Строение лимфатических капилляров и сосудов. Анатомические структуры, обеспечивающие ток лимфы от места образования в венозное русло

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Лимфатические капилляры – это важная часть лимфатической системы. Они имеют свои специальные функции, особое строение и расположение.

Понятие лимфатической системы, её основные функции

Лимфатическая система является важной структурой сосудистой системы, с учётом морфологии и выполняемых функций, служит дополнением к венозным сосудам. В её состав входят следующие образования:

  • Лимфатические капилляры и посткапилляры.
  • Собирательные стволы и .
  • Лимфоузлы и островки лимфоидной ткани во многих органах.

Лимфатическая система способствует образованию специальной жидкости — лимфы и транспортировки её в венозное русло. Обеспечивает барьерную и иммунную функции, оказывает прямое влияние на лимфопоэз, способствует поддержанию гомеостаза (постоянство внутренней среды организма).

Лимфососуды и капилляры содержат лимфу, которая представлена прозрачной жидкостью, состоящей из лимфоплазмы и лимфоцитов. Лимфоплазма в своём составе очень близка к крови, однако, концентрация белковых фракций в ней несколько меньше. Лимфоциты являются форменными элементами крови и выполняют иммунную функцию. Из лимфы, которая находится в тканях, в кровеносную систему транспортируются белки, вода, некоторые электролиты (Na, K и т.д.), расщепленные жиры.

Лимфа подразделяется на периферическую (перед лимфоузлом), промежуточную (между узлами и главным лимфопротоком) и центральную (после поступления в грудной лимфопроток).

Лимфатические капилляры, их структура и функциональные особенности

Лимфатический капилляр считается первоначальным звеном в системе лимфатических органов. Он имеет закрытое, или «слепое» начало, в следствие чего лимфа передвигается только по одному направлению – из периферических отделов к центральным. Соответственно, движение лимфатической жидкости является оттоком, а не циркуляцией.

Диаметр данных сосудов составляет примерно 60-200 мкм. Стенка самого капилляра изнутри выстлана только одним слоем эндотелиоцитов, отросчатые клетки (перициты) и базальная мембрана отсутствуют. Клетки эндотелия лимфокапилляров имеют форму, напоминающую ромб. Поэтому они ложатся друг на друга своими концами и формируют клапаны, которые пропускают межклеточную жидкость исключительно в просвет лимфокапилляров.

Также эндотелиоциты в стенке лимфокапилляра соединятся с волокнами фиброзной ткани, содержащими коллаген, с помощью стропных филаментов (тоненькие пучки волокон). При развитии отёка в соединительной ткани связывающие волоконца могут натягиваться и расширять просвет сосудов, что в итоге будет препятствовать их спаданию.

Функциональные особенности лимфокапилляров:

Из внутренних органов и тканей в лимфатические капилляры поступают различные растворенные вещества, инородные частицы, жиры, белковые растворы. Соответственно, ответом на вопрос – какие функции выполняют капилляры, будет:

  • Лимфообразование.
  • Дренаж различных органных и тканевых структур.

В патологической среде по лимфоносным путям инфекционные агенты и атипичные клетки (то есть раковые) могут попадать в общий кровоток.

Во внутренних органах и системах данные сосуды формируют сети, структура которых будет зависеть:

  • от архитектоники органов (к примеру, в плевральных листках или брюшине сети имеют один слой, а в паренхиматозных органах (печень, легкие) – три слоя);
  • циклической изменчивости органов (матка и её придатки, молочные железы);
  • количества лет (дети имеют большее количество и диаметр капиллярных сетей, чем взрослые или пожилые люди).

Как происходит изменение капиллярных сетей?

Более подробно о перестройке сетей капилляров в зависимости от циклических изменений в функциях органов: перед началом менструаций в молочных железах и эндометрии матки диаметр лимфокапилляров увеличивается, как и диаметр их петель. При созревании фолликулов в толще яичников, капиллярная сеть из однослойной перестраивается в двуслойную.

В начальных этапах формирования жёлтого тела капилляры начинают прорастать к его центральной части, в периоде расцвета происходит образование центрального лимфатического синуса, а на этапе инволюции – сосуды в желтом теле постепенно исчезают. При беременности в молочных железах, полости матки происходит развитие новых лимфокапилляров и усложнение их структуры.

Практически каждый орган и ткань человека содержат в себе эти сосуды. Лимфатические капилляры отсутствуют в:

  • структурах внутренней части уха;
  • оболочках глаза;
  • хрящевой ткани;
  • паренхиматозной части селезёнки;
  • оболочках и веществе головного и спинного мозга;
  • эпителиальной оболочке, выстилающей кожные покровы и слизистые поверхности тела;
  • твердых и мягких структурах зубов;
  • плаценте.

Отличие кровеносных капилляров от лимфатических заключается в:

  • Движение жидкости по гемокапиллярам не одностороннее.
  • Гемокапилляры имеют сравнительно меньший диаметр (4,5-7 мкм).
  • Также отличие лимфатических капилляров от кровеносных в том, что у последних базальная мембрана есть, а эндотелиальные клетки в 3-4 раза меньше по своим размерам.

Пороки развития и заболевания лимфососудов, в том числе и капилляров

К порокам развития лимфокапилляров и более крупных сосудов относят:

  • Аплазия сосудов .
  • Гипоплазия . При данном пороке сами сосуды недостаточно развиты и в разных частях тела или внутренних органах могут находиться в недостаточном количестве. К примеру, на какой-либо конечности может присутствовать всего один лимфососуд. В начале, из-за развитой сети коллатералей, симптомы будут отсутствовать, но при тяжелых физических нагрузках или с возрастом отток лимфы будет значительно ухудшаться, что в последующем приведёт к отёку конечности (так называемая, слоновость).
  • Лимфангиоэктазии . Под этим термином понимается врожденное расширение просвета лимфокапилляра или более крупного лимфатического сосуда.
  • Врожденные кисты . Являют собой крупные выпячивания в стенке лимфососудов (например, забрюшинных или брыжеечных). Данные кистозные образования в своей полости содержат беловатую жидкость, в составе которой есть жир, белок, глюкоза и холестерин. Кисты крупных лимфатических сосудов могут сдавить участок кишки, вызвав странгуляционную непроходимость кишечника. Также может произойти разрыв кистозного образования, перекручивание его ножки или кровоизлияние.

Нарушение лимфооттока развивается в том случае, когда лимфатическая система не в состоянии обеспечивать дренажную функцию. Причины разнообразны: воспаление или образование тромбов в сосудах. А также резкий спазм или сужение их просвета, сдавление извне опухолью, удаление некоторых структур лимфатической системы при радикальных операциях, глистная инвазия, травмы.

Механизм развития нарушения лимфооттока

При затрудненном токе лимфы происходит компенсаторное расширение сосудов, что приводит к медленному продвижению в них жидкости. Включается сеть коллатералей, которые со временем истощаются, развивается лимфедема. С последующем разрастанием в этой области соединительной ткани.

Последствия данных расстройств: застой лимфы приводит к разобщению основного вещества и соединительнотканных перемычек (содержат сосуды) в органе. В итоге, нарушается состав интерстициальной жидкости, прогрессирует кислородное голодание органа, с последующим его склерозом (основная ткань замещается рубцовой) и значительным нарушением функций.

Воспаление и изменение структуры лимфатических капилляров происходит при туберкулёзе, сифилисе, системных заболеваниях и злокачественных новообразованиях.

При злокачественных опухолях, расположенные вокруг капилляры, начинают патологически расширяться и деформироваться. Со временем происходит образование новых сосудов, капиллярные сети разрастаются, теряют правильную структуру и ориентацию петель, увеличивается всасывающая поверхность. Данные изменения происходят вследствие изменения метаболизма в окружающих опухоль тканях.

Таким образом, лимфокапилляры являются неотъемлемым звеном лимфатической системы. Выполняют резорбционную, дренажную и защитно-барьерную функции, осуществляют лимфопоэз. По своему строению значительно отличаются от гемокапиллияров. При их врождённых аномалиях или приобретенных заболеваниях могут развиваться серьёзные осложнения, способные нарушить важные функции в органах и системах.

