Тема: Преобразование степенных и иррациональных выражений - Документ. Преобразование рациональных и иррациональных выражений

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

При преобразовании арифметических корней используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак корня. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом примере разделить указанные показатели на 3, то получим

Пример 6. Упростить выражения: а)

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня и показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем А теперь в полученном результате разделив показатели корня и степени подкоренного выражения на 3, получим

Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.

Yandex.RTB R-A-339285-1

Что такое иррациональные выражения?

При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.

Определение 1

Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.

Основываясь на данном определении, мы имеем, что x - 1 , 8 3 · 3 6 - 1 2 · 3 , 7 - 4 · 3 · (2 + 3) , 4 · a 2 d 5: d 9 2 · a 3 5 - это все выражения иррационального типа.

При рассмотрении выражения x · x - 7 · x + 7 x + 3 2 · x - 8 3 получаем, что выражение является рациональным. К рациональным выражениям относят многочлены и алгебраические дроби. Иррациональные включают в себя работу с логарифмическими выражениями или подкоренными выражениями.

Основные виды преобразований иррациональных выражений

При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.

Пример 1

Преобразовать выражение 9 + 3 3 - 2 + 4 · 3 3 + 1 - 2 · 3 3 .

Решение

Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что

81 + 3 3 - 2 + 4 · 3 3 + 1 - 2 · 3 3 = = 9 + 3 3 - 2 + 4 · 3 3 + 1 - 2 · 3 3

Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим

9 + 3 3 - 2 + 4 · 3 3 + 1 - 2 · 3 3 = = 9 - 2 + 1 + 3 3 + 4 · 3 3 - 2 · 3 3 = = 8 + 3 · 3 3
Ответ: 9 + 3 3 - 2 + 4 · 3 3 + 1 - 2 · 3 3 = 8 + 3 · 3 3

Пример 2

Представить выражение x + 3 5 2 - 2 · x + 3 5 + 1 - 9 в виде произведения двух иррациональных с использованием формул сокращенного умножения.

Решения

x + 3 5 2 - 2 · x + 3 5 + 1 - 9 = = x + 3 5 - 1 2 - 9

Представляем 9 в виде 3 2 , причем применим формулу разности квадратов:

x + 3 5 - 1 2 - 9 = x + 3 5 - 1 2 - 3 2 = = x + 3 5 - 1 - 3 · x + 3 5 - 1 + 3 = = x + 3 5 - 4 · x + 3 5 + 2

Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.

Ответ:

x + 3 5 2 - 2 · x + 3 5 + 1 - 9 = = x + 3 5 - 4 · x + 3 5 + 2

Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.

Преобразование подкоренного выражения

Важно то, что выражение, находящееся под знаком корня, можно заменить на тождественно равное ему. Данное утверждение дает возможность работать с подкоренным выражением. К примеру, 1 + 6 можно заменить на 7 или 2 · a 5 4 - 6 на 2 · a 4 · a 4 - 6 . Они тождественно равные, поэтому замена имеет смысл.

Когда не существует а 1 , отличное от a , где справедливо неравенство вида a n = a 1 n , тогда такое равенство возможно только при а = а 1 . Значения таких выражений равны с любыми значениями переменных.

Использование свойств корней

Свойства корней применяют для упрощения выражений. Чтобы применить свойство a · b = a · b , где a ≥ 0 , b ≥ 0 , тогда из иррационального вида 1 + 3 · 12 можно стать тождественно равным 1 + 3 · 12 . Свойство. . . a n k n 2 n 1 = a n 1 · n 2 · , . . . , · n k , где a ≥ 0 говорит о том, что x 2 + 4 4 3 можно записать в форме x 2 + 4 24 .

Имеются некоторые нюансы при преобразовании подкоренных выражений. Если имеется выражение, то - 7 - 81 4 = - 7 4 - 81 4 записать не можем, так как формула a b n = a n b n служит только для неотрицательного a и положительного b . Если свойство применить правильно, тогда получится выражение вида 7 4 81 4 .

Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.

