Равнобедренный треугольник. Признаки, составляющие элементы и свойства равнобедренного треугольника

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD - биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD - общая сторона, ∠ 1 = ∠ 2, так как AD - биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке .

Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.

Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р - серединный перпендикуляр к отрезку АВ и точка О - середина отрезка АВ (см. рис. 3).

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.

Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).

Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС - общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.

Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

Определение 7. Равнобедренным называется всякий треугольник, две стороны которого равны.
Две равные стороны называют боковыми, третью – основанием.
Определение 8. Если все три стороны треугольника равны, то такой треугольник называется равносторонним.
Он является частным видом равнобедренного треугольника.
Теорема 18 . Высота равнобедренного треугольника, опущенная на основание, одновременно является биссектрисой угла между равными сторонами, медианой и осью симметрии основания.
Доказательство. Опустим высоту на основание равнобедренного треугольника. Она поделит его на два равных (по катету и гипотенузе) прямоугольных треугольника. Углы А и С равны, также высота делит основание пополам и будет осью симметрии всей рассматриваемой фигуры.
Также эту теорему можно сформулировать так:
Теорема 18.1 . Медиана равнобедренного треугольника, опущенная на основание, одновременно является биссектрисой угла между равными сторонами, высотой и осью симметрии основания.
Теорема 18.2 . Биссектриса равнобедренного треугольника, опущенная на основание, одновременно является высотой, медианой и осью симметрии основания.
Теорема 18.3 . Ось симметрии равнобедренного треугольника одновременно является биссектрисой угла между равными сторонами, медианой и высотой.
Доказательство этих следствий тоже следует из равенства треугольников, на которые делится равнобедренный треугольник.

Теорема 19. Углы при основании равнобедренного треугольника равны.
Доказательство. Опустим высоту на основание равнобедренного треугольника. Она поделит его на два равных (по катету и гипотенузе) прямоугольных треугольника, значит соответственные углы равны, т.е. ∠ А=∠ С
Признаки равнобедренного треугольника идут из теоремы 1 и его следствий и теоремы 2.
Теорема 20. Если две из указанных четырех линий (высота, медиана, биссектриса, ось симметрии) совпадут, то треугольник будет равнобедренным (а значит, совпадут и все четыре линии).
Теорема 21. Если любые два угла треугольника равны, то он равнобедренный.

Доказательство: Аналогично доказательству прямой теоремы, но используя второй признак равенства треугольников. Центр тяжести, центры описанной и вписанной окружностей и точка пересечения высот равнобедренного треугольника – все лежат на его оси симметрии, т.е. на высоте.
Равносторонний треугольник является равнобедренным для каждой пары своих сторон. Ввиду равенства всех его сторон равны и все три угла такого треугольника. Учитывая, что сумма углов любого треугольника равна двум прямым, мы видим, что каждый из углов равностороннего треугольника равен 60°. Обратно, чтобы убедиться в равенстве всех сторон треугольника, достаточно проверить, что два из трех его углов равны 60°.
Теорема 22 . В равностороннем треугольнике совпадают все замечательные точки: центр тяжести, центры вписанной и описанной окружностей, точка пересечения высот (называемая ортоцентром треугольника).
Теорема 23 . Если две из указанных четырех точек совпадут, то треугольник будет равносторонним и, как следствие, совпадут все четыре названные точки.
Действительно, такой треугольник окажется, по предыдущему, равнобедренным по отношению к любой паре сторон, т.е. равносторонним. Равносторонний треугольник также называют правильным треугольником. Площадь равнобедренного треугольника равна половине произведения квадрата боковой стороны и синуса угла между боковыми сторонами
Рассмотрим эту формулу для равностороннего треугольника, тогда угол альфа будет равен 60 градусов. Тогда формула изменит свой вид на такую:

Теорема d1 . В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его медианы. Тогда треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, стороны AL и BK равны как половины боковых сторон равнобедренного треугольника, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB равны. Но AK и LB - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Теорема d2 . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3 . В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.

Тема урока

Равнобедренный треугольник

Цель урока

Познакомить учеников с равнобедренным треугольником;
Продолжать формировать навыки построения прямоугольных треугольников;
Расширить знания школьников о свойствах равнобедренных треугольников;
Закрепить теоретические знания при решении задач.

Задачи урока

Уметь формулировать, доказывать и использовать теорему о свойствах равнобедренного треугольника в процессе решения задач;
Продолжать развитие сознательного восприятия учебного материала, логического мышления, навыков самоконтроля и самооценки;
Вызвать познавательный интерес к урокам математики;
Воспитывать активность, любознательность и организованность.

