском Союзе разработки ядерных ракетных двигателей продолжались до 1970-х годов, а руководила ими известнейшая ныне триада отечественных ученых-академиков: Мстислав Келдыш, Игорь Курчатов и . Они оценивали возможности создания и применения ракет с ядерными двигателями достаточно оптимистично. Казалось, что вот-вот, и СССР запустит такую ракету. Прошли огневые испытания на Семипалатинском полигоне - в 1978 году состоялся энергетический пуск первого реактора ядерного ракетного двигателя 11Б91 (или РД-0410), потом еще две серии испытаний - второго и третьего аппаратов 11Б91-ИР-100. Это были первые и последние советские ядерно-ракетные двигатели.

М.В. Келдыш и С.П. Королев в гостях у И.В. Курчатова, 1959 г.

Военно-космический привод России

Немало шума в СМИ и соцсетях наделали заявления Владимира Путина о том, что в России идут испытания крылатой ракеты нового поколения, обладающей почти неограниченным запасом хода и являющейся благодаря этому практически неуязвимой для всех существующих и проектируемых систем противоракетной обороны.

«В конце 2017 года на центральном полигоне Российской Федерации состоялся успешный пуск новейшей российской крылатой ракеты с ядерной энергетической установкой . В ходе полёта энергоустановка вышла на заданную мощность, обеспечила должный уровень тяги», – заявил Путин во время традиционного послания Федеральному собранию .

О ракете говорилось в контексте иных передовых российских разработок в сфере вооружений, наряду с новой межконтинентальной баллистической ракетой «Сармат», гиперзвуковой ракетой «Кинжал» и т. п. Поэтому совершенно неудивительно, что заявления Путина анализируют преимущественно в военно-политическом ключе. Однако на самом деле вопрос стоит гораздо шире: похоже, что Россия стоит на пороге освоения настоящей технологии будущего, способной принести революционные изменения в ракетно-космическую технику и не только. Но обо всём по порядку…

Реактивные технологии: «химический» тупик

Вот уже без малого сто лет , говоря о реактивном двигателе, мы чаще всего имеем в виду химический реактивный двигатель. И реактивные самолёты, и космические ракеты приводятся в движение за счёт энергии, получаемой при сгорании находящегося на их борту топлива.

В общих чертах работает это так: топливо поступает в камеру сгорания, где смешивается с окислителем (атмосферным воздухом в воздушно-реактивном двигателе или кислородом из находящихся на борту запасов в ракетном). Затем смесь воспламеняется, в результате чего быстро выделяется значительное количество энергии в виде тепла, которое передаётся газообразным продуктам сгорания. При нагревании газ стремительно расширяется и как бы выдавливает себя через сопло двигателя со значительной скоростью. Возникает реактивная струя и создаётся реактивная тяга, толкающая летательный аппарат в сторону, противоположную направлению течения струи.

He 178 и Falcon Heavy – изделия и двигатели разные, но сути это не меняет.

Реактивные и ракетные двигатели во всём их многообразии (от первого реактивного самолёта «Хейнкель 178» до Falcon Heavy Илона Маска) используют именно этот принцип – меняются лишь подходы к его применению. И все конструкторы ракетной техники вынуждены так или иначе мириться с фундаментальным недостатком этого принципа: необходимостью возить на борту летательного аппарата значительное количество быстро расходуемого топлива. Чем большую работу предстоит совершить двигателю, тем больше топлива должно быть на борту и тем меньше полезного груза сможет взять с собой в полёт летательный аппарат.

К примеру, максимальная взлётная масса авиалайнера Boeing 747-200 составляет порядка 380 тонн. Из них 170 тонн приходится на сам самолёт, порядка 70 тонн – на полезную нагрузку (вес груза и пассажиров), а 140 тонн, или примерно 35%, весит топливо , которое в полёте сгорает со скоростью порядка 15 тонн в час. То есть на каждую тонну груза приходится 2,5 тонны топлива. А ракета «Протон-М» для вывода на низкую опорную орбиту 22 тонн груза расходует порядка 630 тонн топлива, т. е. почти 30 тонн топлива на тонну полезной нагрузки. Как видно, «коэффициент полезного действия» более чем скромный.

Если говорить о действительно дальних полётах, например, к другим планетам Солнечной системы, то соотношение «топливо – нагрузка» становится просто убийственным. К примеру, американская ракета «Сатурн-5» могла доставить к Луне 45 тонн груза, сжигая при этом свыше 2000 тонн топлива. А Falcon Heavy Илона Маска при стартовой массе в полторы тысячи тонн на орбиту Марса способна вывести лишь 15 тонн груза, то есть 0,1% от своей начальной массы.

Именно поэтому пилотируемый полёт на Луну до сих пор остаётся задачей на пределе технологических возможностей человечества, а полёт на Марс выходит за эти пределы. Хуже того: существенно расширить эти возможности, продолжая и дальше совершенствовать химические ракеты, уже не представляется возможным. В их развитии человечество «упёрлось» в потолок, определяемый законами природы. Для того чтобы идти дальше, нужен принципиально иной подход.

«Атомная» тяга

Сжигание химического топлива уже давно перестало быть наиболее эффективным из известных способов получения энергии.

Из 1 килограмма каменного угля можно получить около 7 киловатт-часов энергии, тогда как 1 килограмм урана содержит около 620 тысяч киловатт-часов.