Внесение множителя под знак корня

Определение 3

Внести под знак корня – значит заменить выражение B · C n , а B и C являются некоторыми числами или выражениями, где n – натуральное число, которое больше 1 , равным выражением, которое имеет вид B n · C n или - B n · C n .

Если упростить выражение вида 2 · x 3 , то после внесения под корень, получаем, что 2 3 · x 3 . Такие преобразования возможны только после подробного изучения правил внесения множителя под знак корня.

Вынесение множителя из-под знака корня

Если имеется выражение вида B n · C n , тогда его приводят к виду B · C n , где имеется нечетные n , которые принимают вид B · C n с четными n , В и C являются некоторыми числами и выражениями.

То есть, если брать иррациональное выражение вида 2 3 · x 3 , вынести множитель из-под корня, тогда получим выражение 2 · x 3 . Или x + 1 2 · 7 даст в результате выражение вида x + 1 · 7 , которое имеет еще одну запись в виде x + 1 · 7 .

Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.

Преобразование дробей, содержащих корни

Иррациональное выражение может быть как натуральным числом, так и в виде дроби. Для преобразования дробных выражений большое внимание обращают на его знаменатель. Если взять дробь вида (2 + 3) · x 4 x 2 + 5 3 , то числитель примет вид 5 · x 4 , а, использовав свойства корней, получим, что знаменатель станет x 2 + 5 6 . Исходную дробь можно будет записать в виде 5 · x 4 x 2 + 5 6 .

Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что

X + 2 · x - 3 · x 2 + 7 4 = x + 2 · x - (- 3 · x 2 + 7 4) = x + 2 · x 3 · x 2 - 7 4

Сокращение дроби чаще всего используется при упрощении. Получаем, что

3 · x + 4 3 - 1 · x x + 4 3 - 1 3 сокращаем на x + 4 3 - 1 . Получим выражение 3 · x x + 4 3 - 1 2 .

Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.

Если взять дробь вида 2 · x - y x + y , то необходимо вводить новые переменные u = x и v = x , тогда заданное выражение поменяет вид и станет 2 · u 2 - v 2 u + v . Числитель следует разложить на многочлены по формуле, тогда получим, что

2 · u 2 - v 2 u + v = 2 · (u - v) · u + v u + v = 2 · u - v . После выполнения обратной замены придем к виду 2 · x - y , которое равно исходному.

Допускается приведение к новому знаменателю, тогда необходимо числитель умножать на дополнительный множитель. Если взять дробь вида x 3 - 1 0 , 5 · x , тогда приведем к знаменателю x . для этого нужно умножить числитель и знаменатель на выражение 2 · x , тогда получаем выражение x 3 - 1 0 , 5 · x = 2 · x · x 3 - 1 0 , 5 · x · 2 · x = 2 · x · x 3 - 1 x .

Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.

Избавление от иррациональности в знаменателе

Когда выражение избавляется от корня в знаменателе путем преобразования, то это называется избавлением от иррациональности. Рассмотрим на примере дроби вида x 3 3 . После избавления от иррациональности получаем новую дробь вида 9 3 · x 3 .

Переход от корней к степеням

Переходы от корней к степеням необходимы для быстрого преобразования иррациональных выражений. Если рассмотреть равенство a m n = a m n , то видно, что его использование возможно, когда a является положительным числом, m –целым числом, а n – натуральным. Если рассматривать выражение 5 - 2 3 , то иначе имеем право записать его как 5 - 2 3 . Эти выражения равнозначны.

Когда под корнем имеется отрицательное число или число с переменными, тогда формула a m n = a m n не всегда применима. Если нужно заменить такие корни (- 8) 3 5 и (- 16) 2 4 степенями, тогда получаем, что - 8 3 5 и - 16 2 4 по формуле a m n = a m n не работаем с отрицательными а. для того, чтобы подробно разобрать тему подкоренных выражений и их упрощений, необходимо изучать статью о переходе от корней к степеням и обратно. Следует помнить о том, что формула a m n = a m n применима не для всех выражений такого вида. Избавление от иррациональности способствует дальнейшему упрощению выражения, его преобразованию и решению.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Выражения, содержащие знак радикала (корень), называются иррациональными.