План урока

1. Общие понятия и определения о равнобедренном треугольнике.
2. Свойства равнобедренного треугольника.
3. Признаки равнобедренного треугольника.
4. Вопросы и задания.

Равнобедренный треугольник

Равнобедренный треугольник - это треугольник, имеющий две равные стороны, которые называются боковыми сторонами равнобедренного треугольника, а его третья сторона называется основанием.

Вершиной данной фигуры есть та, которая расположена напротив его основания.

Угол, который лежит напротив основания называется углом при вершине этого треугольника, а два других угла называются углами при основании равнобедренного треугольника.

Виды равнобедренных треугольников

Равнобедренный треугольник, как и другие фигуры, может иметь разные виды. Среди равнобедренных треугольников встречаются остроугольные, прямоугольные, тупоугольные и равносторонние.

Остроугольный треугольник имеет все острые углы.
У прямоугольного треугольника угол его вершины прямой, а при основании расположены острые углы.
Тупоугольный имеет тупой угол при вершине, а при его основании углы острые.
У равностороннего все его углы и стороны равны.

Свойства равнобедренного треугольника

Противолежащие углы в отношении равных сторон равнобедренного треугольника, равны между собой;

Биссектрисы, медианы и высоты, проведённые из углов, противолежащих равным сторонам треугольника, равны между собой.

Биссектриса, медиана и высота, направлена и проведена к основанию треугольника, совпадают между собой.

Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане, (они совпадают) проведенных к основанию.

Противолежащие равным сторонам равнобедренного треугольника углы, всегда острые.

Данные свойства равнобедренного треугольника применяются при решении задач.

Домашнее задание

1. Дайте определение равнобедренного треугольника.
2. В чем особенность этого треугольника?
3. Чем отличается равнобедренный треугольник от прямоугольного?
4. Назовите известные вам свойства равнобедренного треугольника.
5. Как вы думаете, можно ли на практике проверить равенство углов при основании и как это сделать?

Задание

А теперь давайте проведем небольшой блиц-опрос и узнаем, как вы усвоили новый материал.

Послушайте внимательно вопросы и ответьте верно ли такое утверждение, что:

1. Треугольник можно считать равнобедренным, если у него две стороны равны?
2. Биссектрисой называют отрезок, который соединяет вершину треугольника с серединой противоположной стороны?
3. Биссектрисой является отрезок, который делит угол, который соединяет вершину с точкой противоположной стороны пополам?

Советы относительно решения задач о равнобедренном треугольнике:

1. Для определения периметра равнобедренного треугольника достаточно умножить длину боковой стороны на 2 и сложить это произведение с длиной основы треугольника.
2. Если в задаче известны периметр и длина основы равнобедренного треугольника, то для нахождения длины боковой стороны достаточно отнять длину основы от периметра и найденную разницу разделить на 2.
3. А чтобы найти длину основы равнобедренного треугольника, зная и периметр, и длину боковой стороны, необходимо всего лишь умножить боковую сторону на два и отнять это произведение от периметра нашего треугольника.

Задачи:

1. Среди треугольников на рисунке определите один лишний и объясните свой выбор:



2. Определите, какие из изображенных на рисунке треугольников являются равнобедренными, назовите их основы и боковые стороны, а так же рассчитайте их периметр.



3. Периметр равнобедренного треугольника равен 21 см. Найдите стороны этого треугольника, если одна из них больше на 3 см. Какое количество решений может иметь данная задача?

4. Известно, что если боковая сторона и противолежащий основе угол одного равнобедренного треугольника равен боковой стороне и углу другого, то эти треугольники будут равны. Докажите это утверждение.

5. Подумайте и скажите, является ли любой равнобедренный треугольник равносторонним? И будет ли любой равносторонний треугольник равнобедренным?

6. Если стороны равнобедренного треугольника равны 4 м и 5 м, то каков будет его периметр? Сколько решений может иметь эта задача?

7. Если один из углов равнобедренного треугольника равен 91 градусу, то чему равны остальные углы?

8. Подумайте и ответьте, какие углы должны быть у треугольника, чтобы он одновременно был и прямоугольным, и равнобедренным?

А кто из вас знает, что такое треугольник Паскаля? Задачку на построение треугольника Паскаля часто задают для проверки навыков элементарного программирования. Вообще треугольник Паскаля относиться к комбинаторике и теории вероятности. Так что же это за такой треугольник?

