Воздействия электрического тока на человекаОпасные факторы производственной среды. Профилактика травматизма

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Протекая через тело человека, электрический ток вызывает тепловое, электрохимическое и биологическое действия.

Тепловое действие тока проявляется в нагреве и ожогах отдельных участков тела; электрохимическое в разложении крови и других органических жидкостей; биологическое действие тока связано с раздражением и возбуждением живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышц легких и мышцы сердца, и может вызвать прекращение деятельности органов кровообращения и дыхания.

Указанные действия тока могут привести к двум видам поражения: электрическим травмам и электрическим ударам.

К электрическим травмамотносятся электрические ожоги, электрические знаки, электрометаллизация кожи, электроофтальмия и механические повреждения.

Причиной электрических ожогов может быть действие электрической дуги (дуговой ожог) или прохождение тока через тело человека в результате контакта его с токоведущей частью (токовый ожог). Токовый ожог является, как правило, ожогом кожи в месте контакта тела с токоведущей частью вследствие преобразования электрической энергии в тепловую. Так как кожа человека обладает во много раз большим сопротивлением, чем другие ткани тела, в ней выделяется большая часть тепла. Токовые ожоги возникают в электроустановках, главным образом, напряжением до 1000 В.

Дуговой ожог обусловлен воздействием на тело электрической дуги, которая создается при разряде в случае приближения человека к токоведущим частям, находящимся под напряжением выше 1000 В, или при коротких замыканиях в электроустановках

напряжением до 1000 В. Электрическая дуга, обладающая высокой температурой, может вызвать обширные ожоги тела и привести к смертельным случаям.

Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой омертвевшие пятна на коже человека, подвергшегося действию тока. В большинстве случаев электрические знаки безболезненны и поддаются лечению.

Электрометаллизация кожи обусловлена проникновением в верхние ее слои мельчайших частичек металла, расплавившихся под действием электрической дуги. Впоследствии поврежденный участок восстанавливается и приобретает нормальный вид, исчезают болезненные ощущения. Весьма опасными могут быть случаи поражения глаз, нередко приводящие к потере зрения. Поэтому работы, при которых возможны подобные случаи, должны выполняться в защитных очках. Вместе с тем одежда работающего должна быть застегнута на все пуговицы, ворот закрыт, а рукава опущены и застегнуты у запястьев рук.

Нередко одновременно с металлизацией кожи возможен ожог электрической дугой.

Электроофтальмия воспаление наружных оболочек глаз, возникающее в результате воздействия потока ультрафиолетовых лучей. Подобное облучение возможно при возникновении электрической дуги, например, при коротких замыканиях, которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей.

Предупреждение электроофтальмии при обслуживании электроустановок обеспечивается применением специальных защитных очков, которые одновременно защищают глаза от брызг расплавленного металла.

Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока. Это может привести к падению с высоты, вывихам суставов, переломам и т. д.

Электрические удары относятся к виду поражений, которые имеют место при воздействии малых токов (порядка нескольких сотен миллиампер) и напряжения до 1000 В. При электрических ударах исход воздействия тока на человека может быть различным от легкого, едва ощутимого судорожного сокращения мышц пальцев до смертельного поражения, связанного с прекращением работы сердца или органов дыхания.

Степень поражения током при электрических ударах характеризуется его пороговым значением. Характерными являются следующие токи: пороговый ощутимый, пороговый неотпускающий, пороговый фибрилляционный.

Пороговый ощутимый ток наименьшее значение ощутимого тока, вызывающего при прохождении через организм человека ощутимые раздражения.

Пороговый неотпускающий ток наименьшее значение неотпускающего тока, вызывающего при прохождения через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник.

Пороговый фибрилляционный ток наименьшее значение фиб- рилляционного тока, вызывающего при прохождении через организм фибрилляцию сердца.

Как будет показано ниже, ток, протекающий через человека, колеблется в широких пределах и зависит от многочисленных трудноучитываемых физических и физиологических явлений. В отличие от прошлых лет в настоящее время в технике электробезопасности преобладает мнение о нецелесообразности нормирования в промышленности и в быту опасных и безопасных пороговых значений напряжения и тока.

