Происхождение Земли (От Большого Взрыва до возникновения Земли). Происхождение земли

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Особое место в Солнечной системе занимает Земля - единственная планета, на которой в течение миллиардов лет развиваются раз­личные формы жизни.

Во все времена люди хотели знать, откуда и каким образом произошел мир, в котором мы живем. Когда в культуре господствовали мифологические представления, происхождение мира объяснялось, как, скажем, в «Ведах» распадом первочеловека Пуруши. То, что это была общая мифологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила религиозные представления о сотворении Богом мира из ничего.

С появлением науки в ее современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении мира. Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку. Разум и опора на чувственную реальность имеют в науке большее значение, чем вера. Наука – это, в определенной степени, синтез философии и религии, представляющее собой теоретическое освоение действительности.

2. Происхождение Земли.

Мы живем во Вселенной, а наша планета Земля является ее мельчайшим звеном. Поэтому, история возникновения Земли тесно связана с историей возникновения Вселенной. Кстати, а как она возникла? Какие силы повлияли на процесс становления Вселенной и, соответственно, нашей планеты? В наше время существует множество различных теорий и гипотез относительно этой проблемы. Величайшие умы человечества дают свои взгляды по этому поводу.

Значение термина Вселенная в естествознании более узкое и приобрело специфически научное звучание. Вселенная – место вселения человека, доступное эмпирическому наблюдению и проверяемое современными научными методами. Вселенную в целом изучает наука, называемая космологией, то есть наукой о космосе. Слово это не случайно. Хотя сейчас космосом называют все находящееся за пределами атмосферы Земли, не так было в Древней Греции, где космос принимался как «порядок», «гармония», в противоположность «хаосу» - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Сейчас происхождение Вселенной построено на двух моделях:

а) Модель расширяющейся Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:

1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциональных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», то есть линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

б) Модель Большого Взрыва. Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Все вещество Вселенной в начальном состоянии находилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы», - писал в своей работе С. Вейнберг.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.

Данные модели помогают выдвинуть гипотезы о происхождении Земли:

1. Французский ученый Жорж Бюффон (1707-1788) предпо­ложил, что земной шар возник в результате катастрофы. В очень отдаленное время какое-то небесное тело (Бюффон счи­тал, что это была комета) столкнулось с Солнцем. При столк­новении возникло множество «брызг». Наиболее крупные из них, постепенно остывая, дали начало планетам.

2. По-другому объяснял возможность образования небесных тел немецкий ученый Иммануил Кант (1724-1804). Он предполо­жил, что Солнечная система произошла из гигантского холод­ного пылевого облака. Частицы этого облака находились постоянном беспорядочном движении, взаимно притягивали друг друга, сталкивались, слипались, образуя сгущения, которые ста­ли расти и со временем дали начало Солнцу и планетам.

3. Пьер Лаплас (1749-1827), французский астроном и матема­тик, предложил свою гипотезу, объясняющую образование и развитие Солнечной системы. По его мнению, Солнце и пла­неты возникли из вращающегося раскаленного газового обла­ка. Постепенно остывая7ш5о сжималось, образуя многочис­ленные кольца, которые, уплотняясь, создали планеты, а центральный сгусток превратился в Солнце.

В начале нашего столетия английский ученый Джеймс Джине (1877-1946) выдвинул гипотезу, которая так объясняла образование планетной системы: когда-то вблизи Солнца про­летала другая звезда, которая своим тяготением вырвала из него часть вещества. Сгустившись, оно дало начало планетам.

4. Наш соотечественник, известный ученый Отто Юльевич Шмидт (1891-1956) в 1944 г. предложил свою гипотезу обра­зования планет. Он полагал, что миллиарды лет назад Солнце было окружено гигантским облаком, которое состояло из час­тичек холодной пыли и замерзшего газа. Все они обращались вокруг Солнца. Находясь в постоянном движении, сталкива­ясь, взаимно притягивая друг друга, они как бы слипались, образуя сгустки. Постепенно газово-пылевое облако сплющива­лось, а сгустки стали двигаться по круговым орбитам. Со вре­менем из этих сгустков и образовались планеты нашей Сол­нечной системы.

Нетрудно заметить, что гипотезы Канта, Лапласа, Шмидта во многом близки. Многие мысли этих ученых легли в основу современного представления о происхождении Земли и всей Солнечной системы.

Сегодня учёные предпологают, что

3. Развитие Земли.

Древнейшая Земля весьма мало напоминала планету, на которой мы сейчас живем. Её атмосфера состояла из водяных паров, углекислого газа и, по одним, - из азота, по другим – из метана и аммиака. Кислорода в воздухе безжизненной планеты не было, в атмосфере древней Земли гремели грозы, её пронизывало жёсткое ультрафиолетовое излучение Солнца, на планете извергались вулканы. Исследования показывают, что полюса на Земле менялись, и когда-то Антарктида была вечнозеленой. Вечная мерзлота образовалась 100 тыс. лет назад после великого оледенения.