Поступившую в ткани жидкость — лимфу. Лимфатическая система — составная часть сосудистой системы, обеспечивающая образование лимфы и лимфообращение.

Лимфатическая система — сеть капилляров, сосудов и узлов, по которым в организме передвигается лимфа. Лимфатические капилляры замкнуты с одного конца, т.е. слепо заканчиваются в тканях. Лимфатические сосуды среднего и крупного диаметра, подобно венам, имеют клапаны. По их ходу расположены лимфатические узлы — «фильтры», задерживающие вирусы, микроорганизмы и наиболее крупные частицы, находящиеся в лимфе.

Лимфатическая система начинается в тканях органов в виде разветвленной сети замкнутых лимфатических капилляров, которые не имеют клапанов, а их стенки обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры переходят в лимфатические сосуды, снабженные клапанами. Благодаря этим клапанам, препятствующим обратному току лимфы, она течет только в направлении к венам . Лимфатические сосуды впадают в лимфатический грудной проток, через который течет лимфа от 3/4 организма. Грудной проток впадает в краниальную полую вену или яремную вену. Лимфа по лимфатическим сосудам поступает в правый лимфатический ствол, впадающий в краниальную полую вену.

Рис. Схема лимфатической системы

Функции лимфатической системы

Лимфатическая система выполняет несколько функций:

  • защитную функцию обеспечивает лимфоидная ткань лимфатических узлов, вырабатывающая фагоцитарные клетки, лимфоциты и антитела. Перед входом в лимфатический узел лимфатический сосуд делится на мелкие ветви, которые переходят в синусы узла. От узла отходят также мелкие ветви, которые объединяются вновь в один сосуд;
  • фильтрационная функция также связана с лимфатическими узлами, в которых механически задерживаются различные чужеродные вещества и бактерии;
  • транспортная функция лимфатической системы заключается в том, что через эту систему в кровь поступает основное количество жира, который всасывается в желудочно-кишечном тракте;
  • лимфатическая система выполняет также гомеостатическую функцию, поддерживая постоянство состава и объема интерстициальной жидкости;
  • лимфатическая система выполняет дренажную функцию и удаляет избыток находящейся в органах тканевой (интерстициальной) жидкости.

Образование и циркуляция лимфы обеспечивают удаление избытка внеклеточной жидкости, который создается за счет того, что фильтрация превышает реабсорбцию жидкости в кровеносные капилляры. Такая дренажная функция лимфатической системы становится очевидной, если отток лимфы из какой-то области тела снижен или прекращен (например, при сдавливании конечностей одеждой, закупорке лимфатических сосудов при их травме, пересечении во время хирургической операции). В этих случаях дистальнее места сдавливания развивается местный отек ткани. Такой вид отека называют лимфатическим.

Возврат в кровеносное русло альбумина, профильтровавшегося в межклеточную жидкость из крови, особенно в органах, имеющих высокопроницаемые (печень, желудочно-кишечный тракт). За сутки с лимфой в кровоток возвращается более 100 г белка. Без этого возврата потери белка кровью были бы невосполнимы.

Лимфа входит в систему, обеспечивающую гуморальные связи между органами и тканями. С ее участием осуществляется транспорт сигнальных молекул, биологически активных веществ, некоторых ферментов (гистаминаза, липаза).

В лимфатической системе завершаются процессы дифференцировки лимфоцитов, транспортируемых лимфой вместе с иммунными комплексами, выполняющими функции иммунной защиты организма .

Защитная функция лимфатической системы проявляется также в том, что в лимфоузлах отфильтровываются, захватываются и в ряде случаев обезвреживаются инородные частицы, бактерии, остатки разрушенных клеток, различные токсины, а также опухолевые клетки. С помощью лимфы удаляются из тканей эритроциты, вышедшие из кровеносных сосудов (при травмах, повреждениях сосудов, кровотечениях). Нередко накопление токсинов и инфекционных агентов в лимфатическом узле сопровождается его воспалением.

Лимфа участвует в транспорте в венозную кровь хиломикронов, липопротеинов и жирорастворимых веществ, всасывающихся в кишечнике.

Лимфа и лимфообращение

Лимфа представляет собой фильтрат крови, образующийся из тканевой жидкости. Она имеет щелочную реакцию, в ней отсутствуют , но содержатся , фибриноген и , поэтому она способна свертываться. Химический состав лимфы сходен с таковым плазмы крови, тканевой жидкости и других жидкостей организма.

Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ и деятельности. Лимфа, оттекающая от печени, содержит больше белков, лимфа — больше . Продвигаясь по лимфатическим сосудам, лимфа проходит через лимфатические узлы и обогащается лимфоцитами.

Лимфа — прозрачная бесцветная жидкость, содержащаяся в лимфатических сосудах и лимфатических узлах, в которой нет эритроцитов, имеются тромбоциты и много лимфоцитов. Ее функции направлены на поддержание гомеостаза (возврат белка из тканей в кровь, перераспределение жидкости в организме, образование молока, участие в пищеварении, обменных процессах), а также участие в иммунологических реакциях. В лимфе содержится белок (около 20 г/л). Продукция лимфы сравнительно невелика (больше всего в печени), за сутки образуется около 2 л путем реабсорбции из интерстициальной жидкости в кровь кровеносных капилляров после фильтрации.

Образование лимфы обусловлено переходом воды и растворенных в веществ из кровеносных капилляров в ткани, а из тканей — в лимфатические капилляры. В состоянии покоя процессы фильтрации и абсорбции в капиллярах сбалансированы и лимфа полностью абсорбируется обратно в кровь. В случае повышенной физической нагрузки в процессе метаболизма образуется ряд продуктов, которые повышают проницаемость капилляров для белка, его фильтрация увеличивается. Фильтрация в артериальной части капилляра происходит при повышении гидростатического давления над онкотическим на 20 мм рт. ст. При мышечной деятельности объем лимфы нарастает и ее давление обусловливает проникновение интерстициальной жидкости в просвет лимфатических сосудов. Лимфообразованию способствует повышение осмотического давления тканевой жидкости и лимфы в лимфатических сосудах.

Движение лимфы по лимфатическим сосудам происходит за счет присасывающей силы грудной клетки, сокращения , сокращения гладких мышц стенки лимфатических сосудов и за счет лимфатических клапанов.

Лимфатические сосуды имеют симпатическую и парасимпатическую иннервацию. Возбуждение симпатических нервов приводит к сокращению лимфатических сосудов, а при активации парасимпатических волокон происходит сокращение и расслабление сосудов, что усиливает лимфоток.

Адреналин, гистамин, серотонин усиливают ток лимфы. Уменьшение онкотического давления белков плазмы и повышение капиллярного давления увеличивает объем оттекающей лимфы.

Образование и количество лимфы

Лимфа является жидкостью, текущей по лимфатическим сосудам и составляющей часть внутренней среды организма. Источники ее образования — , профильтровавшаяся из микроциркуляторного русла в ткани и содержимое интерстициального пространства. В разделе, посвященном микроциркуляции, обсуждалось, что объем плазмы крови, фильтрующейся в ткани, превышает объем жидкости, реабсорбируемой из них в кровь. Таким образом, около 2-3 л фильтрата крови и жидкости межклеточной среды, не реабсорбировавшихся в кровеносные сосуды, поступают за сутки по межэндотелиальным щелям в лимфатические капилляры, систему лимфатических сосудов и вновь возвращаются в кровь (рис. 1).

Лимфатические сосуды имеются во всех органах и тканях организма за исключением , поверхностных слоев кожи и костной ткани. Наибольшее их количество насчитывается в печени и тонком кишечнике, где образуется около 50% всего суточного объема лимфы организма.