Таблица 1. Характер воздействия электрического тока на организм человека

Значение тока, мА

Переменный ток, 50 Гц

Постоянный ток

Начало ощущения слабый зуд, пощипывание кожи под электродами

Не ощущается

Ощущение тока распространяется. и на запястье руки, слегка сводит руку

Не ощущается

Болевые ощущения усиливаются во всей кисти руки, сопровождаясь судорогами; слабые боли ощущаются во всей руке, вплоть до предплечья. Руки, как правило, можно оторвать от электродов

Начало ощущения впечатление нагрева кожи под электродом

Сильные боли и судороги во всей руке, включая предплечье. Руки трудно, но еще можно оторвать от электродов

Усиление ощущения нагрева

Едва переносимые боли во всей руке. Во многих случаях руки невозможно оторвать от электродов. С увеличением продолжительности протекания тока боли усиливаются

Еще большее усиление ощущения нагрева как под электродами, так и в прилегающих областях кожи

Руки парализуются мгновенно, оторвать от электродов невозможно. Сильные боли, дыхание затруднено

Еще большее усиление ощущения нагрева кожи. Незначительные сокращения МЫШЦ РУК

Очень сильная боль в руках и в груди. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания

Ощущения сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц рук

Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца

Ощущения очень сильного нагрева, сильные боли во всей области груди. Затруднение дыхания. Руки невозможно оторвать от электродов

Фибрилляция сердца через 23 с, еще через несколько секунд паралич сердца

Паралич дыхания при длительном протекании тока

То же действие за меньшее время

Фибрилляция сердца через 23 с, еще через несколько секунд паралич дыхания

Дыхание парализуется немедленно через дали секунды. Фибрилляция сердца, как правило, не наступает. Возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожога, разрушение тканей

Усиление ощущения нагрева

Основные факторы, влияющие на исход поражения человека электрическим током, следующие.

Путь тока в теле человека.

Путь тока в теле человека по-разному влияет на поражение. С некоторых пор этому вопросу стали придавать большое значение, так как анализ несчастных случаев позволил установить зависимость их от вида так называемой петли тока, т. е. от пути тока через тело человека. Наиболее часто встречаются следующие четыре петли: правая рука ноги, левая рука ноги, рука рука, нога нога. В большинстве случаев цепь тока возникает по пути правая рука ноги. Наиболее распространенным и, как правило, сопровождающимся тяжелыми повреждениями является путь тока (петля тока) рука рука, когда ток проходит через жизненно важные органы, в частности через сердце.

Как показывают анализы несчастных случаев, примерно 55% всех электрических ударов происходят по двум основным путям: от руки или рук к ногам и от одной руки к другой руке. Однако смертельные поражения составляют половину от приведенной цифры несчастных случаев.

Опасность определяется не тем, протекает или не протекает ток через область сердца, а тем, каким участком тела касается человек токоведущих частей. Наиболее уязвимыми местами человеческого тела являются тыльная часть кисти, шея, висок; передняя часть ноги, плечо. Образование электрической цепи через уязвимые места приводит к смертельным исходам даже при очень малых токах и напряжениях.

Электрическое сопротивление тела человека.

Электрическое сопротивление цепи, по которой проходит ток через тело человека, состоит из электрического сопротивления проводов активного и индуктивного; электрического сопротивления машин, аппаратов или приборов, оказавшихся последовательно включенными с телом человека; электрического сопротивления переходного контакта между токоведущими частями оборудования, которых коснулся человек; собственного электрического сопротивления тела человека.

Сопротивление тела человека представляет собой сложный комплекс биофизических, биохимических и других явлений. Его принято делить на две части: сопротивление кожи и кровеносных сосудов и сопротивление нервов. Верхний слой кожи обладает заметным сопротивлением по сравнению с сопротивлением внутренних органов. Наличие в коже потовых желез сильно изменяет ее электрическое сопротивление. Сопротивление нервов очень мало. Именно эта составляющая общего сопротивления играет наиболее существенную роль в токовой проводимости, а стало быть, и в исходе электротравмы. На электрическое сопротивление живого организма оказывает влияние большое число факторов. Существенное значение при этом имеет состояние кожи: повреждения рогового слоя (поры, царапины, ссадины и другие микротравмы); увлажнение водой или потом; загрязнение различными веществами и в особенности хорошо проводящими электрический ток (металлическая или угольная пыль, окалина и т. п.).