В XIX веке в геологии сформировались две концепции развития Земли:

1) посредством скачков («теория катастроф» Жоржа Кювье);

2) посредством небольших, но постоянных изменений в одном и том же направлении на протяжении миллионов лет, которые, суммируясь, приводили к огромным результатам («принцип униформизма» Чарльза Лайелля).

Успехи физики XX века способствовали существенному продвижению в познании истории Земли. В 1908 году ирландский ученый Д. Джоли сделал сенсационный доклад о геологическом значении радиоактивности: количество тепла, испущенного радиоактивными элементами, вполне достаточно, чтобы объяснить существование расплавленной магмы и извержение вулканов, а также смещение континентов и горообразование. С его точки зрения, элемент материи – атом – имеет строго определенную длительность существования и неизбежно распадается. В следующем 1909 году русский ученый В. И. Вернадский основывает геохимию – науку об истории атомов Земли и ее химико-физической эволюции.

На этот счет существуют две, наиболее распространенные точки зрения. Ранняя из них полагала, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железо-никелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции. Более поздняя гипотеза гетерогенной аккреции заключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км. Эта точка зрения сейчас, пожалуй, наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Возникло ли оно после формирования твердого внутреннего ядра или внешнее и внутреннее ядра выделялись в процессе дифференциации? Но этот вопрос однозначного ответа не существует, но предположение отдается второму варианту.

Процесс аккреции, столкновение планетезималей размером до 1000 км, сопровождался большим выделением энергии, с сильным прогревом формирующейся планеты, ее дегазацией, т.е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих веществ при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих в метеоритах и породах Земли. Процесс становления нашей планеты по современным данным длился около 500 млн. лет и проходил в 3 фазы аккреции. В течение первой и главной фазы Земля сформировалась по радиусу на 93-95% и эта фаза закончилась к рубежу 4,4 – 4,5 млрд. лет, т.е. длилась около 100 млн. лет.

Вторая фаза, ознаменовавшаяся завершением роста, длилась тоже около 200 млн. лет. Наконец, третья фаза, продолжительностью до 400 млн. лет (3,8-3,9 млрд. лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же, как и на Луне. Вопрос о температуре первичной Земли имеет для геологов принципиальное значение. Даже в начале ХХ века ученые говорили о первичной «огненно-жидкой» Земле. Однако этот взгляд полностью противоречил современной геологической жизни планеты. Если бы Земля изначально была расплавленной, она давно бы превратилась в мертвую планету.

Следовательно, предпочтение нужно отдать не очень холодной, но и не расплавленной ранней Земле. Факторов нагрева планеты было много. Это и гравитационная энергия; и соударение планетезималей; и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс.км. Если же, все-таки, температура превышала точку плавления вещества, то наступала дифференциация – более тяжелые элементы, например, железо, никель, опускались, а легкие, наоборот, всплывали.

Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов - плутония, тория, калия, алюминия, йода. Еще один источник тепла – это твердые приливы, связанные с близким расположением спутника Земли - Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например, в мантии она могла достигнуть +1500 ОС. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако, уже 3,5-3,7 млрд.лет назад, при возрасте Земли в 4,6 млрд.лет, у Земли было твердое внутреннее ядро, жидкое внешнее и твердая мантия, т.е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность таких древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердого внешнего. Процесс расслоения, дифференциации недр происходил на всех планетах, но на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии.

В 1915 году немецкий геофизик А. Вегенер предположил, исходя из очертаний континентов, что в карбоне (геологический период) существовал единый массив суши, названный им Пангеей (греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка – от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции А. Вегенера стало эмпирическое обнаружение в конце 50-х годов расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепринята в геологии.

4. Глобальная тектоника.

Много лет назад отец-геолог подвел своего маленького сына к карте мира и спросил, что будет, если береговую линию Америки придвинуть к побережью Европы и Африки? Мальчик не поленился и, вырезав соответствующие части из физико-географического атласа, с удивлением обнаружил, что западное побережье Атлантики совпало с восточным в пределах, так сказать, ошибки эксперимента.

Эта история не прошла для мальчика бесследно, он стал геологом и поклонником Альфреда Вегенера, отставного офицера германской армии, а также метеоролога, полярника, и геолога, который в 1915 году создал концепцию дрейфа континентов.

Свою лепту в возрождение концепции дрейфа внесли и высокие технологии: именно компьютерное моделирование в середине 1960-х годов показало хорошее совпадение границ континентальных масс не только для Циркум-Атлантики, но и для ряда остальных материков - Восточной Африки и Индостана, Австралии и Антарктиды. В результате в конце 60-х появилась концепция тектоники плит, или новой глобальной тектоники.

Предложенная сначала чисто умозрительно для решения частной задачи -распределения землетрясений различной глубинности на поверхности Земли, - она сомкнулась с представлениями о дрейфе континентов и мгновенно получила всеобщее признание. К 1980 году - столетию со дня рождения Альфреда Вегенера – стало принято говорить о формировании новой парадигмы в геологии. И даже о научной революции, сопоставляемой с революцией в физике начала XX века…

Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения. Первоначально было выделено несколько литосферных плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все они, кроме Тихоокеанской, чисто океанической, включают в себя части как с континентальной, так и океанической корой. И дрейф континентов в рамках этой концепции - не более чем их пассивное перемещение вместе с литосферными плитами.

