Размеры Вселенной: от Млечного пути до Метагалактики. Видимая вселенная

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ

Философский энциклопедический словарь . 2010 .

В. бесконечно разнообразна по формам существования и движения материи. Материя не возникает и не уничтожается, а только переходит из одной формы в другую. Поэтому совершенно произвольной и идеалистич. является теория о постоянном творении материи из "ничего" (F. Hoyle, A new model for the expanding universe, в журн. "Monthly Notices of the Royal Astron. Soc", L., 1948, v. 108; H. Bondi, Cosmology, 1952).

Бесконечное разнообразие материальных форм в бесконечной В. приводит к выводу о том, что органич. , как одна из форм существования материи, не является достоянием только нашей планеты, а возникает повсюду, где складываются соответствующие .

Таковы осн. свойства В., имеющие не только физич., но и большое . значение. В своих наиболее общих выводах наука о строении В. теснейшим образом связана с философией. Отсюда и ожесточенная идеологич. , ведущаяся по вопросам структуры и развития В.

Отрицание бесконечности В. в пространстве и времени со стороны ряда ученых вызывается не только влиянием идеалистич. духовной атмосферы, в к-рой они находятся, но и безуспешными попытками построить непротиворечивую бесконечной В., опирающуюся на всю совокупность известных нам наблюдательных данных. Признание в той или иной форме конечности В. есть по существу отказ от решения важнейшей научной проблемы, переход с позиций науки на позиции религии. В этому диалектич. материализма, доказывая В. в пространстве и времени, стимулирует дальнейшее развитие науки, указывая принципиальные пути для развития теории.

Вопрос о конечности или бесконечности В. – это не только естествознания. Само по себе накопление эмпирич. материала и его математич. обработка только в рамках той или иной отд. науки еще не могут дать исчерпывающего и логически неуязвимого ответа на поставленный вопрос. Наиболее адекватным средством для решения поставленной задачи является филос. , опирающийся на достижения всего естествознания и прочную основу диалектико-материалистич. метода. На первый план здесь выдвигается диалектич. разработка понятия бесконечности, трудности оперирования к-рым ощущает не только , но и др. науки.

Т.о., общих свойств В., ее пространств.-временных характеристик вызывает большие трудности. Но все тысячелетнее развитие науки убеждает в том, что этой проблемы может быть только на путях признания бесконечности В. в пространстве и времени. В общем плане такое решение дано диалектическим материализмом. Однако создание рационального, непротиворечивого представления о В. в целом с учетом всех наблюдаемых процессов – дело будущего.

Лит.: Энгельс Ф., Диалектика природы, М., 1955 его же, Анти-Дюринг, М., 1957; Ленин В. И., Материализм и , Соч., 4 изд., т. 14; Блажко С. Н., Курс общей астрономии, М., 1947; Πолак И. Ф., Курс общей астрономии, 7 изд., М., 1955; Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954; Эйгенсон М. С, Большая Вселенная, М.–Л., 1936; Фесенков В. Г., Современные представления о Вселенной, М.–Л., 1949; Агекян Т. Α., Звездная Вселенная, М., 1955; Lyttlеton R. Α., The modern universe, L., ; Hоуle F., Frontiers of astronomy, Melb., ; Thomas O., Astronomie. Tatsachen und Probleme, 7 Aufl., Salzburg–Stuttgart, .

А. Бовин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ (от греч. “ойкумена” - населенная, обитаемая земля) -“все существующее”, “всеобъемлющее мировое целое”, “тотальность всех вещей”; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия “Вселенная”.

1. Вселенная как философская имеет смысл, близкий понятию “универсум”, или “мир”: “материальный мир”, “сотворенное бытие” и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.

2. Вселенная в физической космологии, или Вселенная как целое, - объект космологических экстраполяции. В традиционном смысле - всеобъемлющая, неограниченная и принципиально единственная физическая система (“Вселенная издана в одном экземпляре” - А. Пуанкаре); мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое Вселенной как целого обосновывалось по-разному: 1) ссылкой на “презумпцию экстраполируемости”: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически-Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона “разрушила” античный . Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.

В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т. е. имела начало. А. А. Фридман считал, что мир, или Вселенная как объект космологии, “бесконечно уже и меньше мира-вселенной философа”. Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный расширения Метагалактики рассматривался как “начало всего”, с креационистской точки зрения - как “сотворение мира”. Некоторые космологи-релятивисты, считая единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику-лишь как ограниченную часть Вселенной.

Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился в космологии. Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т. е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью - в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как “наибольшее событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом” или “могли бы считаться физически связанными с нами” (Г. Бонди).

Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии-это “все существующее”. не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т. е. физическая система наибольшего масштаба и порядка, которой вытекает из определенной системы физического знания. Это относительная и преходящая познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же “оригинал”. Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т. е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной.

Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной (“раздувающейся”) Вселенной вводит понятие о множестве “других вселенных” (или, в терминах эмпирического языка, внеметагалактических объектов) с качественно различными свойствами. Инфляционная теория признает, т. о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И. С. Шкловский предложил назвать “Метавселенной”. Инфляционная космология в специфической форме возрождает, т. о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют “минивселенными”. Минивселенные возникают путем спонтанных флуктуации физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя (“принцип соучастия”). “Порождая на некотором ограниченном этапе своего существования наблюдателейучастников, не приобретает

Глядя ночью на звездное небо невольно задаешься вопросом: сколько на небе звезд? Есть ли еще где-нибудь жизнь, как это все появилось и есть ли всему этому конец?

Большинство ученых астрономов уверены в том, что Вселенная родилась вследствие сильнейшего взрыва, около 15 миллиардов лет назад. Этот огромнейший взрыв, принято называть «Большой взрыв» или «Большой Удар», он образовался из сильного сжатия материи, разогнал горячие газы в разных направлениях, и дал начало галактикам, звездам и планетам. Даже самые современные и новые астрономические приспособления не в состоянии охватить весь космос. А ведь современная техника может уловить свет от звезд, которые удаленны от Земли на расстояние 15 миллиардов световых лет! Возможно, этих звезд давно уже и нет, они родились, постарели и умерли, но свет от них путешествовал к Земле 15 миллиардов лет и телескоп все еще его видит.

Ученые многих поколений и стран пытаются предположить, рассчитать размеры нашей Вселенной, определить ее центр. Раньше считали, что центр Вселенной – наша планета Земля. Коперник доказал, что это Солнце, но с развитием знаний и открытием нашей галактики «Млечный путь» стало понятно, что ни наша планета ни даже Солнце не являются центром Вселенной. Долго думали, что кроме Млечного пути больше никаких галактик нет, но и это опровергли.

Известный научный факт говорит о том, что Вселенная постоянно расширяется и то звездное небо, которое мы наблюдаем, строение планет которое мы видим сейчас, совершенно другое, чем миллионы лет назад. Если Вселенная растет, то значит, есть и края. Другая теория говорит о том, что за границами нашего космоса есть и другие Вселенные и миры.

Первым, кто решился обосновать бесконечность Вселенной был Иссак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно притянулись бы и слились в единое целое. А раз этого не происходит, значит, у Вселенной нет границ.

Казалось бы, что все это логично и очевидно, но все же Альберт Энштейн смог сломать эти стереотипы. Он создал свою модель Вселенной на основе его же теории относительности, согласно которой Вселенная является бесконечной во времений, но конечной в пространстве. Он сравнил ее с трехмерной сферой или, простым языком, с нашим глобусом. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

Точно так же космический странник стартовав с нашей планеты и преодолев Вселенную на звездолете может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует. Энштейн считал, что Вселенная статична и размер ее никогда не меняется.

Однако, самые великие умы не чужды заблуждений. В 1927 году наш советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Энштейн не сразу принял такую поправку, но с открытием телескопа Хаббла был доказан факт расширения Вселенной, т.к. галактики разбегались, т.е. отдалялись друг от друга.

Сейчас уже доказано, что Вселенная расширяется с ускорением, что она заполнена холодной темной материей и ее возраст составляет 13,75 млрд.лет. Зная возраст Вселенной можно определить размер ее наблюдаемой области. Но не стоит забывать про постоянное расширение.

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет), о котором мы говорили выше. И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Сейчас объясню: наверняка, вы слышали, что когда мы смотрим на небо, мы видим прошлое других звезд, планет, а не то что происходит сейчас. К примеру, глядя на Луну, мы видим такой, какой она была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. То есть, с момента рождения Вселенной никакой фотон, т.е. свет не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Но! Не стоит забывать и о факте расширения Вселенной. Так вот пока он достигнет наблюдателя, объект зарождающейся Вселенной, который испустил этот свет, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

Однако, оба эти горизонта совсем не характеризуют реальный размер Вселенной. Она расширяется и если такая тенденция сохранится, то все те объекты, которые мы сейчас можем наблюдать рано или поздно исчезнут из нашего поля зрения.