И если создать двигатель, который будет получать энергию от ядерных, а не от химических процессов, то такому двигателю потребуется в десятки тысяч (!) раз меньше топлива для совершения той же работы. Ключевой недостаток реактивных двигателей таким образом можно будет устранить. Однако от идеи до реализации огромный путь, на котором предстоит решить массу сложных проблем. Во-первых, требовалось создать достаточно лёгкий и компактный ядерный реактор для того, чтобы его можно было установить на летательный аппарат. Во-вторых, надо было придумать, как именно использовать энергию распада атомного ядра для нагрева газа в двигателе и создания реактивной струи.

Наиболее очевидным вариантом было просто пропускать газ через раскалённую активную зону реактора. Однако, взаимодействуя напрямую с топливными сборками, этот газ становился бы весьма радиоактивным . Покидая двигатель в виде реактивной струи, он бы сильно заражал всё вокруг, так что использовать подобный двигатель в атмосфере было бы неприемлемо. Значит, тепло из активной зоны нужно передавать как-то иначе, но как именно? И где взять материалы, способные много часов сохранять свои конструктивные свойства при столь высоких температурах?

Ещё проще представить себе применение ЯЭУ в «беспилотных глубоководных аппаратах», также упомянутых Путиным в том же послании. Фактически это будет что-то вроде суперторпеды, которая будет всасывать забортную воду, превращать её в разогретый пар, который и будет формировать реактивную струю. Такая торпеда сможет преодолевать тысячи километров под водой, перемещаясь на любых глубинах и будучи способной поразить любую цель в море или на побережье. При этом перехватить её по пути к цели будет практически невозможно.

В настоящий момент готовых к постановке на вооружение образцов подобных устройств у России, похоже, пока нет. Что касается крылатой ракеты с ядерным приводом, о котором говорил Путин, то здесь речь, по всей видимости, идёт о тестовом запуске «массогабаритной модели» такой ракеты с электрическим нагревателем вместо атомного. Именно это и могут означать слова Путина о «выходе на заданную мощность» и «должном уровне тяги» – проверке того, может ли двигатель такого устройства работать с такими «входящими параметрами». Конечно, в отличие от образца на атомной тяге, «макетное» изделие не способно пролететь сколь угодно значительное расстояние, но ведь этого от него и не требуется. На таком образце можно отработать технологические решения, связанные с чисто «двигательной» частью, – пока на стенде идёт доработка и обкатка реактора. Отделять этот этап от сдачи готового изделия может совсем немного времени – год или два.

Ну а если подобный двигатель может быть использован в крылатых ракетах , то что помешает применять его в авиации? Представьте себе авиалайнер на ядерной тяге, способный без посадки и дозаправки преодолевать десятки тысяч километров, не пожирая при этом сотни тонн дорогостоящего авиационного топлива! В общем, мы говорим об открытии, способном в перспективе совершить настоящую революцию в транспортной сфере…

Впереди Марс?

Однако куда более волнующим представляется всё-таки основное предназначение ЯЭУ – стать ядерным сердцем космических кораблей нового поколения, которые сделают возможным надёжное транспортное сообщение с другими планетами Солнечной системы . Конечно, в безвоздушном космическом пространстве нельзя использовать турбореактивные двигатели, использующие забортный воздух. Вещество для создания реактивной струи здесь, как ни крути, придётся везти с собой. Задача состоит в том, чтобы в ходе работы расходовать его гораздо более экономно, а для этого скорость истечения вещества из сопла двигателя должна быть как можно более высокой. В химических ракетных двигателях эта скорость составляет до 5 тысяч метров в секунду (обычно 2–3 тысячи), и существенно увеличить её не представляется возможным.

Куда больших скоростей можно добиться, используя иной принцип создания реактивной струи – разгон заряженных частиц (ионов) электрическим полем. Скорость струи в ионном двигателе может достигать 70 тысяч метров в секунду, то есть на получение одного и того же количества движения потребуется потратить в 20–30 раз меньше вещества. Правда, такой двигатель будет потреблять довольно много электроэнергии. И вот для производства этой энергии и понадобится ядерный реактор.

Макет реакторной установки для ядерной энергодвигательной установки мегаваттного класса

Электрические (ионные и плазменные) ракетные двигатели уже существуют, например, ещё в 1971 году на орбиту Земли СССР вывел на орбиту космический аппарат «Метеор » со стационарным плазменным двигателем СПД-60 разработки ОКБ «Факел». Сегодня аналогичные двигатели активно используются для коррекции орбиты искусственных спутников Земли, но их мощность не превосходит 3–4 киловатт (5 с половиной лошадиных сил).

Однако в 2015 году Исследовательский центр им. Келдыша заявил о создании опытного образца ионного двигателя с мощностью порядка 35 киловатт (48 л. с.). Звучит не слишком впечатляюще, однако нескольких таких двигателей вполне достаточно для того, чтобы приводить в действие космический корабль , перемещающийся в пустоте и вдали от сильных гравитационных полей. Ускорение, которое будут придавать такие двигатели космическому кораблю, будет небольшим, но зато поддерживать его они смогут долгое время (существующие ионные двигатели обладают временем непрерывной работы до трёх лёт ).

В современных космических кораблях ракетные двигатели работают лишь незначительное время, тогда как основную часть полёта корабль летит по инерции. Ионный двигатель, получающий энергию от ядерного реактора , будет работать всё время полёта – в первой его половине разгоняя корабль, во второй – тормозя его. Расчёты показывают, что подобный космолёт мог бы добраться до орбиты Марса за 30–40 дней, а не за год, как корабль с химическими двигателями, и к тому же перевезти с собой спускаемый аппарат, который сможет доставить человека на поверхность Красной планеты, а затем забрать его оттуда.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»