Свойства одностенных углеродных нанотрубок. Углеродные нанотрубки: применение

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:
Третье состояние углерода (кроме алмаза и графита) - революционно завоевывает мир новых технологий.
Вот выдержки из нескольких статей (с сылками на них).

http://www.nsu.ru/materials/ssl/text/news/Physics/135.html
Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры. Что же это такое?
Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки".
Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается - сейчас ученые уже вплотную подошли к миллиметровому рубежу: см. работу , где описан синтез многослойной нанотрубки длиной в 2 мм. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.
Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение нескольких вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!
Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

http://brd.dorms.spbu.ru/nanotech/print.php?sid=44
Попытка сфотографировать нанотрубки с помощью обычного фотоаппарата со вспышкой привела к тому, что блок нанотрубок при свете вспышки издал громкий хлопок и, ярко вспыхнув, взорвался.
Ошарашенные ученые утверждают, что неожиданно открытый феномен "взрывоопасности" трубок может найти для этого материала новые, совершенно неожиданные применения - вплоть до использования в качестве детонаторов для подрыва боезарядов. А также, очевидно, поставит под сомнение или затруднит их использование в отдельных областях.

http://www.sciteclibrary.com/rus/catalog/pages/2654.html
Открывается перспектива для значительного продления ресурса перезаряжающихся батареек

http://vivovoco.nns.ru/VV/JOURNAL/VRAN/SESSION/NANO1.HTM
Углеродные нанотрубные структуры - новый материал для эмиссионной электроники.

http://www.gazetangn.narod.ru/archive/ngn0221/space.html
Ещё в 1996г было обнаружено, что отдельные углеродные нанотрубки могут самопроизвольн о свиваться в канатики из 100- 500 волокон-трубочек, причём прочность этих канатиков оказалась больше, чем у алмаза. Точнее говоря, они в 10- 12 раз прочнее и в 6 раз легче стали. Вы только представьте: нить диаметром в 1 миллиметр могла бы выдержать 20-тонный груз, в сотни миллиардов раз больший её собственного веса! Вот из таких-то ниточек и можно получить сверхпрочные тросы большой длины. Из столь же лёгких и прочных материалов можно строить и каркас лифта - гигантскую башню высотой в три диаметра Земли. По ней и пойдут на громадной скорости пассажирские и грузовые кабины - благодаря сверхпроводящим магнитам, которые, опять же, будут подвешены на канатах из углеродных нанотрубок. Колоссальный грузопоток в космос позволит начать активное освоение других планет.
Если кого-то заинтересовал этот проект, подробности (на русском языке), можно посмотреть, например, на сайте http://private.peterlink.ru/geogod/space/future.htm . Только там нет ни слова об углеродных трубках.
А на http://www.eunet.lv/library/win/KLARK/fontany.txt можно почитать роман Артура Кларка "Фонтаны рая", который сам он считал своим лучшим произведением.

http://www.inauka.ru/science/28-08-01/article4805
По оценкам специалистов, нанотехнологии позволят уже к 2007 году создать микропроцессоры, которые будут содержать около 1 миллиарда транзисторов и смогут работать на частоте до 20 гигагерц при напряжении питания менее 1 вольта.

Нанотрубочный транзистор
Создан первый транзистор, состоящий целиком из углеродных нанотрубок. Тем самым открывается перспектива замены привычных кремниевых чипов более быстрыми, дешевыми и меньшими по размеру компонентами.
Первый в мире нанотрубочный транзистор представляет собой нанотрубку Y-образной формы, которая ведет себя подобно привычному транзистору - потенциал , приложенный к одной из «ножек», позволяет управлять прохождением тока между двумя другими. При этом вольт-амперная характеристика «нанотрубочного транзистора» практически идеальна: ток или течет, или нет.