В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии - астеносфере, со скоростью от 1-2 до 10-12 см в год. В большинстве своем они включают как континентальные массы с корой, условно называемой «гранитной», так и участки с корой океанической, условно называемой «базальтовой» и образованной породами с низким содержанием кремнезема.

Учёным совершенно не ясно, куда движутся материки и некоторые из них не согласны с тем, что движится земная кора, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, - все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

Земная суша образуется твердыми горными породами, зачастую покрытыми слоем почвы и растительностью. Но откуда эти горные породы берутся? Новые горные породы формируются из вещества, рождающегося глубоко в недрах Земли. В нижних слоях земной коры температура намного выше, чем па поверхности, а составляющие их горные породы находятся под огромным давлением. Под воздействием жара и давления горные породы прогибаются и размягчаются, а то и вовсе плавятся. Как только в земной коре образуется слабое место, расплавленные горные породы - их называют магмой - прорываются на поверхность Земли. Магма вытекает из жерлов вулканов в виде лавы и распространяется на большой площади. Застывая, лава превращается в твердую горную породу.

В одних случаях рождение горных пород сопровождается грандиозными катаклизмами, в других проходит тихо и незаметно. Существует множество разновидностей магмы, и из них образуются различные типы горных пород. К примеру, базальтовая магма очень текуча, легко выходит на поверхность, растекается широкими потоками и быстро застывает. Иногда она вырывается из жерла вулкана ярким "огненным фонтаном" - такое происходит, когда земная кора не выдерживает ее давления.

Другие виды магмы гораздо гуще: их густота, или консистенция, больше похожа на черную патоку. Содержащиеся в такой магме газы с большим трудом пробиваются на поверхность сквозь ее плотную массу. Вспомните, как легко пузырьки воздуха вырываются из кипящей воды и насколько медленнее это происходит, когда вы нагреваете что-нибудь более густое, к примеру кисель. Когда более плотная магма поднимается ближе к поверхности, давление на нее уменьшается. Растворенные в пей газы стремятся расшириться, но не могут. Когда же магма наконец вырывается наружу, газы расширяются столь стремительно, что происходит грандиозный взрыв. Лава, обломки горных пород и пепел разлетаются во все стороны, как снаряды, выпущенные из пушки. Подобное извержение случилось в 1902 г. на о-ве Мартиника в Карибском море. Катастрофическое извержение вулкана Моптапь-Пеле полностью разрушило порт Сеп-Пьер. Погибло около 30 000 человек

Геология дала человечеству возможность использования геологических ресурсов для развития всех отраслей техники и технологии. Вместе с тем, интенсивная техногенная деятельность привела к резкому ухудшению экологической мировой обстановки, настолько сильной и быстрой, что нередко под вопрос ставится существование человечества. Мы потребляем намного больше, чем природа в состоянии регенерировать. Поэтому проблема устойчивого развития в наши дни является подлинно глобальной, мировой проблемой, касающейся всех государств.

Несмотря на увеличение научно-технического потенциала человечества, уровень нашего незнания о планете Земля все еще очень велик. И по мере прогресса в наших знаниях о ней, количество вопросов, остающихся нерешенными, не уменьшается. Мы стали понимать, что на процессы, происходящие на Земле, оказывают влияние и Луна, и Солнце, и другие планеты, все связано воедино, и даже жизнь, возникновение которой составляет одну из кардинальных научных проблем, возможно, занесена к нам из космического пространства. Геологи пока бессильны предсказывать землетрясения, хотя, предугадать извержения вулканов сейчас уже можно с большой долей вероятности. Множество геологических процессов еще плохо поддаются объяснению и тем более прогнозированию. Поэтому интеллектуальная эволюция человечества во многом связана с успехами геологической науки, которая когда-нибудь позволит человеку решить волнующие его вопросы о происхождении Вселенной, происхождении жизни и разума.

6. Список использованной литературы

1. Горелов А. А. Концепции современного естествознания. - М.: Центр, 1997.

2. Лавриненко В. Н., Ратников В. П. – М.: Культура и спорт, 1997.

3. Найдыш В. М. Концепции современного естествознания: Учеб. пособие. – М.: Гардарики, 1999.

4. Левитан Е. П. Астрономия: Учебник для 11 кл. общеобразовательной школы. – М.: Просвещение, 1994.

5. Сурдин В. Г. Динамика звездных систем. – М.: Изд-во Московского центра непрерывного образования, 2001.

6. Новиков И. Д. Эволюция Вселенной. – М., 1990.

7. Карапенков С. Х. Концепции современного естествознания. – М.: Академический проспект, 2003.

Введение

Земля – третья по порядку от Солнца планета в Солнечной системе. Она занимает пятое место по размеру и массе среди больших планет, но из внутренних планет так называемой «земной» группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной.