Основной составной частью лимфы является вода. Минеральный состав лимфы идентичен составу межклеточной среды той ткани, в которой образовалась лимфа. В лимфе содержатся органические вещества, преимущественно белки, глюкоза, аминокислоты, свободные жирные кислоты. Состав лимфы, оттекающей от разных органов, неодинаков. В органах с относительно высокой проницаемостью кровеносных капилляров, например в печени, лимфа содержит до 60 г/л белка. В лимфе имеются белки, участвующие в образовании тромбов (протромбин, фибриноген), поэтому она может свертываться. Лимфа, оттекающая от кишечника, содержит не только много белка (30-40 г/л), но и большое количество хиломикронов и липопротеинов, образованных из апонротеинов и жиров, всосавшихся из кишечника. Эти частицы находятся в лимфе во взвешенном состоянии, транспортируются ею в кровь и придают лимфе схожесть с молоком. В составе лимфы других тканей содержание белка в 3-4 раза меньше, чем в плазме крови. Главным белковым компонентом тканевой лимфы является низкомолекулярная фракция альбумина, фильтрующегося через стенку капилляров во внесосудистые пространства. Поступление белков и других крупномолекулярных частиц в лимфу лимфатических капилляров осуществляется за счет их пиноцитоза.

Рис. 1. Схематическое строение лимфатического капилляра. Стрелками показано направление тока лимфы

В лимфе содержатся лимфоциты и другие формы лейкоцитов. Их количество в разных лимфатических сосудах различается и находится в пределах 2-25*10 9 /л, а в грудном протоке составляет 8*10 9 /л. Другие виды лейкоцитов (гранулоциты, моноциты и макрофаги) содержатся в лимфе в небольшом количестве, но их число возрастает при воспалительных и других патологических процессах. Эритроциты и тромбоциты могут появляться в лимфе при повреждении кровеносных сосудов и травмах тканей.

Всасывание и движение лимфы

Лимфа всасывается в лимфатические капилляры, обладающие рядом уникальных свойств. В отличие от кровеносных капилляров лимфатические капилляры являются замкнутыми, слепо заканчивающимися сосудами (рис. 1). Их стенка состоит из одного слоя эндотелиальных клеток, мембрана которых фиксирована с помощью коллагеновых нитей к внесосудистым тканевым структурам. Между эндотелиальными клетками имеются межклеточные щелевидные пространства, размеры которых способны изменяться в широких пределах: от замкнутого состояния до размера, через который в капилляр могут проникать форменные элементы крови, фрагменты разрушенных клеток и частицы, сопоставимые по размерам с форменными элементами крови.

Сами лимфатические капилляры также могут изменять их размер и достигать диаметра до 75 мкм. Эти морфологические особенности строения стенки лимфатических капилляров придают им способность изменять проницаемость в широких пределах. Так, при сокращении скелетных мышц или гладкой мускулатуры внутренних органов за счет натяжения коллагеновых нитей могут раскрываться межэндотелиальные щели, через которые в лимфатический капилляр свободно перемещается межклеточная жидкость, содержащиеся в ней минеральные и органические вещества, включая белки и тканевые лейкоциты. Последние могут легко мигрировать в лимфатические капилляры также из-за их способности к амебоидному движению. Кроме того, в лимфу поступают лимфоциты, образующиеся в лимфатических узлах. Поступление лимфы в лимфатические капилляры осуществляется не только пассивно, но также под действием сил отрицательного давления, возникающего в капиллярах благодаря пульсирующему сокращению более проксимальных участков лимфатических сосудов и наличию в них клапанов.

Стенка лимфатических сосудов построена из эндотелиальных клеток, которые с наружной стороны сосуда охватываются в виде манжетки гладкомышечными клетками, расположенными радиально вокруг сосуда. Внутри лимфатических сосудов имеются клапаны, строение и принцип функционирования которых сходны с клапанами венозных сосудов. Когда гладкие миоциты расслаблены и лимфатический сосуд расширен, створки клапанов открыты. При сокращении гладких миоцитов, вызывающем сужение сосуда, давление лимфы в данном участке сосуда повышается, створки клапанов смыкаются, лимфа не может перемещаться в обратном (дистальном) направлении и проталкивается по сосуду проксимально.

Лимфа из лимфатических капилляров перемещается в посткапиллярные и затем в крупные внутриорганные лимфатические сосуды, впадающие в лимфатические узлы. Из лимфатических узлов по небольшим внеорганным лимфатическим сосудам лимфа течет в более крупные внеорганные сосуды, образующие самые крупные лимфатические стволы: правый и левый грудные протоки, через которые лимфа доставляется в кровеносную систему. Из левого грудного протока лимфа поступает в левую подключичную вену в месте возле ее соединения с яремными венами. Через этот проток в кровь перемещается большая часть лимфы. Правый лимфатический проток доставляет лимфу в правую подключичную вену от правой половины груди, шеи и правой руки.

Ток лимфы может быть охарактеризован объемной и линейной скоростями. Объемная скорость поступления лимфы из грудных протоков в вены составляет 1-2 мл/мин, т.е. всего 2-3 л/сут. Линейная скорость движения лимфы очень низкая — менее 1 мм/мин.

Движущую силу тока лимфы формирует ряд факторов.

  • Разность между величиной гидростатического давления лимфы (2-5 мм рт. ст.) в лимфатических капиллярах и ее давлением (около 0 мм рт. ст.) в устье общего лимфатического протока.
  • Сокращение гладкомышечных клеток стенок лимфатических сосудов, продвигающих лимфу в направлении грудного протока. Этот механизм иногда называют лимфатическим насосом.
  • Периодическое повышение внешнего давления на лимфатические сосуды, создаваемое сокращением скелетных или гладких мышц внутренних органов. Например, сокращение дыхательных мышц создает ритмические изменения давления в грудной и брюшной полостях. Понижение давления в грудной полости при вдохе создает присасывающую силу, способствующую перемещению лимфы в грудной проток.

Количество лимфы, образующейся за сутки в состоянии физиологического покоя, составляет около 2-5% от массы тела. Скорость се образования, движения и состав зависят от функционального состояния органа и ряда других факторов. Так, объемный ток лимфы от мышц при мышечной работе увеличивается в 10-15 раз. Через 5-6 ч после приема пищи увеличивается объем лимфы, оттекающей от кишечника, изменяется ее состав. Это происходит главным образом за счет поступления в лимфу хиломикронов и липопротеинов.

Пережатие вен ног или длительное стояние приводит к затруднению возврата венозной крови от ног к сердцу. При этом увеличивается гидростатическое давление крови в капиллярах конечностей, возрастает фильтрация и создается избыток тканевой жидкости. Лимфатическая система в таких условиях не может обеспечить в достаточной мере свою дренажную функцию, что сопровождается развитием отека.

Лимфа, образовавшаяся в результате всасывания в капилляры лимфатической системы, проходит по капиллярам, посткапиллярам и лимфатическим сосудам, через лимфатические узлы, по коллекторным лимфатическим стволам, которые открываются в вены в нижних отделах шеи.

Таким образом, лимфатические капилляры являются не только местом образования лимфы (корнями лимфатической системы), но и вместе с посткапиллярами, лимфатическими сосудами, лимфатическими узлами и главными коллекторными лимфатическими стволами служат путями движения лимфы, т. е. лимфопроводящими путями.

Поскольку функция лимфатических сосудов и главных коллекторных лимфатических стволов заключается только в проведении лимфы, а лимфатические узлы выполняют барьерную, лимфоцитопоэтическую, защитную, обменную и резервуарную функции, то и строение этих отделов лимфопроводящих путей значительно отличается.

Лимфатические капилляры характеризуются извилистостью, наличием сужений и расширений, боковых выпячиваний, образованием лимфатических «озер» и «лакун» в местах слияния нескольких капилляров. Форма и размеры лимфатических капилляров, а также характер образуемых ими сетей зависят от конструкции органа и строения его соединительнотканного остова [Жданов Д. А., 1952].

Диаметр лимфатических капилляров колеблется в широких пределах — от 10 до 200 мкм.