http://www.pool.kiev.ua/clients/poolhome.nsf/0/a95ad844a57c1236c2256bc6003dfba8?OpenDocument
Согласно материалам статьи, опубликованной 20 мая в научном журнале Applied Physics Letters, специалисты IBM усовершенствовали транзисторы на углеродных нанотрубках. В результате экспериментов с различными молекулярными структурами исследователи смогли достичь высочайшей на сегодняшний момент проводимости для транзисторов на углеродных нанотрубках. Чем выше проводимость, тем быстрее работает транзистор и тем более мощные интегральные схемы можно построить на его основе. Кроме того, исследователи обнаружили, что проводимость транзисторов на углеродных нанотрубках более чем вдвое превосходит соответствующий показатель для самых быстрых кремниевых транзисторов того же размера.

http://kv.by/index2003323401.htm
Группа профессора Калифорнийского университета в Беркли Алекса Зеттла (Alex Zettl) сделала очередной прорыв в области нанотехнологий. Ученые создали первый самый маленький наномасштабный моторчик на основе многостенных нанотрубок, о чем сообщается в журнале "Nature" 24 июля. Углеродная нанотрубка выполняет своего рода роль оси, на которой монтируется ротор. Максимальные размеры наномоторчика порядка 500 нм, ротор имеет длину от 100 до 300 нм, а вот нанотрубка-ось имеет в поперечнике размер всего в несколько атомов, т.е. примерно 5-10 нм.

http://www.computerra.ru/hitech/tech/26393/
На днях бостонская компания Nantero выступила с заявлением о разработке плат памяти принципиально нового образца, созданных на основе нанотехнологий. Nantero Inc. активно занимается разработкой новых технологий, в частности, уделяет немалое внимание поиску способов создания энергонезависимой оперативной памяти (RAM) на основе углеродных нанотрубок. В своём выступлении представитель компании объявил о том, что они находятся в шаге от создания плат памяти ёмкостью 10 Гб. В связи с тем, что в основе строения устройства лежат нанотрубки, новую память предлагается называть NRAM (Nonvolatile (энергонезависимая) RAM).

http://www.ixs.nm.ru/nan0.htm
Одним из результатов проведенного исследования стало практическое использование выдающихся свойств нанотрубок для измерения массы частиц крайне малых размеров. При размещении взвешиваемой частицы на конце нанотрубки резонансная частота уменьшается. Если нанотрубка калибрована (т.е. известна ее упругость), можно по смещению резонансной частоты определить массу частицы.

http://www.mediacenter.ru/a74.phtml
В числе первых коммерческих применений будет добавление нанотрубок в краски или пластмассу для придания этим материалам свойств электропроводности. Это позволит заменить в некоторых изделиях металлические детали полимерными.
Углеродные нанотрубки - дорогой материал. Сейчас CNI продает его по цене 500 долл. за грамм. К тому же технология очистки углеродных нанотрубок - отделение хороших трубок от плохих - и способ введения нанотрубок в другие продукты требуют совершенствования. Для решения некоторых задач может потребоваться открытие нобелевского уровня, утверждает Джошуа Вольф, управляющий партнер венчурной фирмы Lux Capital, специализирующейся на нанотехнологии.

Исследователи заинтересовались углеродными нанотрубками из-за их электропроводности, которая оказалась выше, чем у всех известных проводников. Они также имеют прекрасную теплопроводность, стабильны химически, отличаются чрезвычайной механической прочностью (в 1000 раз крепче стали) и, что самое удивительное, приобретают полупроводниковые свойства при скручивании или сгибании. Для работы им придают форму кольца. Электронные свойства углеродных нанотрубок могут быть как у металлов либо как у полупроводников (в зависимости от ориентации углеродных многоугольников относительно оси трубки), т.е. зависят от их размера и формы.

http://www.ci.ru/inform09_01/p04predel.htm
Металлические проводящие ток нанотрубки могут выдерживать плотности тока в 102-103 раза выше, чем обычные металлы, а полупроводниковые нанотрубки можно электрически включать и выключать посредством поля, генерируемого электродом, что позволяет создавать полевые транзисторы.
Ученые из IBM разработали метод так называемого "конструктивного разрушения", который позволил им разрушить все металлические нанотрубки и при этом оставить неповрежденными полупроводниковые.