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Это древние электромагнитные волны, возникшие при зарождении Вселенной. Эти волны обнаруживают с помощью высокочувствительных антен и непосредственно в космосе. Вглядываясь в реликтовое излучение, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления.

Ученые до сих пор ведет споры, существуют ли истинные, не наблюдаемые границы у Вселенной. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной, т.е. существовании бесконечного множества других вселенных за пределами нашей. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

В предлагаемой работе на основе общепризнанных данных приводится прямое, численное определение видимого радиуса Вселенной, который отличается от общепризнанного. Известные на сегодняшний день инфляционные модели Большого Взрыва предсказывают различные значения начального размера Вселенной после завершения этапа инфляции:

«… период «раздувания» … называется инфляционным периодом. За это вре¬мя размеры Вселенной увеличились в 10^50 раз, от миллиардной доли размера протона до размеров спичечного коробка» .

«В конце инфляционного периода наша Вселенная приобрела размер около 1 см в диаметре…» .

«Вселенная расширилась на 50 порядков – была меньше протона, а стала размером с грейпфрут» .

«к окончанию инфляционного периода вселенная приобрела размер примерно 1 см» .

«зародыш Вселенной вырос от нуля до размеров мячика для игры в пинг-понг» .

Сам процесс инфляционного раздувания длится мельчайшую долю секунды, после чего начинается многомиллиардный в годах процесс хаббловского расширения Вселенной. До настоящего времени Вселенная по приведённым ниже оценкам расширилась от 10^8 до 10^30 метров. Сейчас принято, что после инфляционного расширения прошло порядка 10^17 секунд или 13,8 млрд. лет.

В соответствии со стандартной моделью Большого Взрыва начальный радиус Вселенной должен был быть порядка нескольких сантиметров, а дальнейшее расширение было линейным. Инфляция позволяла устранить некоторые проблемы, возникающие в стандартной модели Большого Взрыва. Однако, первые инфляционные сценарии также не были лишены недостатков, что привело к дальнейшему их развитию и появлению новых инфляционных моделей, в которых на стадии инфляции Вселенная расширилась существенно сильнее.

Например, в приводится величина расширения пространства в 10 в степени 10^5 – 10^12 раз, что практически означает размер Вселенной точно с этими же числовыми значениями: 10 в степени 10^5 – 10^12 см. Число 10^12 – это 10 в степени триллион. Наибольший размер Вселенной по завершению стадии инфляции из этого диапазона предсказывает новая инфляционная теория А.Линде:

«Главное отличие инфляционной теории от старой космологии становится очевидным, если посчитать размер типичной инфляционной области в конце инфляции. Даже если начальный размер инфляционной вселенной был очень мал (порядка планковской длины lp~10^ 33 см), после 10^-35 секунды инфляции вселенная достигает огромных размеров – l~10^1`000`000`000`000 см» .

«Согласно некоторым моделям раздувания, масштаб Вселенной (в см) достигнет 10 в степени 10^12» .

Такой разброс размеров Вселенной, очевидно, должен привести к различным итоговым параметрам Вселенной.

Радиус наблюдаемой Вселенной

«Наблюдаемая Вселенная – понятие в космологии Большого Взрыва, описывающее часть Вселенной, являющуюся абсолютным прошлым относительно наблюдателя. С точки зрения пространства, это область, из которой материя (в частности, излучение, и, следовательно, любые сигналы) успела бы за время существования Вселенной достичь нынешнего местоположения (в случае человечества – современной Земли), то есть быть наблюдаемыми» .

По имеющимся общепризнанным данным возраст вселенной составляет T=13,8 млрд. лет. Из этого следует, как считается, что до Земли уже должны долетать фотоны, рождённые в момент возникновения Вселенной. Другими словами, любой фотон реликтового излучения провёл в пути Т лет. Однако, в связи с расширением Вселенной также очевидно, что до Земли должны долететь и фотоны, которые излучены с меньшего расстояния, чем Т световых лет. Действительно, на протяжении этого времени Земля постоянно удалялась от источника излучения. Поэтому дошедшие до Земли фотоны, имея возраст Т лет, рождены на удалении от Земли, меньшем, чем Т световых лет.