Арифметическим корнем натуральной степени $n$ из неотрицательного числа а называется некоторое неотрицательное число, при возведении которого в степень $n$ получается число $а$.

$(√^n{a})^n=a$

В записи $√^n{a}$, «а» называется подкоренным числом, $n$ - показателем корня или радикала.

Свойства корней $n$-ой степени при $а≥0$ и $b≥0$:

1. Корень произведения равен произведению корней

$√^n{a∙b}=√^n{a}∙√^n{b}$

Вычислить $√^5{5}∙√^5{625}$

Корень произведения равен произведению корней и наоборот: произведение корней с одинаковым показателем корня равно корню из произведения подкоренных выражений

$√^n{a}∙√^n{b}=√^n{a∙b}$

$√^5{5}∙√^5{625}=√^5{5∙625}=√^5{5∙5^4}=√^5{5^5}=5$

2. Корень из дроби – это отдельно корень из числителя, отдельно из знаменателя

$√^n{{a}/{b}}={√^n{a}}/{√^n{b}}$, при $b≠0$

3. При возведении корня в степень, в эту степень возводится подкоренное выражение

$(√^n{a})^k=√^n{a^k}$

4. Если $а≥0$ и $n,k$ - натуральные числа, больше $1$, то справедливо равенство.

$√^n{√^k{a}}=√^{n∙k}a$

5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится.

$√^{n∙m}a^{k∙m}=√^n{a^k}$

6. Корень нечетной степени можно извлекать из положительных и отрицательных чисел, а корень четной степени – только из положительных.

7. Любой корень можно представить в виде степени с дробным (рациональным) показателем.

$√^n{a^k}=a^{{k}/{n}}$

Найдите значение выражения ${√{9∙√^11{с}}}/{√^11{2048∙√с}}$ при $с>0$

Корень произведения равен произведению корней

${√{9∙√^11{с}}}/{√^11{2048∙√с}}={√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}$

Корни из чисел мы можем извлечь сразу

${√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}={3∙√{√^11{с}}}/{2∙√^11{√с}}$

$√^n{√^k{a}}=√^{n∙k}a$

${3∙√{√^11{с}}}/{2∙√^11{√с}}={3∙√^22{с}}/{2∙√^22{с}}$

Корни $22$ степени из $с$ мы сокращаем и получаем ${3}/{2}=1,5$

Ответ: $1,5$

Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.

Найдите значение выражения $√{(с-7)^2}+√{(с-9)^2}$ при $7 < c < 9$

Если над корнем не стоит показатель, то это означает, что мы работаем с квадратным корнем. Его показатель равен двум, т.е. четный. Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.

$√{(с-7)^2}+√{(с-9)^2}=|c-7|+|c-9|$

Определим знак выражения, стоящего под знаком модуля, исходя из условия $7 < c < 9$

Для проверки возьмем любое число из заданного промежутка, например, $8$

Проверим знак каждого модуля

$8-9<0$, при раскрытии модуля пользуемся правилом: модуль положительного числа равен самому себе, отрицательного числа - равен противоположному значению. Так как у второго модуля знак отрицательный, при раскрытии меняем знак перед модулем на противоположный.

$|c-7|+|c-9|=(с-7)-(с-9)=с-7-с+9=2$

Свойства степеней с рациональным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n∙a^m=a^{n+m}$

2. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n∙m}$

3. При возведении в степень произведения в эту степень возводится каждый множитель

$(a∙b)^n=a^n∙b^n$

4. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

ПРАКТИЧЕСКАЯ РАБОТА № 1

Тема: « Преобразование алгебраических, рациональных, иррациональных, степенных выражений».

Цель работы: научиться выполнять преобразование алгебраических, рациональных, иррациональных, степенных выражений с использованием формул сокращенного умножения, основных свойств корней и степеней.

Теоретические сведения.

КОРНИ НАТУРАЛЬНОЙ СТЕПЕНИ ИЗ ЧИСЛА, ИХ СВОЙСТВА.