Стенка лимфатических капилляров построена из одного слоя эндотелиальных клеток, которые с наружной их стороны при помощи пучков тончайших волоконец — стропных (якорных) филаментов [Шахламов В. А.. 1971; Leak L., 1968] прикреплены к рядом лежащим пучкам коллагеновых волокон. Некоторые авторы считают, что в стенке лимфатического капилляра, кроме эндотелия, имеется прерывистая базальная мембрана .

Интимная связь стенок лимфатических капилляров с соединительнотканными волокнами способствует раскрытию просвета этих капилляров, особенно при отеках окружающих тканей, когда раздвигающиеся пучки коллагеновых волокон растягивают стенки лимфатических капилляров.

«Внеорганные пути транспорта лимфы»,
М.Р.Сапин, Э.И.Борзяк

В капсуле и трабекулах лимфатических узлов человека найдены отдельные гладкомышечные клетки и их пучки [Жданов Д. А., 1952; Виноградова С. С, 1971; Зуев А. М., 1975; Leiber В., 1961]. Наличие гладкомышечных клеток в капсуле узла является свидетельством возможности активного влияния узла на ток лимфы [Жданов Д. А., 1940; Огнев Б. В., 1971; Зуев А. М., …

Согласно сложившемуся представлению, появление клапанов означает переход лимфатического капилляра в лимфатический сосуд, по которому лимфа может течь только в одном направлении — от капилляров в сторону лимфатических узлов, а затем к коллекторным лимфатическим сосудам. В. В. Куприянов (1969) выделил в начальном отделе лимфопроводящих путей лимфатические посткапилляры, единственно надежным отличием которых от капилляров, по данным автора, …

Форма лимфатического сосуда значительно отличается от истинного лимфатического капилляра. Для лимфатического сосуда характерно наличие по его длине чередующихся сужений и расширений. Это придает лимфатическому сосуду своеобразную (четкообразную) форму, позволяющую легко отличить лимфатический сосуд от лимфатических капилляров. Ярко выраженную четкообразную форму имеют лимфатические сосуды более крупного диаметра (от 0,5 мм и больше). В то же время …

Доказательством морфофункционального единства лимфатических сосудов и соединяющих их анастомозов является их проходимость для синей массы Герота и других окрашенных жидкостей (взвесей) на трупах и для рентгеноконтрастного вещества, применяемого при лимфографии у живого человека . Уже давно известно, что лимфатические сосуды диаметром 30 — 40 мкм имеют эндотелиальный слой, окруженный соединительнотканной оболочкой, …

По данным М. Г. Привеса (1948), Д. А. Жданова (1952), в средней оболочке мышечные пучки идут двумя пересекающимися диагональными спиралями и иногда в поперечном направлении. Д. А. Жданов (1952) и др. считали, что лимфатические сосуды с хорошо развитым мышечным слоем напоминают по своему строению мелкие артерии мышечного типа. Результаты исследований Д. А. Жданова показали, что …

В зависимости от строения средней оболочки лимфатические сосуды разделяют на две группы: безмышечные и мышечные. Безмышечные лимфатические сосуды образованы слоем эндотелиальных клеток, который окружен соединительнотканной оболочкой, содержащей коллагеновые и эластические волокна. Последние могут образовывать несколько слоев. В стенке безмышечных лимфатических сосудов выделить три оболочки практически невозможно. Средняя оболочка мышечных лимфатических сосудов характеризуется хорошо развитыми пучками …

Клапаны лимфатических сосудов являются парными складками (створками) внутренней оболочки, лежащими друг против друга. Более 300 лет назад установлено, что клапаны во всех лимфатических сосудах имеют полулунную форму. Однако результаты сравнительно недавних исследований показали, что эти клапаны различаются и по форме, и по размерам. При изучении лимфатических сосудов с помощью стереомикроскопических методов и сканирующей электронной микроскопии …

Лимфатические сосуды, расположенные в областях с сильно развитой жировой клетчаткой, имеют большее количество клапанов по сравнению с сосудами других областей. Назначение клапанов состоит в обеспечении центростремительного направления тока лимфы по лимфатическому сосуду, предотвращении возможности обратного (центрофугального) ее тока. Известно, что стенка лимфатических сосудов имеет хорошо развитую иннервацию. В стенке лимфатических сосудов большого размера имеются четыре …

По мнению Д. А. Жданова (1940, 1952), М. Г. Привеса (1948) и А. А. Сушко (1966), сократительная деятельность стенок лимфатических сосудов является главным фактором этого движения лимфы. J. В. Kinmonth и соавт. (1963) наблюдали сокращения стенок лимфатических сосудов у человека. В 1940 г. W. Pfuhl и W. Wiegand показали, что четкообразные расширения лимфатических сосудов, имеющих …

Лимфатические узлы являются органами, в которых заканчиваются лимфатические сосуды (приносящие — vasa afferentia), идущие от органов и систем органов. Из лимфатических узлов выходят вносящие лимфатические сосуды (vasa efferentia), направляющиеся к следующим по току лимфы лимфатическим узлам или непосредственно к коллекторным лимфатическим сосудам: стволам и протокам, которые впадают в вены в нижних отделах шеи. Чрезвычайно разнообразные …

Лимфатические сосуды делятся на 1)лимфатические капилляры; 2)выносящие интраорганные и экстраорганные лимфатические сосуды; 3)крупные лимфатические стволы (грудной лимфатический проток и правый лимфатический проток). Кроме того, лимфатические сосуды подразделяются на 1)сосуды безмышечного (волокнистого) типа и 2) сосуды мышечного типа. Гемодинамические условия (скорость лимфотока и давление) близки к условиям в венозном русле. В лимфатических сосудах хорошо развита наружная оболочка, за счет внутренней оболочки образуются клапаны.

ЛИМФАТИЧЕСКИЕ КАПИЛЛЯРЫ начинаются слепо, располагаются рядом с кровеносными капиллярами и входят в состав микроциркуляторного русла, поэтому между лимфокапиллярами и гемокапиллярами имеется тесная анатомическая и функциональная связь. Из гемокапилляров в основное межклеточное вещество поступают необходимые компоненты основного вещества, а из основного вещества в лимфатические капилляры поступают продукты обмена веществ, компоненты распада веществ при патологических процессах, раковые клетки. ОТЛИЧИЯ ЛИМФАТИЧЕСКИХ КАПИЛЛЯРОВ от кровеносных: 1)лимфокапилляры имеют больший диаметр; 2)их эндотелиоциты в 3-4 раза больше; 3)лимфокапилляры не имеют базальной мембраны и перицитов, они лежат на выростах коллагеновых волокон; 4)лимфокапилляры заканчиваются слепо.

Лимфокапилляры образуют сеть, впадают в мелкие интраорганные или экстраорганные лимфатические сосуды.

ФУНКЦИИ ЛИМФОКАПИЛЛЯРОВ: 1)из межтканевой жидкости в лимфокапилляры поступают её компоненты, которые оказавшись в просвете капилляра в совокупности составляют лимфу; 2)дренируются продукты метаболизма; 3)поступают раковые клетки, которые затем транспортируются в кровь и разносятся по всему организму.

ВНУТРИОРГАННЫЕ ВЫНОСЯЩИЕ ЛИМФАТИЧЕСКИЕ СОСУДЫ являются волокнистыми (безмышечными), их диаметр около 40 мкм. Эдотелиоциты этих сосудов лежат на слабо выраженной мембране, под которой располагаются коллагеновые и эластические волокна, переходящие в наружную оболочку. Эти сосуды еще называют лимфатическими посткапиллярами, в них есть клапаны. Посткапилляры выполняют дренажную функцию.

ЭКСТРАОРГАННЫЕ ВЫНОСЯЩИЕ ЛИМФАТИЧЕСКИЕ СОСУДЫ более крупные, относятся к сосудам мышечного типа. Если эти сосуды располагаются в области лица, шеи и верхней части туловища, то мышечные элементы в их стенке содержатся в малом количестве, если в нижней части тела и нижних конечностях- миоцитов больше.