Расчеты показывают, что в начальный момент времени (после того, как были сформированы галактики) самый удалённый от Земли источник, фотоны от которого в настоящее время достигли Земли, находился от Земли на расстоянии приблизительно 5х10^9 св. лет.

В вычислениях мы исходили из следующих вполне приемлемых допущений. Основное допущение – это принятие за истину закона Хаббла.

Второе допущение - за всё время пост-инфляционного расширения Вселенной постоянная Хаббла была не менее принятой ныне величины. Причём, чем больше средняя величина постоянной Хаббла, тем меньше будет фактический радиус наблюдаемой Вселенной. Поэтому, в связи с открытием ускоренного расширения Вселенной, полученный результат следует считать несколько завышенным, поскольку ранее постоянная Хаббла, по всей видимости, была меньше. То есть, Земли достигли фотоны от источников, удалённых несколько более чем на 5 млрд. световых лет.

Третье допущение – это приблизительное постоянство постоянной Хаббла, её независимость от времени. Это приемлемое, можно сказать, общепринятое допущение, поскольку это следует из графиков расширения Вселенной практически всех авторитетных исследователей и теоретиков.

Из приведённых доводов должно следовать, что в астрономических наблюдениях невозможно «увидеть» галактики, удалённые более чем на 5 млрд. световых лет. Фотоны от любой галактики в возрасте, близком к возрасту Вселенной, достигшие Земли, были испущены, когда галактика находилась не дальше 5 млрд. световых лет.

Далее из этого должно следовать, что никакое красное смещение не может соответствовать удалённости более чем на это расстояние и приводимые в космологической литературе сведения о том, что обнаружены галактика или квазар, удалённые на 10-12 млрд. световых лет, вызывают недоверие.

Собственно говоря, это достаточно очевидное обстоятельство. Поскольку возраст Вселенной 14 млрд. лет, любой фотон мог быть в пути не дольше этого времени. Если фотон двигался к Земле из точки с удалённостью 12-14 млрд. лет, то со скоростью света он прошёл бы это расстояние и достиг бы Земли за время жизни Вселенной только в случае, если бы Земля не удалялась. Но Земля удалялась, причём с достаточно высокой скоростью, как показано на прилагаемой к статье анимации.

Анимацию и упомянутые выше расчеты можно увидеть в интернете по адресу URL: http://samlib.ru/p/putenihin_p_w/rw99.shtml

Поскольку Земля удаляется от Звезды, фотон за время жизни Вселенной достигнет только точки, где Земля находилась в момент его испусканий (бледный синий кружок) – на расстоянии 13,7 млрд. световых лет. Это очевидно, поскольку за это время в 13,7 млрд. лет Земля удалится от этой точки. Достичь Земли смогут только фотоны, удалённые от неё в момент излучения не более чем на 5 млрд. световых лет (приблизительно). Это расстояние, видимо, и следует считать наблюдаемой границей Вселенной.

Тем не менее, в космологической литературе указывается радиус наблюдаемой Вселенной, близкий по величине к её возрасту – около 14 млрд. световых лет. Как показано в выше приведённых расчетах, за 13 с лишним миллиардов световых лет свет от таких галактик, видимо, не мог достичь Земли. То есть, получается, наблюдать галактики на таком удалении от Земли вряд ли возможно.

Это значит, что космологические способы вычисления расстояний до галактик, вызывают определённые сомнения. Более того, очевидно, что за 14 млрд. лет фотоны от галактик, удалённых на 14 млрд. световых лет, достичь Земли могли лишь в случае стационарной (не расширяющейся) Вселенной.

По-видимому, полученный вывод о радиусе видимой Вселенной в 5 млрд. световых лет является очередным космологическим парадоксом, поскольку ставятся под сомнения множество общепризнанных теорий и выводов: общая теория относительности, закон Хаббла, теория Большого взрыва…