Корень n – степени : , n - показатель корня , а – подкоренное выражение

Если n – нечетное число, то выражение имеет смысл при а

Если n – четное число, то выражение имеет смысл при

Арифметический корень:

Корень нечетной степени из отрицательного числа:

ОСНОВНЫЕ СВОЙСТВА КОРНЕЙ

    Правило извлечения корня из произведения:

    Правило извлечения корня из корня:

    Правило вынесения множителя из под знака корня:

    Внесение множителя под знак корня:

,

    Показатель корня и показатель подкоренного выражения можно умножить на одно и тоже число.

    Правило возведения корня в степень.

СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

= , a – основание степени, n – показатель степени

Свойства:

    При умножении степеней с одинаковыми основаниями показатели складываются, а основание остается неизменным.

    При делении степеней с одинаковыми основаниями показатели вычитаются, а основание остается неизменным.

    При возведении степени в степень показатели перемножаются.

    При возведении в степень произведения двух чисел, каждое число возводят в эту степень, а результаты перемножают.

    Если в степень возводят частное двух чисел, то в эту степень возводят числитель и знаменатель, а результат делят друг на друга.

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ

Свойства:

при r >0 > при r <0

7 . Для любого рациональных чисел r и s из неравенства > следует

> при a >1 при

Формулы сокращённого умножения.

Пример 1. Упростите выражение .

Применим свойства степеней (умножение степеней с одинаковым основанием и деление степеней с одинаковым основанием): .

Ответ: 9m 7 .

Пример 2. Сократить дробь:

Решение.Так область определения дроби все числа, кроме х ≠ 1 и х ≠ -2.Вместе с тем .Сократив дробь, получим .Область определения полученной дроби: х ≠ -2, т.е. шире, чем область определения первоначальной дроби. Поэтому дроби и равны при х ≠ 1 и х ≠ -2.

Пример 3. Сократить дробь:

Пример 4. Упростить:

Пример 5 .Упростить:

Пример 6. Упростить:

Пример 7. Упростить:

Пример 8. Упростить:

Пример 9. Вычислить: .

Решение.

Пример 10. Упростить выражение:

Решение.

Пример 11 .Сократить дробь , если

Решение..

Пример 12. Освободиться от иррациональности в знаменателе дроби

Решение. В знаменателе имеем иррациональность 2-й степени, поэтому помножим и числитель, и знаменатель дроби на сопряженное выражение, то есть сумму чисел и , тогда в знаменателе будем иметь разность квадратов, которая и ликвидирует иррациональность.

ВАРИАНТ - I

1. Упростите выражение:


, где а -рациональное число,
b – натуральное число

,

5. Упростить:

;

,
,

10. Выполните действие:

8. Сократите дробь

9. Выполните действие

ВАРИАНТ - II

1. Упростите выражение:

2. Найдите значение выражения:

3. Представьте степень с дробным показателем в виде корня

4. Привести указанное выражение к виду
, где а- рациональное число,
b – натуральное число

,

5. Упростить:

;

6. Замените арифметические корни степенями с дробным показателем

,
,

7. Представьте выражение в виде дроби, знаменатель которой не содержит знака корня

10. Выполните действие:

8. Сократите дробь

9. Выполните действие

ВАРИАНТ - III

1. Выполните действие:

2. Найдите значение выражения:

3. Представьте степень с дробным показателем в виде корня

4. Привести указанное выражение к виду
, где а -рациональное число,
b – натуральное число

,

5. Упростить:

;

6. Замените арифметические корни степенями с дробным показателем

,
,

7. Представьте выражение в виде дроби, знаменатель которой не содержит знака корня

10. Выполните действие:

8. Сократите дробь

9. Выполните действие

ВАРИАНТ - IV

1. Выполните действие:

2. Найдите значение выражения:

3. Представьте степень с дробным показателем в виде корня


,

4. Привести указанное выражение к виду
, где а- рациональное число,
b – натуральное число

,

5. Упростить:

Тождественные преобразования выражений – это одна из содержательных линий школьного курса математики. Тождественные преобразования широко используются при решении уравнений, неравенств, систем уравнений и неравенств. Кроме того тождественные преобразования выражений способствуют развитию сообразительности, гибкости и рациональности мышления.