http://www.pr.kg/articles/n0111/19-sci.htm
Углеродные нанотрубки нашли еще одно применение в борьбе за здоровье человека - на сей раз китайские ученые использовали нанотрубки для очистки питьевой воды от свинца.

http://www.scientific.ru/journal/news/n030102.html
Мы регулярно пишем об углеродных нанотрубках, однако на самом деле существуют и другие типы нанотрубок, получаемые из различных полупроводниковых материалов. Ученые умеют выращивать нанотрубки с точно заданной толщиной стенки, диаметром и длиной.
Нанотрубки могут быть использованы в качестве нанотрубопроводов для транспортировки жидкости, они смогут также играть роль наконечников для шприцев с точно выверенным количеством нанокапель. Нанотрубки могут применяться как наносверла, нанопинцеты, острия для сканирующих туннельных микроскопов. Нанотрубки с достаточно толстыми стенками и маленьким диаметром могут служить поддерживающими опорами для нанообъектов, а нанотрубки с большим диаметром и тонкими стенками - выполнять роль наноконтейнеров и нанокапсул. Нанотрубки из соединений на основе кремния, включая карбид кремния, особенно хороши для изготовления механических изделий, так как эти материалы прочны и эластичны. Также твердотельные нанотрубки могут найти применение в электронике.

http://www.compulenta.ru/2003/5/12/39363/
Исследовательское подразделение корпорации IBM сообщило о важном достижении в области нанотехнологий. Специалистам IBM Research удалось заставить светиться углеродные нанотрубки - чрезвычайно перспективный материал, лежащий в основе многих нанотехнологических разработок во всем мире.
Светоизлучающая нанотрубка имеет диаметр всего 1,4 нм, то есть в 50 тысяч раз тоньше человеческого волоса. Это самое миниатюрное в истории твердотельное светоизлучающее устройство. Его создание стало результатом программы изучения электрических свойств углеродных нанотрубок, проводящейся в IBM в течение нескольких последних лет.

http://bunburyodo.narod.ru/chem/solom.htm
Помимо уже упомянутого выше очень пока далекого от осуществления создания металлических нанопроводов, популярна разработка так называемых холодных эмиттеров на нанотрубках. Холодные эмиттеры - ключевой элемент плоского телевизора будущего, они заменяют горячие эмиттеры современных электронно-лучевых трубок, к тому же позволяют избавиться от гигантских и небезопасных разгонных напряжений 20-30 кВ. При комнатной температуре нанотрубки способны испускать электроны, производя ток такой же плотности, как и стандартный вольфрамовый анод при почти тысяче градусов, да еще и при напряжении всего 500 В. (А для получения рентгеновских лучей нужны десятки киловольт и температура 1500 градусов (nan))

http://www.pereplet.ru/obrazovanie/stsoros/742.html
Высокие значения модуля упругости углеродных нанотрубок позволяют создать композиционные материалы, обеспечивающие высокую прочность при сверхвысоких упругих деформациях. Из такого материала можно будет сделать сверхлегкие и сверхпрочные ткани для одежды пожарных и космонавтов.
Для многих технологических применений привлекательна высокая удельная поверхность материала нанотрубок. В процессе роста образуются случайным образом ориентированные спиралевидные нанотрубки, что приводит к образованию значительного количества полостей и пустот нанометрового размера. В результате удельная поверхность материала нанотрубок достигает значений около 600 м2/г. Столь высокая удельная поверхность открывает возможность их использования в фильтрах и других аппаратах химических технологий.