Состав и строение Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Знания о внутреннем строении Земли пока очень поверхностны, так как получены на основании косвенных доказательств. Прямые свидетельства относятся только к поверхностной пленке планеты, чаще всего не превышающей полутора десятков километров. Помимо этого, важно изучать положение планеты Земля в космическом пространстве. Во-первых, чтобы понять закономерности и механизм развития Земли и земной коры, надо знать исходное состояние Земли при ее формировании. Во-вторых, изучение других планет доставляет ценнейший материал для познания ранних стадий развития нашей планеты. И, в-третьих, сравнение строения и эволюции Земли с другими планетами Солнечной системы позволяет понять, почему именно Земля стала родиной человечества.

Изучение внутреннего строения Земли актуально и жизненно важно. С ним связаны образование и размещение многих видов полезных ископаемых, рельефа земной поверхности, возникновение вулканов и землетрясений. Знания о строении Земли необходимы и для составления геологических и географических прогнозов.

Глава 1. Гипотезы происхождения Земли

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и Солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж. Бюффоном. Согласно гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой.

Мысль Бюффона об образовании Земли из солнечной плазмы была использована в целой серии более поздних и совершенных гипотез «горячего» происхождения Земли. Ведущее место занимает небулярная гипотеза, разработанная немецким философом И. Кантом в 1755 г. и французским математиком П. Лапласом в 1796 г. независимо друг от друга (рис.1). Согласно гипотезе, Солнечная система образовалась из единой раскаленной газовой туманности. Вращение вокруг оси обусловило дискообразную форму туманности. После того, как центробежная сила в экваториальной части туманности превысила силу тяготения, по всей периферии диска начали отделяться газовые кольца. Их остывание привело к формированию планет и их спутников, а из ядра туманности возникло Солнце.

Рис. 1. Небулярная гипотеза Лапласа. На этом рисунке наглядно представлено сгущение вращающейся газовой туманности в Солнце, планеты и астероиды

Гипотеза Лапласа была научной, поскольку основывалась на законах природы, известных из опыта. Однако после Лапласа были открыты новые явления в Солнечной системе, которые его теория не могла объяснить. Например, оказалось, что планеты Уран, Венера вращаются вокруг своей оси не в ту сторону, куда вращаются остальные планеты. Были лучше изучены свойства газов и особенности движения планет и их спутников. Эти явления также не согласовывались с гипотезой Лапласа и от нее пришлось отказаться.

Определенным этапом в развитии взглядов на образование Солнечной системы была гипотеза английского астрофизика Джеймса Джинса (рис.2). Он считал, что планеты образовались в результате катастрофы: какая-то относительно большая звезда прошла совсем близко от уже существовавшего Солнца, следствием чего явился выброс из поверхностных слоев Солнца струи газа, из которых впоследствии образовались планеты. Но гипотеза Джинса, так же как гипотеза Канта-Лапласа, не может объяснить несоответствие в распределении момента количества движения между планетами и Солнцем.

Рис. 2. Образование солнечной системы по Джинсу

Принципиально новая идея заложена в гипотезах «холодного» происхождения Земли. Наиболее глубоко разработана метеоритная гипотеза, предложенная советским ученым О. Ю. Шмидтом в 1944 г (рис.3). Согласно гипотезе, несколько миллиардов лет тому назад «наше» Солнце встретило при своем движении во Вселенной большую газопылевую туманность. Значительная часть туманности последовала за Солнцем и стала вращаться вокруг него. Отдельные мелкие частицы слипались в крупные сгустки. Сгустки по мере своего движения также сталкивались друг с другом и обрастали все новым материалом, образуя плотные комья – зародыши будущих планет.

Рис. 3. Образование солнечной системы по метеоритной гипотезе

О. Ю. Шмидта

По О. Ю. Шмидту, в период формирования Земли ее поверхность оставалась холодной, сгустки сжимались, за счет этого начался процесс самогравитации вещества, внутренняя часть постепенно нагревалась от тепла, выделяемого при распаде радиоактивных элементов. С годами у гипотезы Шмидта появилось много слабых сторон, одна из них – это предположение о захвате Солнцем части встретившегося газопылевого облака. Исходя из закона механики, для захвата Солнцем вещества необходимо было полностью остановить это вещество, а Солнце должно было обладать громадной силой притяжения, способной остановить это облако и притянуть его к себе. К недостаткам метеоритной гипотезы относится малая вероятность захвата Солнцем газово – пылевого (метеоритного) облака и отсутствие объяснения концентрического внутреннего строения Земли .

Со временем сложилось еще много теорий, касающихся происхождения Земли и Солнечной системы в целом. На основе взглядов О.Ю. Шмидта (1944), В. Амбарцумяна (1947), B.C. Сафронова (1969) и других ученых сформировалась современная теория планетарного образования Земли и других планет Солнечной системы (рис. 4). Причиной появления планет нашей системы явился взрыв сверхновой звезды. Ударная волна от взрыва около 5 млрд лет назад сильно сжала газопылевую туманность. Концентрация материального вещества (пыли, смесей газов, водорода, гелия, углерода, тяжелых металлов, сульфидов) оказалась настолько значительной, что это привело к началу термоядерного синтеза, росту температуры, давлению, появлению явления самогравитации в первичном Солнце и зарождению протопланет .