Литература

1. Большой взрыв: Инфляционная модель, Студопедия, 2014, URL:
(дата обращения 11.12.2015)
2. Гусев А., Как возникла Вселенная?, 2008, URL:
http://shkolazhizni.ru/archive/0/n-14628/ (дата обращения 11.12.2015)
3. Инфляционная стадия расширения Вселенной. Элементы, URL:
http://elementy.ru/trefil/21082?context=20444 (дата обращения 11.12.2015)
4. Казютинский В.В., Инфляционная космология: теория и научная картина мира, URL: http://maxpark.com/community/5654/content/2561589 (дата обращения 11.12.2015)
5. Кокин А.В. Стандартная модель вселенной. Модель Большого взрыва, 2011, URL: http://www.avkokin.ru/documents/584 (дата обращения 11.12.2015)
6. Левин А., Всемогущая инфляция, «Популярная механика» №7, 2012, URL:
http://www.sibai.ru/vsemogushhaya-inflyacziya.html (дата обращения 11.12.2015)
7. Левин А., Теория инфлантонов, 2012, URL:
8. Линде А.Д., Инфляция, квантовая космология и антропный принцип, 2002, URL:
http://www.astronet.ru/db/msg/1181084 (дата обращения 11.12.2015)
9. Линде А.Д., Многоликая Вселенная (презентация), 2007, URL:
http://elementy.ru/lib/430484 (дата обращения 11.12.2015)
http://www.myshared.ru/slide/380143/
10. Метагалактика, Википедия, 2015, URL:
https://ru.wikipedia.org/wiki/Метагалактика (дата обращения 11.12.2015)
11. Модель инфляционной вселенной, База документов Reftrend.ru, URL:
http://reftrend.ru/685191.html (дата обращения 11.12.2015)
12. Раздувающаяся вселенная, Физическая энциклопедия, URL:
http://dic.academic.ru/dic.nsf/enc_physics/4465/РАЗДУВАЮЩАЯСЯ (дата обращения 11.12.2015)
13. Эймос Дж., Обнаружена гравитационная волна Большого взрыва, 2014, URL:
(дата обращения 11.12.2015)

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

Портал сайт – это информационный ресурс, на котором Вы сможете получить много полезных и интересных знаний, связанных с Космосом. В первую очередь речь пойдет о нашей и других Вселенных, о небесных телах, черных дырах и явлениях в недрах космического пространства.

Совокупность всего существующего, материи, отдельных частиц и пространства между этими частицами называют Вселенной. По представлениям ученых и астрологов, возраст Вселенной составляет примерно 14 миллиардов лет. По размерам видимая часть Вселенной занимает около 14 млрд световых лет. А некоторые утверждают, что Вселенная простирается на 90 миллиардов световых лет. Для большего удобства в подсчетах подобных расстояний принято применять величину парсек. Один парсек равен 3,2616 световых лет, то есть парсек – это расстояние, по которому средний радиус орбиты Земли просматривается под углом одной угловой секунды.

Вооружившись данными показателями, можно подсчитать космическое расстояние от одного объекта к другому. К примеру, расстояние от нашей планеты до Луны составляет 300000 км, или 1 световая секунда. Следовательно, до Солнца это расстояние увеличивается до 8,31 световых минут.

Всю свою историю люди пытались разгадать загадки, связанные с Космосом и Вселенной. В статьях портала сайт Вы сможете узнать не только о Вселенной, но и о современных научных подходах к ее изучению. Весь материал опирается на самые передовые теории и факты.

Следует заметить, что во Вселенную входит большое число известных людям различных объектов. Самые широко известные среди них – это планеты, звезды, спутники, черные дыры, астероиды и кометы. О планетах на данный момент понятно больше всего, поскольку на одной из них мы живем. У некоторых планет есть собственные спутники. Так, у Земли есть свой спутник – Луна. Помимо нашей планеты, есть еще 8, которые вращаются вокруг Солнца.

В Космосе много звезд, но каждая из них не похожа друг на друга. Они имеют разные температуры, размеры и яркость. Поскольку все звезды разнятся, их классифицируют следующим образом:

Белые карлики;

Гиганты;

Сверхгиганты;

Нейтронные звезды;

Квазары;

Пульсары.

Самое плотное известное нам вещество – это свинец. В некоторых планетах плотность их же вещества может в тысячи раз превосходить плотность свинца, что ставит перед учеными много вопросов.

Все планеты вращаются вокруг Солнца, но оно также не стоит на месте. Звезды могут собираться в скопления, которые, в свою очередь, также вращаются вокруг пока не известного нам центра. Эти скопления называются галактиками. Наша галактика называется Млечный путь. Все проведенные исследования на данный момент говорят, что большая часть материи, которую создают галактики, пока что для человека невидима. Из-за этого ее назвали темной материей.

Самыми интересными считаются центры галактик. Некоторые астрономы считают, что возможным центром галактики является Черная дыра. Это уникальное явление, образовавшееся в результате эволюции звезды. Но пока все это лишь теории. Проведение экспериментов или исследование подобных явлений пока что невозможно.