http://www.1september.ru/ru/him/2001/09/no09_1.htm
Нанокабель от Земли до Луны из одиночной трубки можно было бы намотать на катушку размером с маковое зернышко.
По своей прочности нанотрубки превосходят сталь в 50-100 раз (хотя нанотрубки имеют в шесть раз меньшую плотность). Модуль Юнга - характеристика сопротивления материала осевому растяжению и сжатию - у нанотрубок в среднем вдвое выше, чем у углеродных волокон. Трубки не только прочные, но и гибкие, напоминают по своему поведению не ломкие соломинки, а жесткие резиновые трубки.
Нить диаметром 1 мм, состоящая из нанотрубок, могла бы выдержать груз в 20 т, что в несколько сотен миллиардов раз больше ее собственной массы.
Международная группа ученых показала, что нанотрубки можно использовать для создания искусственных мускулов, которые при одинаковом объеме могут быть втрое сильнее биологических, не боятся высоких температур, вакуума и многих химических реагентов.
Нанотрубки - идеальный материал для безопасного хранения газов во внутренних полостях. В первую очередь это относится к водороду, который давно стали бы использовать как топливо для автомобилей, если бы громоздкие, толстостенные, тяжелые и небезопасные при толчках баллоны для хранения водорода не лишали водород его главного преимущества - большого количества энерги и, выделяемой на единицу массы (на 500 км пробега автомобиля требуется всего около 3 кг Н2). Заполнять "бензобак" с нанотрубками можно было бы стационарно под давлением, а извлекать топливо - небольшим подогреванием "бензобака". Чтобы превзойти обычные газовые баллоны по массовой и объемной плотности запасенной энерги и (масса водорода, отнесенная к его массе вместе с оболочкой или к его объему вместе с оболочкой), нужны нанотрубки с полостями относительно большого диаметра - более 2-3 нм.
Биологи сумели ввести в полость нанотрубок небольшие протеины и молекулы ДНК. Это - и метод получения катализаторов нового типа, и в перспективе способ доставки биологически активных молекул и лекарств к тем или иным органам.

И другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры . Что же это такое?

Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C 60 , абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В конце 80-х, начале 90-х годов, после того как была разработана методика получения фуллеренов в макроскопических количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов: начиная от C 20 (минимально возможного из фуллеренов) и до C 70 , C 82 , C 96 , и выше.

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок. Визуально структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и "склеиваем" ее в цилиндр (предостережение: такое сворачивание графитовой плоскости - это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще - берешь графитовую плоскость и сворачиваешь в цилиндр! - однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их - и удивляться!

А удивительного было много. Во-первых, разнообразие форм: нанотрубки могли быть большие и маленькие, однослойные и многослойные, прямые и спиральные. Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений , превышающих критические, нанотрубки также ведут себя экстравагантно: они не "рвутся" и не "ломаются", а просто-напросто перестраиваются! Далее, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут быть и проводниками , и полупроводниками ! Может ли какой-либо иной материал с таким простым химическим составом похвастаться хотя бы частью тех свойств, которыми обладают нанотрубки?!

Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается - сейчас ученые уже вплотную подошли к миллиметровому рубежу: см. работу [Z. Pan et al, 1998 ], где описан синтез многослойной нанотрубки длиной в 2 мм. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.

Другой пример, когда нанотрубка является частью физического прибора - это "насаживание" ее на острие сканирующего туннельного или атомного силового микроскопа . Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!

Еще одно применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, это в процессе роста нанотрубки создать в ней структурный дефект (а именно, заменить один из углеродных шестиугольников пятиугольником). Тогда одна часть нанотрубки будет металлической, а другая - полупроводником!

Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

С помощью того же атомного микроскопа можно производить запись и считывание информации с матрицы, состоящей из атомов титана, лежащих на -Al 2 O 3 подложке. Эта идея уже также реализована экспериментально: достигнутая плотность записи информации составляла 250 Гбит/см 2 . Однако в обоих этих примерах до массового применения пока далеко - слишком уж дорого обходятся такие наукоемкие новшества. Поэтому одна из самых главных задач здесь - разработать дешевую методику реализации этих идей.