ЛИМФАТИЧЕСКИЕ СОСУДЫ СРЕДНЕГО КАЛИБРА также относятся к сосудам мышечного типа. В их стенке лучше выражены все 3 оболочки: внутренняя, средняя и наружная. Внутренняя оболочка состоит из эндотелия, лежащего на слабо выраженной мембране, субэндотелия, в котором содержатся разнонаправленные коллагеновые и эластические волокна, и сплетения эластических волокон.

КЛАПАНЫ ЛИМФАТИЧЕСКИХ СОСУДОВ образованы за счет внутренней оболочки. Основой клапанов является фиброзная пластинка, в центре которой есть гладкие миоциты. Эта пластинка покрыта эндотелием.

СРЕДНЯЯ ОБОЛОЧКА СОСУДОВ СРЕДНЕГО КАЛИБРА представлена пучками гладких миоцитов, направленных циркулярно и косо, и прослоек рыхлой соединительной ткани.

НАРУЖНАЯ ОБОЛОЧКА СОСУДОВ СРЕДНЕГО КАЛИБРА представлена рыхлой соединительной тканью, волокна которой переходит в окружающую ткань.

ЛИМФАНГИОН- это участок, расположенный между двумя соседними клапанами лимфатического сосуда. Он включает мышечную манжетку, стенку клапанного синуса и место прикрепления клапана.

КРУПНЫЕ ЛИМФАТИЧЕСКИЕ СТВОЛЫ представлены правым лимфатическим протоком и грудным лимфатическим протоком. В крупных лимфатических сосудах миоциты расположены во всех трех оболочках.

ГРУДНОЙ ЛИМФАТИЧЕСКИЙ ПРОТОК имеет стенку, строение которой схоже со строением нижней полой вены. Внутренняя оболочка состоит из эндотелия, субэндотелия и сплетения внутренних эластических волокон. Эндотелий лежит на слабо выраженной прерывистой базальной мембране, в субэндотелии имеются малодифференцированные клетки, гладкие миоциты, коллагеновые и эластические волокна, ориентированные в различных направлениях.

За счет внутренней оболочки образовано 9 клапанов, которые способствуют продвижению лимфы в сторону вен шеи.

Средняя оболочка представлена гладкими миоцитами, имеющими циркулярное и косое направление, разнонаправленными коллагеновыми и эластическими волокнами.

Наружная оболочка на уровне диафрагмы в 4 раза толще внутренней и средней оболочек вместе взятых, состоит из рыхлой соединительной ткани и продольно расположенных пучков гладких миоцитов. Проток вливается в вену шеи. Стенка лимфатического протока около устья в 2 раза тоньше, чем на уровне диафрагмы.

ФУНКЦИИ ЛИМФАТИЧЕСКОЙ СИСТЕМЫ: 1)дренажная- в лимфатические капилляры поступают продукты обмена, вредные вещества, бактерии; 2)фильтрация лимфы, т.е. очищение от бактерий, токсинов и других вредных веществ в лимфатических узлах, куда поступает лимфа; 3)обогащение лимфы лимфоцитами в тот момент, когда лимфа протекает по лимфатическим узлам. Очищенная и обогащенная лимфа поступает в кровеносное русло, т.е. лимфатическая система выполняет функцию обновления основного межклеточного вещества и внутренней среды организма.

КРОВОСНАБЖЕНИЕ СТЕНОК КРОВЕНОСНЫХ И ЛИМФАТИЧЕСКИХ СОСУДОВ.

В адвентиции кровеносных и лимфатических сосудов имеются сосуд сосудов (vasa vasorum)- это мелкие артериальные ветви, которые разветвляются в наружной и средней оболочках стенки артерий и всех трех оболочках вен. Из стенок артерий кровь капилляров собирается в венулы и вены, которые располагаются рядом с артериями. Из капилляров внутренней оболочки вен кровь поступает в просвет вены.

Кровоснабжение крупных лимфатических стволов отличается тем, что артериальные ветви стенок не сопровождаются венозными, которые идут отдельно от соответствующих артериальных.

В артериолах и венулах сосуды сосудов отсутствуют.

РЕПАРАТИВНАЯ РЕГЕНЕРАЦИЯ КРОВЕНОСНЫХ СОСУДОВ. При повреждении стенки кровеносных сосудов через 24 часа быстро делящиеся эндотелиоциты закрывают дефект. Регенерация гладких миоцитов стенки сосудов протекает медленно, так как они реже делятся. Образование гладких миоцитов происходит за счет их деления, дифференцировки миофибробластов и перицитов в гладкие мышечные клетки.

При полном разрыве крупных и средних кровеносных сосудов их восстановление без оперативного вмешательства хирурга невозможно. Однако кровоснабжение тканей дистальнее разрыва частично восстанавливается за счет коллатералей и появления мелких кровеносных сосудов. В частности, из стенки артериол и венул происходит выпячивание делящихся эндотелиоцитов (эндотелиальные почки). Затем эти выпячивания (почки) приближаются друг к другу и соединяются. После этого тонкая перепонка между почками разрывается и образуется новый капилляр.

РЕГУЛЯЦИЯ ФУНКЦИИ КРОВЕНОСНЫХ СОСУДОВ

НЕРВНАЯ РЕГУЛЯЦИЯ осуществляется эфферентными (симпатическими и парасимпатическими) и чувствительными нервными волокнами, являющимися дендритами чувствительных нейронов спинальных ганглиев и чувствительных ганглиев головы.

Эфферентные и чувствительные нервные волокна густо оплетают и сопровождают кровеносные сосуды, образуя нервные сплетения, в состав которых входят отдельные нейроны и интрамуральные ганглии.

Чувствительные волокна заканчиваются рецепторами, имеющими сложное строение, т.е. являются поливалентными. Это значит, что один и тот же рецептор одновременно контактирует с артериолой, венулой и анастомозом или со стенкой сосуда и соединительнотканными элементами. В адвентиции крупных сосудов могут быть самые разнообразные рецепторы (инкапсулированные и неинкапсулированные), которые часто образуют целые рецепторные поля.

Эфферентные нервные волокна заканчиваются эффекторами (моторными нервными окончаниями).

Симпатические нервные волокна являются аксонами эфферентных нейронов симпатических ганглиев, они заканчиваются адренергическими нервными окончаниями.

Парасимпатические нервные волокна являются аксонами эфферентных нейронов (клеток I типа Догеля) интрамуральных ганглиев, они являются холинергическими нервными волокнами и заканчиваются холинергическими моторными нервными окончаниями.

При возбуждении симпатических волокон сосуды суживаются, парасимпатических- расширяются.

НЕЙРОПАРАКРИНОВАЯ РЕГУЛЯЦИЯ характеризуется тем, что в одиночные эндокринные клетки по нервным волокнам поступают нервные импульсы. Этими клетками выделяются биологически активные вещества, которые воздействуют на кровеносные сосуды.

ЭНДОТЕЛИАЛЬНАЯ ИЛИ ИНТИМАЛЬНАЯ РЕГУЛЯЦИЯ характеризуется тем, что эндотелиоциты выделяют факторы, регулирующие сократимость миоцитов сосудистой стенки. Кроме того эндотелиоциты вырабатывают вещества препятствующие свертыванию крови и вещества способствующие свертыванию крови.

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ АРТЕРИЙ. Артерии окончательно развиваются к 30-летнему возрасту. После этого в течение 10 лет наблюдается их стабильное состояние. При наступлении 40-летнего возраста начинается их обратное развитие. В стенке артерий, особенно крупных, разрушаются эластические волокна и гладкие миоциты, разрастаются коллагеновые волокна. В результате очагового разрастания коллагеновых волокон в субэндотелии крупных сосудов, накопления холестерина и сульфатированных гликозаминогликанов субэндотелий резко утолщается, стенка сосудов уплотняется, в ней откладываются соли, развивается склероз, нарушается кровоснабжение органов. У лиц старше 60-70 лет в наружной оболочке появляются продольные пучки гладких миоцитов.