Рис. 4. Образование солнечной системы (современная теория)

1 – взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако; 2 – газопылевое облако начинает фрагментироваться и сплющиваться, закручиваясь при этом; 3 – первичная солнечная небула (туманность); 4 – образование Солнца и гигантских, богатых газом планет – Юпитера и Сатурна; 5 – ионизированный газ – солнечный ветер сдувает газ из внутренней зоны системы и с мелких планетезималей; 6 – образование внутренних планет из планетезималей в течение 100 млн лет и формирование облаков Оорта, состоящих из комет

Первичная Земля оказалось связана с Луной приливными взаимодействиями. Луна определила наклон оси ее вращения своей орбитой и массой и обусловила климатическую зональность Земли, возникновение электрического и магнитного полей .

После образования земного ядра (на границе архея и протерозоя), содержащего около 63% современной массы, дальнейший рост Земли происходил уже более спокойно и равномерно по тектономагматическим циклам. Таких циклов ученые-тектонисты насчитали около 14. Значительная тектоническая активность на Земле наблюдалась около 2,6 млрд лет назад, перемещение литосферных плит в то время происходило со скоростью 2-3 м в год. Поверхность Земли была окутана плотной углекисло-азотной атмосферой с давлением до 4-5 атм. и температурой до +30…+100 °С. Возник первый неглубокий Мировой океан, дно которого было покрыто базальтами и серпентинитом.

В раннем протерозое произошло насыщение первичной водой третьего (серпентинитового) слоя океанической коры. Это сразу сказалось на снижении давления углекислого газа в первичной атмосфере. В свою очередь, уменьшение углекислого газа в атмосфере привело к резкому снижению температуры на поверхности Земли. Появление кислорода и озонового слоя в атмосфере способствовало формированию биосферы и географической оболочки .

Процесс расслоения, дифференциации недр на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты .


Похожая информация.


Такие органеллы, как митохондрии и жгутики, скорее всего, возникли также в процессе фагоцитоза. Предшественники современных клеток, поглощая пищу, обзавелись симбионтами, дружественными микроорганизмами. Они, используя питательные вещества, попадающие в цитоплазму, стали осуществлять функции регуляции различных внутриклеточных процессов. Согласно концепции симбиогенеза, таким образом в клетке появились уже названные митохондрии и жгутики. Многие современные исследования подтверждают справедливость гипотезы.

Альтернативы

РНК-мир как предшественник всего живого имеет «конкурентов». Среди них есть и креационистские теории, и научные гипотезы. Многие века существовало предположение о самозарождение жизни: мухи и черви появляются в гниющих отходах, мыши — в старом тряпье. Опровергнутая мыслителями XVII-XVIII веков, она получила второе рождение в прошлом столетии в теории Опарина-Холдейна. Согласно ей, жизнь возникла в результате взаимодействия органических молекул в первичном бульоне. Предположения ученых были косвенно подтверждены в знаменитом эксперименте Стенли Миллера. Именно эту теорию и сменила в начале нашего века гипотеза РНК-мира.

Параллельно существует мнение, что жизнь имеет изначально внеземное происхождение. Принесли ее на нашу планеты, согласно теории Панспермии, все те же астероиды и кометы, которые «позаботились» о формировании океанов и морей. По сути, эта гипотеза не объясняет появление жизни, а констатирует ее как факт, неотъемлемое свойство материи.

Если обобщить все вышесказанное, становится понятно, что происхождение Земли и жизни на ней на сегодняшний день - это все-таки открытые вопросы. Современные ученые, конечно, намного ближе к разгадке всех тайн нашей планеты, чем мыслители Античности или Средневековья. Однако многое еще требует прояснения. Различные гипотезы происхождения Земли сменяли друг друга в те моменты, когда обнаруживались новые сведения, не вписывающиеся в старую картину. Вполне возможно, что подобное может случиться и в не столь отдаленном будущем, и тогда на смену устоявшимся теориям придут новые.

До сих пор основной теорией происхождения колыбели человечества считается теория Большого Взрыва. По утверждению астрономов, бесконечно долгое время назад в космическом пространстве существовал огромный раскаленный шар, чья температура исчислялась миллионами градусов. В результате химических реакций, происходивших внутри огненной сферы, произошел взрыв, разметавший в пространстве огромное количество мельчайших частиц материи и энергии. Изначально, эти частицы имели слишком высокую температуру. Затем Вселенная остывала, частицы притягивались друг к другу, накапливаясь в одном пространстве. Более легкие элементы притягивались к более тяжелым, возникшим в результате постепенного охлаждения Вселенной. Так образовывались галактики, звезды, планеты.

В подтверждение этой теории ученые приводят строение Земли, чья внутренняя часть, называемая ядром, состоит из тяжелых элементов – никеля и железа. Ядро, в свою очередь, покрыто толстой мантией из раскаленных горных пород, являющихся более легкими. Поверхность планеты, другими словами, земная кора, словно плавает на поверхности расплавленных масс, являясь результатом их остывания.