Пустоты внутри нанотрубок (и углеродных каркасных структур вообще) также привлекали внимание ученых. В самом деле, а что будет, если внутрь фуллерена поместить атом какого-нибудь вещества? Эксперименты показали, что интеркаляция (т.е. внедрение) атомов различных металлов меняет электрические свойства фуллеренов и может даже превратить изолятор в сверхпроводник ! А можно ли таким же образом изменить свойства нанотрубок? Оказывается, да. В работе [K.Hirahara et al, 2000 ] ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния ! Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Как, оказывается, много значит валентный электрон , отдаваемый атомом металла во всеобщее распоряжение! Кстати, интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C 60 @SWNT, что означает "Gd внутри C 60 внутри однослойной нанотрубки (Single Wall NanoTube)".

В нанотрубки можно не только "загонять" атомы и молекулы поодиночке, но и буквально "вливать" вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами , то есть она как бы втягивает в себя вещество. Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков , ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно "запаяны", а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции "запаивания" и "распаивания" концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это - не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами , эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и "вскрываются" в определенный момент времени. Современная технология уже практически готова к реализации...

Еще одним классом кластеров были удлиненные цилиндрические углеродные образования, которые позднее, после выяснения их структуры, назвали "углеродными нанотрубками " (УНТ). УНТ являются большими, иногда даже сверхбольшими (свыше 10 6 атомов) молекулами, построенными из атомов углерода.

Типичная структурная схема однослойной УНТ и результат компьютерного расчета ее молекулярных орбиталей показаны на рис. 3.1. В вершинах всех шестиугольников и пятиугольников, изображенных белыми линиями, расположены атомы углерода в состоянии sp 2 -гибридизации. Для того, чтобы структура каркаса УНТ была хорошо видна, атомы углерода здесь не показаны. Но их не трудно себе представить. Серым тоном показан вид молекулярных орбиталей боковой поверхности УНТ.

Рис 3.1

Теория показывает, что структуру боковой поверхности однослойной УНТ можно представить себе как свернутый в трубку один слой графита. Понятно, что свертывать этот слой можно лишь в тех направлениях, при которых достигается совмещение гексагональной решетки самой с собой при замыкании цилиндрической поверхности. Поэтому УНТ имеют лишь определенный набор диаметров и классифицируются по векторам, указывающим направление свертывания гексагональной решетки. От этого зависят как внешний вид, так и вариации свойств УНТ. Три типичных варианта показаны на рис.3.2.

Набор возможных диаметров УНТ перекрывает диапазон от несколько меньше 1 нм до многих десятков нанометров. А длина УНТ может достигать десятков микрометров. Рекордные по длине УНТ уже превзошли границу в 1 мм.

Достаточно длинные УНТ (когда их длина намного больше диаметра) можно рассматривать как одномерный кристалл. На них можно выделить "элементарную ячейку", которая многократно повторяется вдоль оси трубки. И это отражается на некоторых свойствах длинных углеродных нанотрубок.

В зависимости от вектора свертывания графитового слоя (специалисты говорят: "от хиральности ") нанотрубки могут быть как проводниками, так и полупроводниками. УНТ так называемой "седловой" структуры всегда имеют довольно высокую, "металлическую" электропроводность.


Рис. 3.2

Разными могут быть и "крышки", замыкающие УНТ на торцах. Они имеют форму "половинок" разных фуллеренов. Основные их варианты показаны на рис. 3.3.

Рис. 3.3 Основные варианты "крышек" однослойной УНТ

Существуют также и многослойные УНТ . Некоторые из них похожи на графитовый слой, свернутый в свиток. Но большинство состоит из вставленных одна в другую однослойных трубок, связанных между собой силами ван дер Ваальса. Если однослойные УНТ практически всегда закрыты крышками, то многослойные УНТ бывают и частично открытыми. На них наблюдается обычно намного больше мелких дефектов структуры, чем на однослойных УНТ. Поэтому для применений в электронике преимущество пока отдают последним.

УНТ вырастают не только прямолинейными, но и криволинейными, согнутыми с образованием "колена", и даже полностью свернутыми в виде подобия тора. Нередко несколько УНТ прочно соединены между собой и образуют "жгуты".

Материалы, используемые для нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ), первым идентифицировал эти структуры как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм.

Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группы. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучом лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200°С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени. Так группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, «значительно упростив» технологию их синтеза.

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом -- методом каталитического пиролиза углеводородов (CVD), где в качестве катализатораиспользовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нанотрубку.

Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления, вследствие эффекта Гиббса-Томпсона. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

Строение и классификация нанотрубок

Углеродные нанотрубки

Углеродные нанотрубки (carbon nanotubes, CNTs) - молекулярные соединения, принадлежащие классу аллотропных модификаций углерода. Они представляют собой протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной от одного до нескольких микрон.

Рисунок 8. Углеродная нанотрубка

Нанотрубки состоят из одной или нескольких свернутых в трубку слоев, каждый из которых представляет гексагональную сетку графита (графен), основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Верхние концы трубок закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половины молекулы фуллерена .

Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру.

Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, т.е. поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода.

Параметр, указывающим координаты шестиугольника, который в результате сворачивания плоскости должен совпасть с шестиугольником, находящимся в начале координат, называется хиральностью нанотрубки. Хиральность нанотрубки определяет ее электрические характеристики.

Как показали наблюдения, выполненные с помощью электронных микроскопов, большинство нанотрубок состоят из нескольких графитовых слоев, либо вложенных один в другой, либо навитых на общую ось.

Однослойные нанотрубки (single-walled nanotubes, SWNTs) – простейший вид нанотрубок. Большинство из них имеют диаметр около 1 нм при длине, которая может быть во много тысяч раз больше.

Рисунок 9. Модель однослойной нанотрубки.

Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников.

Структура однослойных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего, это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы .



Рисунок 10. Модели поперечного сечения многослойных нанотрубок

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций, как в продольном, так и в поперечном направлении. Возможные разновидности поперечной структуры многослойных нанотрубок представлены нарисунок 10.

Структура типа "русской матрешки" (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга однослойных нанотрубок(рисунок 10 а). Последняя из приведённых структур (рисунок 10 б), напоминает свиток. Для приведённых структур расстояния между соседними графитовыми слоями близко к величине 0,34 нм, т.е. расстоянию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкретной экспериментальной ситуации зависит от условий синтеза нанотрубок.2.2 Получение углеродных нанотрубок

Наиболее распространенными методами синтеза нанотрубок являются электродуговой метод, лазерная абляция и химическое осаждение из газовой фазы (CVD).

Дуговой разряд (Arc discharge)- сущность этого метода состоит в получении углеродных нанотрубок в плазме дугового разряда, горящей в атмосфере гелия, на технологических установках для получения фуллеренов. Однако здесь используются другие режимы горения дуги: низкие плотности тока дугового разряда, более высокое давление гелия (~ 500 Торр), катоды большего диаметра. Чтобы получить максимальное количество нанотрубок, ток дуги должен быть 65-75 А, напряжение - 20-22 В, температура электронной плазмы - порядка 4000 К. В этих условиях графитовый анод интенсивно испаряется, поставляя отдельные атомы или пары атомов углерода, из которых на катоде или на охлажденных водой стенках камеры и формируются углеродные нанотрубки .

Для увеличения выхода нанотрубок в продуктах распыления в графитовый стержень вводится катализатор (смеси металлов группы железа), изменяется давление инертного газа и режима распыления.

В катодном осадке содержание нанотрубок достигает 60%. Образующиеся нанотрубки длиной до 40 мкм растут от катода перпендикулярно его поверхности и объединяются в цилиндрические пучки диаметром около 50 нм .

Типичная схема электродуговой установки для изготовления материала, содержащего нанотрубки и фуллерены, а также другие углеродные образования, показана на рисунке 11.

Рисунок 11. Схема установки для получения нанотрубок электродуговым методом.

Метод лазерной абляции (Laser ablation) был изобретен Ричардом Смалли и сотрудниками "Rice University" и основан на испарении графитовой мишени в высокотемпературной реакторе. Нанотрубки появляются на охлажденной поверхности реактора как конденсат испарения графита. Водоохлаждаемая поверхность может быть включена в систему сбора нанотрубок. Выход продукта в этом методе – около 70%. С его помощью получают преимущественно однослойные углеродные нанотрубки с контролируемым посредством температуры реакции диаметром. Однако стоимость данного метода намного дороже остальных.