Треугольник Паскаля - это бесконечный арифметический треугольник или таблица в форме треугольника, которая сформирована при помощи биномиальных коэффициентов. Простыми словами, вершиной и сторонами этого треугольника являются единицы, а сам он заполнен суммами двух чисел, которые расположены выше. Складывать такой треугольник можно до бесконечности, но если его очертить, то мы получим равнобедренный треугольник с симметричными строками относительно его вертикальной оси.



Подумайте, а где в повседневной жизни вам приходилось встречать равнобедренные треугольники? Не правда ли, крыши домов и древних архитектурных сооружений очень напоминают их? А вспомните, какая основа у египетских пирамид? Где еще вам встречались равнобедренные треугольники?

Равнобедренные треугольники с древних времен выручали греков и египтян при определении расстояний и высот. Так, например, древние греки определяли с его помощью издалека расстояние до корабля в море. А древние египтяне определяли высоту своих пирамид благодаря длине отбрасываемой тени, т.к. она представляла собой равнобедренный треугольник.

Начиная с древних времен, люди уже тогда оценили красоту и практичность этой фигуры, так как формы треугольников нас окружают всюду. Передвигаясь по разным селениям, мы видим крыши домов и других сооружений, которые напоминают нам о равнобедренном треугольнике, зайдя в магазин, мы нам встречаются пакеты с продуктами и соками треугольной формы и даже некоторые человеческие лица имеют форму треугольника. Эта фигура настолько популярна, что ее можно встретить на каждом шагу.

Предмети > Математика > Математика 7 класс

Треугольник, у которого две стороны равны между собой, называется равнобедренным. Эти его стороны называют боковыми, а третью сторону называют основанием. В этой статье мы расскажем Вам о том, какие бывают свойства равнобедренного треугольника.

Теорема 1

Углы возле основания равнобедренного треугольника равны между собой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB. Давайте рассмотрим треугольник BAC. Эти треугольники, по первому признаку, равны между собой. Так и есть, ведь BC = AC, AC = BC, угол ACB = углу ACB. Отсюда вытекает, что угол BAC = углу ABC, ведь это соответствующие углы наших равных между собой треугольников. Вот Вам и свойство углов равнобедренного треугольника.

Теорема 2

Медиана в равнобедренном треугольнике, которую провели к его основанию, является также высотой и биссектрисой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB, а CD - это медиана, которую мы провели к его основанию. В треугольниках ACD и BCD угол CAD = углу CBD, как соответствующие углы при основании равнобедренного треугольника (Теореме 1). А сторона AC = стороне BC (по определению равнобедренного треугольника). Сторона AD = стороне BD, Ведь точка D делит отрезок AB на равные части. Отсюда выходит, что треугольник ACD = треугольнику BCD.

Из равенства этих треугольников мы имеем равенство соответствующих углов. То есть угол ACD = углу BCD и угол ADC = углу BDC. Из равенства 1 выходит, что CD - это биссектриса. А угол ADC и угол BDC - смежные углы, и из равенства 2 выходит, что они оба прямые. Получается, что CD - это высота треугольника. Это и есть свойство медианы равнобедренного треугольника.

А теперь немного о признаках равнобедренного треугольника.

Теорема 3

Если в треугольнике два угла равны между собой, то такой треугольник равнобедренный

Доказательство теоремы.

Допустим, мы имеем треугольник ABC, в котором угол CAB = углу CBA. Треугольник ABC = треугольнику BAC по второму признаку равенства между треугольниками. Так и есть, ведь AB = BA; угол CBA = углу CAB, угол CAB = углу CBA. Из такого равенства треугольников мы имеем равенство соответствующих сторон треугольника - AC = BC. Тогда выходит, что треугольник ABC равнобедренный.

Теорема 4

Если в любом треугольнике его медиана является также и его высотой, то такой треугольник равнобедренный

Доказательство теоремы.

В треугольнике ABC мы проведем медиану CD. Она также будет являться и высотой. Прямоугольный треугольник ACD = прямоугольному треугольнику BCD, так как катет CD общий для них, а катет AD = катету BD. С этого следует, что их гипотенузы равны между собой, как соответственные части равных треугольников. Это значит, что AB = BC.

Теорема 5

Если три стороны треугольника равны трем сторонам другого треугольника, то эти треугольники равны

Доказательство теоремы.