Предлагаемые материалы предназначены для учащихся 8 класса и включают в себя теоретические основы тождественных преобразований рациональных и иррациональных выражений, типы задач на преобразование таких выражений и текст контрольной работы .

1. Теоретические основы тождественных преобразований

Выражениями в алгебре называют записи, состоящие из чисел и букв, соединенных знаками действий.

https://pandia.ru/text/80/197/images/image002_92.gif" width="77" height="21 src=">.gif" width="20" height="21 src="> – алгебраические выражения.

В зависимости от операций различают рациональные и иррациональные выражения.

Алгебраические выражения называют рациональными, если относительно входящих в него букв а , b , с , … не выполняется никаких других операций, кроме операций сложения, умножения, вычитания, деления и возведения в целую степень.

Алгебраические выражения, содержащие операции извлечения корня из переменной или возведения переменной в рациональную степень, не являющуюся целым числом, называются иррациональными относительно этой переменной.

Тождественным преобразованием данного выражения называется замена одного выражения другим, тождественно равным ему на некотором множестве.

В основе тождественных преобразований рациональных и иррациональных выражений лежат следующие теоретические факты.

1. Свойства степеней с целым показателем:

, n ÎN; а 1=а ;

, n ÎN, а ¹0; а 0=1, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0, b ¹0;

, а ¹0, b ¹0.

2. Формулы сокращенного умножения:

где а , b , с – любые действительные числа;

Где а ¹0, х 1 и х 2 – корни уравнения .

3. Основное свойство дроби и действия над дробями:

, где b ¹0, с ¹0;

; ;

4. Определение арифметического корня и его свойства:

; , b ¹0; https://pandia.ru/text/80/197/images/image026_24.gif" width="84" height="32">; ; ,

где а , b – неотрицательные числа, n ÎN, n ³2, m ÎN, m ³2.

1. Типы упражнений на преобразование выражений

Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип : явно указано то преобразование, которое необходимо выполнить.

Например.

1. Представьте в виде многочлена .

При выполнении указанного преобразования использовали правила умножения и вычитания многочленов, формулу сокращенного умножения и приведение подобных слагаемых.

2. Разложите на множители: .

При выполнении преобразования использовали правило вынесения общего множителя за скобку и 2 формулы сокращенного умножения.

3. Сократите дробь:

.

При выполнении преобразования использовали вынесение общего множителя за скобку, переместительный и сократительный законы, 2 формулы сокращенного умножения, действия над степенями.

4. Вынесите множитель из-под знака корня, если а ³0, b ³0, с ³0: https://pandia.ru/text/80/197/images/image036_17.gif" width="432" height="27">

Использовали правила действий над корнями и определение модуля числа.

5. Избавьтесь от иррациональности в знаменателе дроби .

Второй тип упражнений – это упражнения, в которых явно указано то главное преобразование, которое необходимо выполнить. В таких упражнениях требование обычно сформулировано в одном из видов: упростить выражение, вычислить. При выполнении таких упражнений необходимо прежде всего выявить, какие и в каком порядке необходимо выполнить преобразования, чтобы выражение приняло более компактный вид, чем данное, или получился числовой результат.

Например

6. Упростите выражение:

Решение:

.

Использовали правила действий над алгебраическими дробями и формулы сокращенного умножения.

7. Упростить выражение:

.

Если а ³0, b ³0, а ¹b .

Использовали формулы сокращенного умножения, правила сложения дробей и умножения иррациональных выражений, тождество https://pandia.ru/text/80/197/images/image049_15.gif" width="203" height="29">.

Использовали операцию выделения полного квадрата, тождество https://pandia.ru/text/80/197/images/image053_11.gif" width="132 height=21" height="21">, если .

Доказательство:

Так как , то и или или или , т. е. .

Использовали условие и формулу суммы кубов.

Надо иметь в виду, что условия, связывающие переменные, могут быть заданы и в упражнениях первых двух типов.

Например.

10. Найдите , если .



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»