Формирование условий для жизни

Постепенно земной шар остывал, создавая на своей поверхности все более плотные участки почвы. Вулканическая деятельность планеты в те времена была достаточно активной. В результате извержений магмы в пространство выбрасывалось огромное количество различных газов. Самые легкие, такие, как гелий и водород моментально улетучивались. Более тяжелые молекулы оставались над поверхностью планеты, притягиваемые ее гравитационными полями. Под влиянием внешних и внутренних факторов, пары выброшенных газов становились источником влаги, появились первые осадки, сыгравшие ключевую роль в появлении жизни на планете.

Постепенно внутренние и внешние метаморфозы привели к тому разнообразию ландшафта, к которому человечество давно привыкло:

  • образовались горы и долины;
  • появились моря, океаны и реки;
  • сложился определенный климат в каждой местности, давший толчок развитию той или иной форме жизни на планете.

Мнение о спокойствии планеты и о том, что она сформирована окончательно, неверно. Под воздействием эндогенных и экзогенных процессов, поверхность планеты формируется до сих пор. Своим разрушительным хозяйствованием человек способствует ускорению этих процессов, что ведет к самым катастрофическим последствиям.

Одна из первых гипотез о происхождении нашей планеты и внешнего вида ее поверхности была описана в двухтомном труде Томаса Барнета "Священная теория Земли", которая вышла в 1681 Однако поскольку мышление ученых в те далекие времена еще не освободилось от влияния традиционных представлений древних греков и библейского мифа о сотворении мира, то гипотеза священника Т. Барнета оказалась на самом деле плодом его буйной фантазии. Подаем краткое содержание этой гипотезы. Когда Бог создал Землю и упорядочил ЕЕ вращения вокруг оси, наша планета получила яйцевидной формы. Поскольку земная ось была тогда перпендикулярна плоскости эклиптики, то времени года в нашем понимании отсутствовали, и на широте Великобритании царила вечная весна. Но люди, которые подобно Мафусаил жили в то время очень долго, завели впоследствии между собой много всякого зла и стали часто ссориться. В гневе Бог приказал разрушить Землю. ее поверхность стала трескаться, подниматься и сминаться, образуя ужасные по виду горы и ущелья. Позже из недр Земли вырвался мощный поток воды, который постепенно затопил всю поверхность Земли. Все эти катастрофы очень потрясли Землю и отразились на ее оси - она потеряла свое первоначальное вертикальное положение, наклонилась, и это привело к появлению времен года. Поверхность же планеты оказалась разбитой на континенты, горы, глубокие впадины (в которые впоследствии стекла вода, образовав океаны).

"Священная теория Земли" породила длительные споры и дискуссии среди ученых, в результате чего появилось несколько новых гипотез о происхождении нашей планеты. В 1695 Джон Вудворд высказал мнение о том, что воды потопа, который Бог в гневе наслал на Землю, растворили горные породы, а позже этот материал был отложен в виде слоев или пластов на дне морей и океанов. Это подтверждается наличием в составе некоторых из них ископаемых континентальных растений и животных.

Уильям Уинстон, на которого произвели огромное впечатление наблюдения Эдмунда Галлея в 1652 г.. За кометой (названной впоследствии его именем), выдвинул гипотезу, согласно которой Земля возникла из обломков какого-то неизвестного кометы. Более того, близкий прохождения другой кометы вызвало всеземной наводнение, превратило орбиту вращения вокруг Солнца с круговой в эллиптическую, а на земной поверхности образовались континенты и океаны. Комета привела в движение горные породы на противоположных сторонах планеты (подобно тому, как Луна вызывает приливы в океанах и морях). На гребнях приливной волны образовались континенты, а во впадинах - Атлантический и Тихий океаны. Уинстон подкрепил свою гипотезу впечатляющими математическими уравнениями, которые доказывали возможность такого действия кометы на породы земной коры. Но поскольку в его расчетах были обработаны далеко не все, ее сразу же подвергли критике. Теологи подкрепляли свои возражения ссылкой на Библию: каким образом Солнце могло существовать до того, как Земля начала вращаться вокруг него, когда в Книге Бытия сказано, что Бог создал это большое светило только на четвертый день после формирования Земли.

Благодаря большим открытием в современных науках о Земле возникли предпосылки для формирования космогонии - науки, занимающейся изучением Вселенной, вопросами происхождения Солнца и планет. Несмотря на всю сложность данной проблемы, уже первые космогонические гипотезы стали пользоваться большой популярностью среди ученых и многих образованных людей.

Широкое признание получили гипотезы, базирующиеся на эволюции газово-пылевой материи. Первая попытка объяснить происхождение Солнечной системы было сделано немецким географом и философом Кантом (1724-1804). 1765 г.. Он издал книгу "Всеобщая естественная история и теория неба», в которой изложил свои взгляды на происхождение Вселенной и планет Солнечной системы. По мнению И. Канта, Вселенная образовалась из первичной рассеянной матери, которая заполняла мировое пространство. Частицы, из которых состояла материя, были неодинаковы по плотности и силы тяжести, они были перемешаны и образовали неподвижный хаос. Постепенно силы взаимного притяжения, возникшие между частями, привели каменный хаос в движение. Результатом сталкивание и слипания частиц было образование сгустков, сначала мелких, затем крупных. Сталкивание сгустков вызвало ее вращения. В конце концов из центрального сгустка образовалось Солнце, а из крупных боковых сгущений, которые привлекли к себе вещество экваториальной туманности, - планеты. Первоначальное состояние планет и Солнца Кант считал горячим. Со временем планеты остыли, стали холодными. То же, по мнению И. Канта, должно произойти в далеком будущем и с Солнцем.