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ВЕН аналогичны изменениям артерий. Однако в венах имеют место более ранние изменения. В субэндотелии бедренной вены новорожденных и грудных детей отсутствуют продольные пучки гладких миоцитов. Они появляются только тогда, когда ребенок начинает ходить. У маленьких детей диаметр вен такой же как и диаметр артерий. У взрослых диаметр вен в 2 раза больше, чем диаметр артерий. Это связано с тем, что кровь в венах течет медленнее, чем в артериях, а чтобы при медленном токе крови был баланс крови в сердце, т.е. сколько уйдет из сердца артериальной крови, столько же поступит венозной, вены должны быть более широкие.

Стенки вен тоньше стенки артерий. Это объясняется особенностью гемодинамики в венах, т.е. низким внутривенным давлением и медленным током крови.

РАЗВИТИЕ. Сердце начинает развиваться на 17 сутки из мезенхимы и висцеральных листков в краниальном конце эмбриона. Из мезенхимы справа и слева образуются трубочки, которые впячиваются в висцеральные листки спланхнотомов. Та часть висцеральных листков, которая прилежит к мезенхимным трубочкам, превращается в миокардиальную пластинку. В дальнейшем с участием туловищной складки происходит сближение правого и левого зачатков сердца и затем соединение этих зачатков впереди передней кишки. Из слившихся мезенхимных трубочек формируется эндокард сердца. Клетки миоэпикардиальных пластинок дифференцируются в двух направлениях: из наружной части образуется мезотелий, выстилающий эпикард и перикард, клетки внутренней части дифференцируются в трех направлениях. Из них образуются: 1)сократительные кардиомиоциты; 2) проводящие кардиомиоциты; 3)эндокринные кардиомиоциты.

В процессе дифференцировки сократительных кардиомиоцитов клетки приобретают цилиндрическую форму, соединяются своими концами при помощи десмосом, где в дальнейшем формируются вставочные диски (discus intercalatus). В формирующихся кардиомиоцитах появляются миофибриллы, расположенные продольно, канальцы гладкой эндоплазматической сети, за счет впячивания сарколеммы образуются Т-каналы, формируются митохондрии.

Проводящая система сердца начинает развиваться на 2-м месяце эмбриогенеза и заканчивается на 4-м месяце.

КЛАПАНЫ СЕРДЦА развиваются из эндокарда. Левый атриовентрикулярный клапан закладывается на 2-м месяце эмбриогенеза в виде складки, которая называется эндокардиальным валиком. В валик врастает соединительная ткань из эпикарда, из которой образуется соединительнотканная основа створок клапана, прикрепляющаяся к фиброзному кольцу.

Правый клапан закладывается в виде миоэндокардиального валика, в состав которого входит гладкая мышечная ткань. В створки клапана врастает соединительная ткань миокарда и эпикарда, при этом количество гладких миоцитов уменьшается, они сохраняются лишь у основания створок клапана.

На 7-й неделе эмбриогенеза формируются интрамуральные ганглии, включающие мультиполярные нейроны, между которыми устанавливаются синапсы.

СТЕНКА СЕРДЦА состоит из трех оболочек: 1)эндокард (endocardium), 2)миокард (myocardium) и 3)эпикард (epcardium).

ЭНДОКАРД выстилает предсердия и желудочки, в разных местах имеет различную толщину, состоит из 4-х слоев: 1)эндотелия; 2)субэндотелия; 3)мышечноэластического слоя и 4)наружного соединительнотканного слоя. Таким образом, строение стенки эндокарда соответствует строению вены мышечного типа: эндотелию эндокарда соответствует эндотелий вены, субэндотелию эндокарда- субэндотелий вены, мышечноэластическому слою- сплетение эластических волокон и средняя оболочка вены, наружному соединительнотканному слою- наружная оболочка вены. В эндокарде отсутствуют кровеносные сосуды.

За счет эндокарда сформированы атриовентрикулярные клапаны и клапаны аорты и легочной артерии.

ЛЕВЫЙ АТРИОВЕНТРИКУЛЯРНЫЙ КЛАПАН включает 2 створки. Основой створки клапана является соединительнотканная пластинка, состоящая из коллагеновых и эластических волокон, незначительного количества клеток и основного межклеточного вещества. Пластинка прикрепляется к фиброзному кольцу, окружающему клапан и покрыта эндотелиоцитами, под которыми находится субэндотелий. ПРАВЫЙ АТРИОВЕНТРИКУЛЯРНЫЙ КЛАПАН состоит из 3 створок. Поверхность клапанов, обращенных к предсердию гладкая, к желудочку- неровная, так как к этой поверхности прикрепляются сухожилия сосочковых мышц.

КЛАПАНЫ АОРТЫ И ЛЕГОЧНОЙ АРТЕРИИ называются полулунными. Они состоят из 3-х слоев: 1)внутреннего; 2)среднего и 3)наружного.

ВНУТРЕННИЙ СЛОЙ сформирован за счет эндокарда, включает эндотелий, субэндотелий, содержащий фибробласты с консолями, поддерживающими эндотелиальные клетки. Глубже располагаются слои коллагеновых и эластических волокон.

СРЕДНИЙ СЛОЙ представлен рыхлой соединительной тканью.

НАРУЖНЫЙ СЛОЙ состоит из эндотелия, сформированного за счет эндотелия сосуда, и коллагеновых волокон, проникающих в субэндотелий клапана из фиброзного кольца.

МИОКАРД состоит из функциональных волокон, которые образуются при соединении концов кардиомиоцитов. Кардиомиоциты имеют цилиндрическую форму, длиной до 120 мкм, диаметром 15-20 мкм. Места соединения концов кардиомиоцитов называются вставочными дисками (discus intercalatus). В состав дисков входят десмосомы, места прикрепления актиновых филаментов, интердигитации и нексусы. В центре кардиомиоцита располагается 1-2 овальных, обычно, полиплоидных ядра.

В кардиомиоцитах хрошо развиты митохондрии, гладкая ЭПС, миофибриллы, слабо развиты- гранулярная ЭПС, комплекс Гольджи, лизосомы. В оксифильной цитоплазме имеются включения гликогена, липидов и миоглобина.

Миофибриллы состоят из актиновых и миозиновых филаментов. За счет актиновых филаментов образуются светлые (изотропные) диски, разделенные телофрагмами. За счет миозиновых филаментов и заходящих между ними концов актиновых филаментов образуются анизотропные диски (диски А), разделенные мезофрагмой. Между двумя телофрагмами располагается саркомер, являющийся структурной и функциональной единицей миофибриллы.

В каждом саркомере имеется система L-канальцев, включающих 2 латеральных цистерны (канальца) и окружающих миофибриллу.На границе между дисками со стороны сарколеммы отходит впячивание- Т-канал, который располагается между латеральными цистернами двух соседних L-систем. Структура, состоящая из Т-канала и двух латеральных цистерн, между которыми проходит этот канал, называется триадой.

От боковой поверхности кардиомиоцитов отходят отростки- мышечные анастомозы, которые соединяются с боковыми поверхностями кардиомиоцитов соседнего функционального волокна. Благодаря мышечным анастомозам сердечная мышца представляет собой единое целое. Сердечная мышца прикрепляется к скелету сердца. Скелетом сердца являются фиброзные кольца вокруг атриовентрикулярных клапанов и клапанов легочной артерии и аорты.