Допустим, мы имеем треугольник ABC и треугольник A1B1C1 такие, в которых стороны AB = A1B1, AC = A1C1, BC = B1C1. Рассмотрим доказательство этой теоремы от противного.

Допустим, что эти треугольники не равны между собой. Отсюда имеем, что угол BAC не равен углу B1A1C1, угол ABC не равен углу A1B1C1, угол ACB не равен углу A1C1B1 одновременно. В противном случае, эти треугольники были бы равны по вышерассмотренному признаку.

Допустим, что треугольник A1B1C2 = треугольнику ABC. У треугольника вершина C2 лежит с вершиной C1 относительно прямой A1B1 в одной полуплоскости. Мы предположили, что вершины C2 и C1 не совпадают. Допустим, что точка D - это середина отрезка C1C2. Так мы имеем равнобедренные треугольники B1C1C2 и A1C1C2, у которых есть общее основание C1C2. Выходит, что их медианы B1D и A1D - это также и их высоты. А это значит, что прямая B1D и прямая A1D перпендикулярны прямой C1C2.

B1D и A1D имеют разные точки B1 и A1, и соответственно, не могут совпадать. Но ведь через точку D прямой C1C2 мы можем провести всего одну перпендикулярную ей прямую. У нас получилось противоречие.

Теперь Вы знаете, какие бывают свойства равнобедренного треугольника!

Равнобедренный треугольник - это треугольник , в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя - основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.

Свойства

  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы , медианы и высоты , проведённые из этих углов.
  • Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
  • Углы, противолежащие равным сторонам, всегда острые (следует из их равенства).

Пусть a - длина двух равных сторон равнобедренного треугольника, b - длина третьей стороны, α и β - соответствующие углы, R - радиус описанной окружности , r - радиус вписанной .

Стороны могут быть найдены следующим образом:

Углы могут быть выражены следующими способами:

Периметр равнобедренного треугольника может быть вычислен любым из следующих способов:

Площадь треугольника может быть вычислена одним из следующих способов:

(формула Герона).

Признаки

  • Два угла треугольника равны.
  • Высота совпадает с медианой.
  • Высота совпадает с биссектрисой.
  • Биссектриса совпадает с медианой.
  • Две высоты равны.
  • Две медианы равны.
  • Две биссектрисы равны (теорема Штейнера - Лемуса).

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Равнобедренный треугольник" в других словарях:

    РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК, ТРЕУГОЛЬНИК, имеющий две равные по длине стороны; углы при этих сторонах также равны … Научно-технический энциклопедический словарь

    И (прост.) трёхугольник, треугольника, муж. 1. Геометрическая фигура, ограниченная тремя взаимно пересекающимися прямыми, образующими три внутренних угла (мат.). Тупоугольный треугольник. Остроугольный треугольник. Прямоугольный треугольник.… … Толковый словарь Ушакова

    РАВНОБЕДРЕННЫЙ, ая, ое: равнобедренный треугольник имеющий две равные стороны. | сущ. равнобедренность, и, жен. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    треугольник - ▲ многоугольник имеющий, три, угол треугольник простейший многоугольник; задается 3 точками, не лежащими на одной прямой. треугольный. остроугольник. остроугольный. прямоугольный треугольник: катет. гипотенуза. равнобедренный треугольник. ▼… … Идеографический словарь русского языка

    треугольник - ТРЕУГОЛЬНИК1, а, м чего или с опр. Предмет, имеющий форму геометрической фигуры, ограниченной тремя пересекающимися прямыми, образующими три внутренних угла. Она перебирала письма мужа пожелтевшие фронтовые треугольники. ТРЕУГОЛЬНИК2, а, м… … Толковый словарь русских существительных

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    Треугольник (многоугольник) - Треугольники: 1 остроугольный, прямоугольный и тупоугольный; 2 правильный (равносторонний) и равнобедренный; 3 биссектрисы; 4 медианы и центр тяжести; 5 высоты; 6 ортоцентр; 7 средняя линия. ТРЕУГОЛЬНИК, многоугольник с 3 сторонами. Иногда под… … Иллюстрированный энциклопедический словарь

    Энциклопедический словарь

    треугольник - а; м. 1) а) Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный треуго/льник. Вычислить площадь треугольника. б) отт. чего или с опр. Фигура или предмет такой формы.… … Словарь многих выражений

    А; м. 1. Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный т. Вычислить площадь треугольника. // чего или с опр. Фигура или предмет такой формы. Т. крыши. Т.… … Энциклопедический словарь



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»