В1796 г.. Вышла книга французского математика и астронома П. Лапласа «Изложение системы мира», в которой была опубликована его космогоническая гипотеза. Она оказалась во многом схожей с гипотезой Канта, хотя П. Лаплас не знал о ее существовании. Он предполагал, что когда-то существовала огромная горячая разреженная туманность. По мере ее охлаждения и сжатия в центре образовалось сгущенное ядро - зародыш нынешнего Солнца. В результате его вращения вокруг оси развилась центробежная сила, которая оттолкнула в экваториальной плоскости часть вещества от оси вращения. Количество газовых колец, отделилась от центрального сгустка материи, отвечала числу планет Солнечной системы. Кольца были неустойчивыми. Вещество в них под влиянием охлаждения постепенно сгущалась. Подобным же образом П.Лаплас объясняет и образования спутников планет.

Гипотезы Канта и Лапласа стали своего рода революционным переворотом во взглядах людей на происхождение окружающего их мира. Эти гипотезы впервые дали научное объяснение образованию Солнечной системы с газово-пылевой материи и коренным образом изменили метафизическое представление о вечности и неизменности

Вселенной, которое тогда существовало. Но с точки зрения современной науки оказалось, что эти гипотезы имеют серьезные недостатки. Современная физика не считает возможным длительное существование в природе устойчивых газовых колец. Газы при выделении, как показывает практика и экспериментальные исследования, не собираются в сгустки, а рассеиваются. Не в состоянии объяснить приведенные гипотезы разнонаправленность вращения по орбитам спутников планет и распределение момента количества движения крупных тел Солнечной системы (который является произведением массы тела на его скорость и расстояние от центра вращения). Так, Солнце, масса которого составляет 99,9% общей массы Солнечной системы, имеет только 2% момента количества движения, одновременно на все планеты с их "мизерной" массой приходится до 98% момента количества движения.

В 1916 появилась "горячая" космогоническая гипотеза английского астронома Дж.-Х. Джинса. Согласно ей, мимо Солнца прошла какая-то звезда. Вследствие влияния ее силы тяжести с Солнца вырвался длинную струю (протуберанец) и образовал туманность с отдельными сгущениями (узлами) - протопланета, что начали вращаться вокруг Солнца. Впоследствии они перешли из газообразного состояния в жидкое, образовалась твердая кора. Приточная гипотеза Дж.-Х. Джинса хорошо объясняла особенности распределения плотности горных пород внутренних планет Солнечной системы, а потому стала на некоторое время популярной в науке.

На основе новых достижений фундаментальных наук, в частности открытие явлений природного радиоактивного распада (впервые удалось доказать выдающимся французским ученым М. Склодовской и П. Кюри), были предложены новые гипотезы, которые объясняли образования планет не из горячей, а с холодной материи. Оригинальной и известной стала опубликованная в 1943 труд "Метеоритная теория происхождения Земли и планет", автором которой является А.Ю. Шмидт (1892-1956). Это была неординарная личность в науке. В двадцать пять лет он уже работал приват-доцентом Киевского университета, позже занимал ответственные посты в Наркомприроди, Наркомфине, Наркомпроса, был директором Госиздата, главным редактором Большой Советской Энциклопедии. Большую популярность принесли ему и полярные исследования, челюскинська эпопея, высадка на лед научной станции "Северный полюс-1". В течение всей сознательной жизни ученый очень увлекался математикой.

О.Ю. Шмидт пытался математически обосновать идею о происхождении планет с холодной пылевой и метеоритной материи, которую захватило Солнце на одном из отрезков пути по Галактике. Такой подход позволил объяснить непропорциональное распределение масс и момента количества движения планет и Солнца. Вещество газово-пылевой туманности под давлением солнечного ветра сортировалась еще в до планетную стадию: легкие элементы были отброшены на край Солнечной системы, а ближе к Солнцу содержались сравнительно тяжелые элементы. Далее под действием сил притяжения куски материи сталкивались, слипались и планеты росли. Однако современные исследования доказали несостоятельность подобного механического захвата туманности, к тому же отсутствие объяснений о создании самого Солнца не могли удовлетворить науку.

В пятидесятых годах стала популярной гипотеза харьковского астронома В. Фесенкова, который подошел к решению проблемы с точки зрения рождения и эволюции звезд. Он считал, что образование туманности происходило за счет выброса вещества из новой или сверхновой звезды. В центре туманности существовал уплотненный сгусток - первичное Солнце, вокруг которого сформировались неоднородности - гигантские "нити" и "фибрилл", что в дальнейшем превратились в небесные тела. Планеты образовались из того вещества газово-пылевой туманности, которая находилась в экваториальной плоскости Солнца. Эта туманность, окружавшей протосолнца, была сплюснутая, уплотнения в ней происходили неравномерно, ибо движение часто был неправильный, вихороподибний. Орбиты сгустков-планет с самого начала мало отличались от круга и находились в одной плоскости.