СЕКРЕТОРНЫЕ КАРДИОМИОЦИТЫ (эндокриноциты) находятся в предсердии, содержат много отростков. В этих клетках слабо развиты миофибриллы, гладкая эндоплазматическая сеть, Т-каналы, вставочные диски; хорошо развиты комплекс Гольджи, гранулярная ЭПС и митохондрии, в цитоплазме содержатся секреторные гранулы. ФУНКЦИЯ: вырабатывают гормон- предсердный натрийуретический фактор (ПНФ). ПНФ воздействует на те клетки, которые имеют специальные рецепторы к нему. Такие рецепторы имеются на поверхности сократительных кардиомиоцитов, миоцитов кровеносных сосудов, эндокриноцитах клубочковой зоны коры надпочечников, клетках эндокринной системы почек. Таким образом, ПНФ стимулирует сокращение сердечной мышцы, регулирует артериальное давление, водно-солевой обмен, мочевыделение. МЕХАНИЗМ ВОЗДЕЙСТВИЯ ПНФ НА КЛЕТКИ-МИШЕНИ. Рецептор клетки-мишени захватывает ПНФ, образуется гормонально-рецепторный комплекс. Под влиянием этого комплекса активируется гуанилатциклаза, под воздействием которой синтезируется циклический гуанинмонофосфат. Циклический гуанинмонофосфат активирует ферментную систему клетки.

ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА (sistema conducens cardiacum) представлена синуснопредсердным узлом, атриовентрикулярным узлом, предсердножелудочковым пучком (пучком Гиса) и ножками пучка Гиса.

СИНУСНОПРЕДСЕРДНЫЙ УЗЕЛ представлен пейсмекерными клетками (Р-клетками), расположенными в центре узла, диаметр которых 8-10 мкм. Форма Р-клеток овальная, их миофибриллы развиты слабо, имеют различное направление. Гладкая ЭПС Р-клеток развита слабо, в цитоплазме имеется включение гликогена, митохондрии, отсутствуют вставочные диски и Т-каналы. В цитоплазме Р-клеток много свободного Са, благодаря этому они способны ритмично вырабатывать сократительные импульсы.

Снаружи от пейсмекерных клеток располагаются проводящие кардиомиоциты 2-го типа. Это узкие, удлиненные клетки, малочисленные миофибриллы которых расположены чаще всего параллельно. В клетках слабо развиты вставочные диски и Т-каналы. ФУНКЦИЯ- проведение импульса к проводящим кардиомиоцитам 3-го типа или к сократительным кардиомиоцитам. Проводящие кардиомиоциты II типа иначе называются переходными.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ состоит из небольшого количества пейсмекерных клеток, расположенных в центре узла, и многочисленных проводящих кардиомиоцитов II типа. ФУНКЦИИ атриовентрикулярного узла: 1)вырабатывает импульс с частотой 30-40 в минуту; 2)кратковременно

задерживает прохождение импульса,идущего от синуснопредсердного узла на желудочки, благодаря этому сначала сокращаются предсердия, потом желудочки.

В том случае, если прекращается поступление импульсов от синусно-предсердного узла к атриовентрикулярному (поперечная блокада сердца), то предсердия сокращаются в обычном ритме (60-80 сокращений в минуту), а желудочки- в 2 раза реже. Это опасное для жизни состояние.

ПРОВОДЯЩИЕ КАРДИОМИОЦИТЫ III ипа расположены в пучке Гиса и его ножках. Их длина 50-120 мкм, ширина- около 50 мкм. Цитоплазма этих кардиомиоцитов светлая, разнонаправленные миофибриллы развиты слабо, вставочные диски и Т-каналы также развиты недостаточно. Их ФУНКЦИЯ- передача импульса от кардиомиоцитов II типа на сократительные кардиомиоциты. Кардиомиоциты III типа образуют пучки (волокна Пуркинье) которые чаще всего располагаются между эндокардом и миокардом, встречаются в миокарде. Волокна Пуркинье подходят и к сосочковым мышцам, благодаря этому к моменту сокращения желудочков напрягаются сосочковые мышцы, что препятствует выворачиванию клапанов в предсердия.

ИННЕРВАЦИЯ СЕРДЦА. Сердце иннервируется и чувствительными, и эфферентными нервными волокнами. Чувствительные (сенсорные) нервные волокна поступают из 3 источников: 1) дендриты нейронов спинномозговых (спинальных) ганглиев верхнегрудного отдела спинного мозга; 2)дендриты чувствительных нейронов узла блуждающего нерва; 3)дендриты чувствительных нейронов интрамуральных ганглиев. Эти волокна заканчиваются рецепторами.

Эфферентными волокнами являются симпатические и парасимпатические нервные волокна, относящиеся к вегетативной (автономной) нервной системе.

СИМПАТИЧЕСКАЯ РЕФЛЕКТОРНАЯ ДУГА СЕРДЦА включает цепь, состоящую из 3 нейронов. 1-й нейрон заложен в спинальном ганглии, 2-й- в латерально-промежуточном ядре спинного мозга, 3-й- в периферическом симпатическом ганглии (верхнем шейном или звездчатом). ХОД ИМПУЛЬСА ПО СИМПАТИЧЕСКОЙ РЕФЛЕКТОРНОЙ ДУГЕ: рецептор, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона образует преганглионарное, миелиновое, холинергическое волокно, контактирующее с дендритом 3-го нейрона, аксон 3-го нейрона в виде постганглионального, безмиелинового адренергического нервного волокна направляется в сердце и заканчивается эффектором, который непосредственно на сократительные кардиомиоциты не воздействует. При возбуждении симпатических волокон частота сокращений увеличивается.

ПАРАСИМПАТИЧЕСКАЯ РЕФЛЕКТОРНАЯ ДУГА состоит из цепи 3 нейронов. 1-й нейрон заложен в чувствительном ганглии блуждающего нерва, 2-й- ядре блуждающего нерва, 3-й- интрамуральном ганглии. ХОД ИМПУЛЬСА ПО ПАРАСИМПАТИЧЕСКОЙ РЕФЛЕКТОРНОЙ ДУГЕ: рецептор 1-го нейрона, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона образует преганглионарное, миелиновое, холинергическое нервное волокно, которое передает импульс на дендрит 3-го нейрона, аксон 3-го нейрона в виде постганглионарного безмиелинового, холинергического нервного волокна направляется к проводящей системе сердца. При возбуждении парасимпатических нервных волокон частота и сила сердечных сокращений уменьшается (брадикардия).

ЭПИКАРД представлен соединительнотканной основой, покрытой мезотелием- это висцеральный листок, который переходит в париетальный листок- перикард. Перикард тоже выстлан мезотелием. Между эпикардом и перикардом имеется щелевидная полость, заполненная небольшим количеством жидкости, выполняющей смазывающую функцию. Перикард развивается из париетального листка спланхнотома. В соединительной ткани эпикарда и перикарда имеются жировые клетки (адипоциты).

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ СЕРДЦА. В процессе развития сердца имеют место 3 этапа: 1)дифференцировка; 2)стадия стабилизации; 3)стадия инволюции (обратного развития).

ДИФФЕРЕНЦИРОВКА начинается уже в эмбриогенезе и продолжается сразу после рождения, так как изменяется характер кровообращения. Сразу после рождения закрывается овальное окно между левым и правым предсердиями, закрывается проток между аортой и легочной артерией. Это приводит к снижению нагрузки на правый желудочек, который подвергается физиологической атрофии и к повышению нагрузки на левый желудочек, что сопровождается его физиологической гипертрофией. В это время происходит дифференцировка сократительных кардиомиоцитов, сопровождаемая гипертрофией их саркоплазмы за счет увеличения количества и толщины миофибрилл. Вокруг функциональных волокон сердечной мышцы есть тонкие прослойки рыхлой соединительной ткани.

ПЕРИОД СТАБИЛИЗАЦИИ начинается примерно в 20-летнем возрасте и заканчивается в 40 лет. После этого начинается СТАДИЯ ИНВОЛЮЦИИ, сопровождаемая уменьшением размеров кардиомиоцитов вследствие уменьшения количества и толщины миофибрилл. Прослойки соединительной ткани утолщаются. Уменьшается количество симпатических нервных волокон, в то время как число парасимпатических практически не изменяется. Это приводит к снижению частоты и силы сокращений сердечной мышцы. К старости (70 лет) уменьшается и количество парасимпатических нервных волокон. Кровеносные сосуды сердца подвергаются склеротическим изменениям, что затрудняет кровоснабжение миокарда (мускулатуры

сердца). Это называется ишемической болезнью. Ишемическая болезнь может привести к омертвению (некрозу) сердечной мышцы, что называется инфарктом миокарда.