Помимо галактик, во Вселенной присутствуют туманности (состоящие из газа, пыли и плазмы межзвездные облака), реликтовое излучение, которые пронизывают все пространство Вселенной, и многие другие малоизвестные и даже неизвестные вообще объекты.

Кругооборот эфира Вселенной

Симметрия и равновесие материальных явлений – это главный принцип структурной организации и взаимодействия в природе. Причем во всех формах: звездной плазмы и вещества, мирового и высвобожденного эфиров. Вся суть таких явлений состоит в их взаимодействиях и превращениях, большинство из которых представлены невидимым эфиром. Его еще именуют реликтовым излучением. Это микроволновое космическое фоновое излучение, имеющее температуру 2,7 К. Бытует мнение, что именно этот колеблющийся эфир и является первоосновой для всего наполняющего Вселенную. Анизотропия распределения эфира связана с направлениями и интенсивностью его перемещения в разных областях невидимого и видимого пространства. Вся трудность изучения и исследования вполне сопоставима с трудностями изучения турбулентных процессов в газах, плазмах и жидкостях материй.

Почему многие ученые считают, что Вселенная многомерная?

После проведения экспериментов в лабораториях и в самом Космосе были получены данные, из которых можно предположить, что мы живем во Вселенной, в которой размещение любого объекта можно охарактеризовать временем и тремя пространственными координатами. Из-за этого возникает предположение, что Вселенная четырехмерная. Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо. Некоторые модели Вселенной не исключают такого их количества, как 11 измерений.

Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях – черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов.

Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом. Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки – внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения. По теории Вселенная может либо расширяться бесконечно, либо сжаться.

Барионная асимметрия Вселенной

Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы. Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу. Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение.

Возраст Вселенной на портале сайт

Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный.

Горизонт видимости

Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной. Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад. За все время свет проходит в расширяющейся Вселенной остаточное расстояние, а именно 109 световых лет. Из-за этого каждый наблюдатель момента t0 после начала процесса расширения может обозревать лишь небольшую часть, ограниченную сферой, имеющую именно в этот момент радиус I. Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы. Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения.

Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении. Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Данная эпоха определяется временем т»300 000 лет, плотностью вещества r»10-20 г/см3 и моментом рекомбинации водорода. Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения.

Большой взрыв

Момент возникновения Вселенной называют Большим взрывом. Данная концепция стоит на том, что изначально была точка (точка сингулярности), в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности – неизвестно.

Относительно событий и условий, которые происходили к наступлению момента 5*10-44 секунды (момент окончания 1-го кванта времени), никакой точной информации нет. В физическом отношении той эры можно лишь предположить, что тогда температура составляла примерно 1,3*1032 градуса с плотностью материи примерно 1096 кг/м 3 . Эти значения предельны для применения существующих идей. Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские».

Те события, которые связаны с 5*10-44 по 10-36 секунды, отражают модель «инфляционной Вселенной». Момент 10-36 секунды относят к модели «горячей Вселенной».

В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. С этого момента в газе начало устанавливаться соотношение – водорода 78%, гелия 22%. До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития. Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него.

Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения. В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз. По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые. Нагреваясь до больших температур, поверхности таких звезд создавали сильные потоки ультрафиолетового излучения. Таким образом, наступил период переионизации. Плазма, которая образовалась в результате таких явлений, начинала сильно рассеивать электромагнитное излучение в его спектральных коротковолновых диапазонах. В некотором смысле Вселенная начала погружаться в густой туман.

Эти огромные звезды стали первыми во Вселенной источниками химических элементов, которые намного тяжелее за литий. Начали формироваться космические объекты 2-го поколения, в которых содержались ядра этих атомов. Эти звезды начали создаваться из смесей тяжелых атомов. Произошла повторного типа рекомбинация большей части атомов межгалактического и межзвездного газов, что, в свою очередь, привело к новой прозрачности пространства для электромагнитного излучения. Вселенная стала именно такой, которую мы можем наблюдать сейчас.

Наблюдаемая структура Вселенной на портале сайт

Наблюдаемая часть пространственно неоднородна. Большинство скоплений галактик и отдельных галактик формируют ее ячеистую или сотовую структуру. Они конструируют стенки ячеек, которые имеют толщину в пару мегапарсек. Эти ячейки называют «войдами». Они характеризуются большим размером, в десятки мегапарсек, и при этом в них нет вещества с электромагнитным излучением. На долю «войд» припадает около 50% всего объема Вселенной.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»