Многие ученые считают, что протосолнечной туманность, из которой сформировались все тела Солнечной системы, была в течение длительного времени в виде обычной межзвездной намагниченной облака, медленно вращалась. Возможно, поблизости от нее впоследствии образовалась массивная звезда. Со временем смерть этой звезды привела к взрыву сверхновой. Мощные вспышки сверхновых звезд происходят в связи с выгоранием в их центре ядерного топлива. В ядре такой звезды резко снижаются температура и давление, в результате чего ее поверхностные слои под действием собственного огромного веса начинают падать в центр звезды. Происходит так называемое явление коллапса, которое приводит к гибели звезды.

Наличие магнитного поля в газовом облаке, вращающемся и сжимается, играет важную роль при коллапсе облака. По мере того, как вращение облака ускоряется, магнитные силовые линии, ведущие себя как пружинные пластинки, закручиваются. Магнитные натяжения приводят к образованию ядра, которое медленно вращается, а вещество, остается на периферии, быстро крутится вокруг него. Этот эффект позволяет объяснить фактическое распределение момента количества движения в Солнечной системе.

В сжатий облаке быстро развивается плотное, непрозрачное ядро с медленным осевым движением. Вокруг него продолжает вращаться газовый диск - протосолнечной туманность. Газ содержал много частиц пыли. Тонкий диск с холодной пыли был такой же гравитационно неустойчиво, как и облако холодного газа. Частицы пыли привлекались большими по массе сгустками материи, и они вырастали до размеров астероидов. Эти первичные образования получили название планетезималей. Они имели неодинаковую массу и различные скорости. Астероиды и ядра комет, возможно, и являются теми остатками планетезималей, заполнявших когда Солнечной системе.

Между тем молодое Солнце, которое возникло на месте ядра, стало выделять свет и энергию. Это повлияло на свойства планет, образовавшихся. Вблизи Солнца температура была высокой, вследствие чего вещества, оказавшиеся здесь в состоянии льда, быстро испарялись. В этих условиях смогли сохраниться только жаростойкие каменистые и металлические частицы. Поэтому внутренние планеты образовывались преимущественно из материала, который имел большой удельный вес. Они сравнительно небольшие по массе и поэтому не были способны удержать заметное количество водорода и гелия. В внешних областях Солнечной системы температура была достаточно низкой, и ледовые вещества здесь не растаяли. В результате образовались огромные планеты, которые были способны удержать водород и гелий. Хотя внешние планеты Солнечной системы очень массивные, но все они имеют сравнительно малую плотность.

Сейчас широко распространилась гипотеза так называемой аккумуляции небесных тел. Ученые считают, что планеты образовались в результате накопления многих тел меньших размеров, которые двигались вокруг протосолнца за орбитами, что лежали в середине плоского диска. Эта гипотеза позволяет объяснить направления вращения планет по орбите и вокруг собственной оси. В планетах, которые образовались из многих мелких тел, индивидуальные направления обращений усреднялись, в результате их ось вращения оказывалась параллельной оси вращения Солнца. Исключение составляют Уран и Венера. Пожалуй, первый образовавшийся при столкновении лишь нескольких, возможно даже только двух крупных тел. Обратное движение Венеры указывает на то, что в свое время произошло сильное замедление вращения планеты приливными силами Солнца.

Современные представления об образовании Солнца и планет из газопилоподибнои туманности являются общепризнанными. Ученые получили новые веские доказательства эволюции Вселенной. Большой популярностью в мире получила теория о "Большой взрыв" - так коротко называют совокупность процессов, происходивших почти двадцать миллиардов лет назад, в самом начале формирования Вселенной. Полагают, что когда-то вся космическая материя была сосредоточена в сравнительно небольшом по размерам сгустка, который представлял собой очень горячую (миллиарды градусов) сверхплотную вещество. Вследствие сверхмощного взрыва материя разлетелась в разные стороны космического пространства, плотность стала падать, а температура снижаться. Эта гипотеза была подтверждена открытием в 1964 американскими исследователями А. Пензиасом и Р. Вильсоном теплового фонового излучения Вселенной. Излучение назван реликтовым, потому что оно является остатком тепла от той первоначальной горячей материи. "Разбегания" галактик, которое является следствием Большого взрыва, продолжается и по сей день: такой вывод подкрепляется наблюдениями Е. Хаббла, который обнаружил смещение линий спектра галактик в сторону длинноволнового красного конца. Признано, что такое смещение отражает фактические особенности движения галактик, непрерывное рост расстояний между ними. Это означает, что галактики удаляются от нас (и друг от друга) во все стороны и тем быстрее, чем дальше они от нас. Этот процесс охватывает всю наблюдаемую часть Вселенной, а возможно и всю Вселенную.

Таким образом, по мере совершенствования методов исследования Вселенной и накопления новых данных о строении различных небесных тел ученые все глубже проникают в тайны их происхождения. Создание единой теории развития Земли и других планет Солнечной системы - одна из самых сложных проблем современной науки.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»