КРОВОСНАБЖЕНИЕ СЕРДЦА обеспечивается венечными артериями, которые отходят от аорты. Венечные артерии- это типичные артерии мышечного типа. Особенность этих артерий заключается в том, что в субэндотелии и в наружной оболочке имеются пучки гладких миоцитов, расположенных продольно. Артерии разветвляются на более мелкие сосуды и капилляры, которые затем собираются в венулы и коронарные вены. Коронарные вены впадают в правое предсердие или венозный синус. Следует отметить, что в эндокарде капилляры отсутствуют, так как его трофика осуществляется за счет крови камер сердца.

РЕПАРАТИВНАЯ РЕГЕНЕРАЦИЯ возможна только в грудном или в раннем детском возрасте, когда кардиомиоциты способны к митотическому делению. При гибели мышечных волокон они не восстанавливаются, а замещаются соединительной тканью.

Вполне естественно, что рассмотрение морфологии лимфатической системы начинается с определения лимфатического капилляра, который представляет собой исходный и самый главный элемент лимфатической системы. Анатомически лимфатический капилляр, подобно кровеносному капилляру, имеет вид микротрубочки, или волосного канальца, имеющего очень тонкую стенку, состоящую из одного слоя эндотелиальных клеток (смотрите рисунок ниже). Одни капилляры под световым микроскопом выглядят как слепо начинающиеся трубки, напоминающие пальцы перчатки (смотрите рисунок ниже - а), другие начинаются петлей (смотрите рисунок ниже - б), третьи могут начинаться по типу разветвленного корня.

а - слепо начинающийся лимфатический капилляр фиброзной капсулы почки. Импрегнация нитратом серебра. X 300 (препарат Н. В. Куприяновой); б - петлевидная форма лимфатического капилляра плевры человека. Импрегнация нитратом серебра. X 300 (препарат Т. И. Семеновой).

В. Д. Арутюнов и соавт. (1976) описали шарообразную форму начальных лимфатических капилляров. Сходные образования известны в литературе под названием луковицеобразных или бульбозных . Классическим примером пальцевидного капилляра служит центральный лимфатический синус кишечной ворсинки. В литературе есть указания на то, что лимфатический капилляр существует лишь как элемент сети, а пальцеобразные слепо начинающиеся трубочки следует отнести к выростам лимфатических капилляров или сосудов (смотрите рисунок ниже).

Миокард крысы. Сканограмма коррозионного препарата.

Такие выросты встречаются по ходу компонентов капиллярной сети, свидетельствуя об их реакции на неадекватное воздействие; ими начинается и новообразование лимфатических капилляров, которые включаются в капиллярную сеть. Крайне затруднительно Дифференцировать феномен избыточного роста стенки лимфатических сосудов и слепые выпячивания стенки как остатки редуцирующихся сосудов.

Многие авторы фиксируют на своих препаратах слепые пальцеобразные отростки капилляров, напоминающие слепые выпячивания стенки лимфатических сосудов. Их квалифицируют по-разному. Так, А. И. Свиридов (1966), считал их слепо начинающимися капиллярами. А. А. Сушко и Л. В. Чернышенко (1966), А. В. Борисов (1967) рассматривали их как растущие или вновь образующиеся капилляры. По нашему мнению, это постоянно существующая форма капилляров, представленная в лимфатическом русле многих органов наравне с петлями лимфатических капилляров. Это не отростки, не абортивные компоненты сети, не окончания, а именно начальные, или исходные, корни лимфатической системы.

«Микролимфология», В.В.Купирянов, Ю.И. Бородин


В настоящее время базальные мембраны выделены во многих органах. Возникла необходимость их морфофункционального определения и последующей классификации. Трудно допустить их полную однородность в различных тканевых структурах. К тому же еще неизвестны их генетическая обусловленность и функциональная детерминация. Мнения относительно происхождения базальных мембран чрезвычайно противоречивы. Возьмем для примера стенку капилляров. Имеется мнение, согласно которому базальная мембрана…



Многочисленные исследования, выполненные в последние годы с помощью электронной микроскопии, показали, что динамика структурных перестроек стенки лимфатических капилляров связана с процессом резорбции жидкости и макромолекул белка. В обеспечении этого процесса основная роль принадлежит межклеточным контактам и микропиноцитозным везикулам. Межклеточные контакты в стенке лимфатических капилляров представляют собой специализированные образования, которые возникают благодаря близкому противостоянию краев смежных…


К числу внутриклеточных структур, поддерживающих ту или иную форму эндотелиальных клеток лимфатических капилляров, относятся микротрубочки и цитоплазматические микрофиламенты (смотрите рисунок ниже). Микротрубочки (указаны одной стрелкой) и микрофиламенты (указаны двумя стрелками) в цитоплазме эндотелиалъной клетки лимфатического капилляра Фиброзная капсула почки собаки, х 10 000. Поскольку их ультраструктура описана достаточно подробно, следует остановиться лишь на некоторых фактах,…


Поверхность эндотелиальных клеток, обращенная к интерстицию, более гладкая, за исключением мест, где к плазмалемме фиксируются микрофибриллы. Эти пучки фибрилл, описанные в 30-х годах , расшифрованы с помощью электронного микроскопа [Шахламов В. А., 1971; Шахламов В. А., Цамерян А. П., 1972; Leak L., Burke J., 1968] под названием «якорных» или «стропных» филаментов.…


Концепция о роли стропных филаментов отличается новизной, хотя факт существования подобных связей у лимфатических капилляров был известен и ранее. Так, применение светового микроскопа позволило В. Pullinger и Florey Н. (1935) обнаружить ретикулиновые и коллагеновые волокна, от которых отходят отростки к тонким лимфатическим сосудам. Авторы предполагали, что при отеках (в связи с повышением давления в ткани)…


Следует подчеркнуть, что слепые начала лимфатических капилляров ориентированы в зонах максимальной фильтраций жидкости и белка - области венозных сегментов капилляров, посткапиллярных венул. Несомненно такое положение обеспечивает эффективное поступление содержимого интерстициального пространства в их просвет. Интенсивная резорбция жидкости из соединительно-тканного пространства поддерживается относительно большой площадью обмена лимфатических капилляров, которые погружены в интерстицнальный матрикс. Вопрос о начальных…


Пути выведения продуктов обмена и жидкостей из тканей и органов более сложны, чем пути доставки крови. Существование двух систем оттока, т. е. оттока лимфы и венозной крови, можно объяснить требованиями надежности обеспечения указанной функции. Понятно поэтому, что в каждом органе лимфатическое русло должно отражать конкретные морфологические и физиологические особенности этого органа. Как показал Д. А.…


Анатомо-физиологические особенности лимфатических капилляров в различных регионах, органах и тканях неизбежны, но слабо изучены. Д. А. Жданов (1966) привел ряд примеров зависимости корней лимфатической системы от функционального состояния органов. Сразу же обращают на себя внимание резкие колебания плотности лимфатических капилляров в различных тканях. Чем определяется степень их разрастания? В чем причины отсутствия лимфатических капилляров и…


Диаметр лимфатических капилляров в нормальных условиях колеблется в пределах 10-200 мкм. Он в несколько раз превосходит диаметр кровеносных капилляров (смотрите рисунок ниже), который не превышает 20 мкм. Слепо начинающийся лимфатический капилляр (указан двумя стрелками), диаметр которого превосходит диаметр кровеносного капилляра (указан одной стрелкой) Брюшина собаки. X 300. Величина диаметра предопределяет участие в составе стенки капилляра…


В целом вопрос о существовании у лимфатических капилляров базальной мембраны пока считается открытым. Крупный специалист в области лимфологии J. Casley-Smith (1977) полагает, что базальная мембрана не всегда хорошо развита. Можно думать, что есть регионарные, видовые и возрастные колебания в становлении и организации этого компонента капиллярной стенки. Существует концепция о перителии как особом чехле капилляров, построенном…




← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»