Химическое осаждение из газовой фазы (Chemical vapor deposition, CVD) - метод каталитического осаждения паров углерода был выявлен еще в 1959 году, однако до 1993 года никто не предполагал, что в этом процессе можно получить нанотрубки.

Рисунок 12. Схема установки для получения нанотрубок методом химического осаждения.

В качестве катализатора используется мелкодисперсный металлический порошок (чаще всего никеля, кобальта, железа или их комбинаций), который засыпается в керамический тигель, расположенный в кварцевой трубке. Последняя, в свою очередь, помещается в нагревательное устройство, позволяющее поддерживать регулируемую температуру в области от 700 до 1000°С. По кварцевой трубке продувают смесь газообразного углеводорода и буферного газа. Типичный состав смеси C 2 H 2: N 2 в отношении 1:10. Процесс может продолжаться от нескольких минут до нескольких часов. На поверхности катализатора вырастают длинные углеродные нити, многослойные нанотрубки длиной до нескольких десятков микрометров с внутренним диаметром от 10 нм и внешним - 100 нм. Диаметр нанотрубок, выращенных таким способом, зависит от размера металлических частиц .

Этот механизм является наиболее распространенным коммерческим методом производства углеродных нанотрубок. Среди других методов получения нанотрубок CVD наиболее перспективен в промышленных масштабах благодаря наилучшему соотношению в плане цены на единицу продукции. Кроме того, он позволяет получать вертикально ориентированные нанотрубки на желаемом субстрате без дополнительного сбора, а также контролировать их рост посредством катализатора .

Широкие перспективы использования нанотрубок в материаловедении открываются при капсулировании внутрь углеродных нанотрубок сверхпроводящих кристаллов (например, ТаС). Возможность получения сверхпроводящих кристаллов, капсулированных в нанотрубки, позволяет изолировать их от вредного воздействия внешней среды, например, от окисления, открывая тем самым путь к более эффективному развитию соответствующих нанотехнологий.

Большая отрицательная магнитная восприимчивость нанотрубок указывает на их диамагнитные свойства. Предполагают, что диамагнетизм нанотрубок обусловлен протеканием электронных токов по их окружности. Величина магнитной восприимчивости не зависит от ориентации образца, что связано с его неупорядоченной структурой.

В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д.

Материал нанотрубок с успехом может использоваться в качестве несущей подложки для осуществления гетерогенного катализа, причем каталитическая активность открытых нанотрубок заметно превышает соответствующий параметр для замкнутых нанотрубок.

Возможно использование нанотрубок с высокой удельной поверхность в качестве электродов для электролитических конденсаторов с большой удельной мощностью. Углеродные нанотрубки хорошо себя зарекомендовали в экспериментах по использованию их в качестве покрытия, способствующего образованию алмазной пленки.

Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники.

Нанотрубки могут служить основой тончайшего измерительного инструмента, используемого для контроля неоднородностей поверхности электронных схем.

Интересные применения могут получить нанотрубки при заполнении их различными материалами. При этом нанотрубка может использоваться как в качестве носителя заполняющего ее материала, так и в качестве изолирующей оболочки, предохраняющей данный материал от электрического контакта, либо от химического взаимодействия с окружающими объектами.

Одностенные нанотрубки

Структура одностенных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой.

Многостенные нанотрубки

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита.

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера.

Получение углеродных нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ) первым идентифицировал эти структуры, как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм. Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группа. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. При этом существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучем лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени.

Т.о. группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, "значительно упростив" технологию их синтеза. Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом - методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из варианов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур. Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла.

При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное "выделение" избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава, увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С представляющую собой цилиндрический каркас-нанотрубку. Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа "бамбук" или вложенные наноконусы. Полученные материалы только состоят из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»