Сопротивление тела человека, т. е. сопротивление между двумя электродами, наложенными на поверхность тела, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух сопротивлений наружного (рогового) слоя кожи и одного, называемого внутренним сопротивлением тела, которое включает сопротивление внутреннего слоя кожи и сопротивление внутренних тканей тела. В целом указанные сопротивления имеют активную и емкостную составляющие.

При практических расчетах необходимо знать и оценивать численные значения сопротивления электрической цепи человека между двумя электродами, наложенными на тело. Род тока и напряжение. Исследования (см. табл. 1), практика эксплуатации электроустановок показывают, что постоянный ток по сравнению с переменным тех же значений менее опасен для человека. Объясняется это в первую очередь тем, что из-за наличия емкостной составляющей в электрическом сопротивлении тела человека плотность тока, а следовательно, и напряженность поля в тканях будут при равных напряжениях в случае поражения переменным током больше, чем при поражении постоянным. Сказывается также то существенное обстоятельство, что при переменном токе поражающее амплитудное напряжение может быть в 1,4 раза больше действующего напряжения. И наконец, вероятность образования электрической цепи через уязвимые места при переменном токе больше, чем при постоянном, ибо сети переменного тока охватывают несравненно большее число установок, к тому же самых различных, тогда как сети постоянного тока имеют более ограниченные и специализированные применения.

Сказанное об относительной опасности поражения постоянным и переменным токами справедливо лишь для небольших напряжений порядка 250 - 300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный с частотой 50 ГЦ, из-за возможности отброса пострадавшего от токоведущих частей, находящихся под высоким напряжением, что крайне редко наблюдается при аналогичных поражениях переменным током. Отброшенный может получить механическую травму, в результате которой (например, при падении) не исключен и смертельный исход.

В целом следует отметить, что вопрос о сравнительной опасности для человека переменного и постоянного тока нуждается в дальнейшем изучении, что позволит расширить наши представления о биофизике электротравмы.

Напряжение, приложенное к электрической цепи, приводит к преобразованию электрических явлений в другие явления, воздействие которых на организм человека и вызывает непосредственно тот или иной исход поражения. Сложилось и существует мнение, что исход поражения электрическим током зависит от напряжения сети: чем выше это напряжение, тем опаснее последствия электротравмы. В статистических отчетностях учет электро-травм ведется с подразделением по значениям напряжения сети. По этому же признаку анализируются данные и классифицируются элекгротравмы, проводятся исследования, эксперименты. Между тем такое изучение электротравмы далеко не всегда дает правильное представление об этом поражающем факторе.

Действующие у нас Правила делят все установки по напряжению ниже и выше 1000 В. В установках напряжением выше 1000 В основной причиной смертельных поражений являются ожоги, вызванные прохождением электрического тока. В установках ниже 1000 В основная причина поражения связана с непосредственным действием тока. Статистика показывает, что электротравмы со смертельным исходом имеют место преимущественно в установках до 1000 В.

Смертельные поражения бывают и при малых напряжениях (65, 36, 24, 12 В). Их анализ показывает, что они обусловлены не только фибрилляционным током, который нельзя получить при этих напряжениях. Поражения от 12 до 65 В могут привести к смертельному исходу лишь при особых обстоятельствах, например, если электрическая цепь возникает через уязвимые к току места, если неблагоприятны условия внешней среды. Возможны также и другие причины смертельного исхода, пока еще недостаточно изученные.

Суммируя сказанное в отношении отсутствия прямой зависимости между исходом поражения и напряжением, током, констатируем, что невозможно с высокой точностью нормировать в промышленности (и в быту) опасные и безопасные пороговые значения тока и напряжения.

Длительность существования электрической цепи через тело человека.

Исход поражения электрическим током связан с фактором времени. При анализе несчастных случаев этому параметру уделяется большое внимание, особенно если учесть наличие противоречий в оценке опасного (и безопасного) времени прохождения тока через человека. С одной стороны, наблюдаются поражения с тяжелым исходом даже при небольших токах и очень малой длительности прохождения тока через человека (доли секунды), с другой случаи с благоприятным исходом (исключая ожоги) при длительности поражения в несколько секунд и более.

Из-за приведенных противоречий не представляется возможным строго обосновать зависимость исхода поражения от продолжительности существования электрической цепи.

Влияние частоты

Из приведенной выше формулы полного сопротивления тела человека следует, что с увеличением частоты переменного тока сопротивление уменьшается, что ведет к увеличению тока и повышению опасности поражения. Однако практика показывает, что этот вывод справедлив лишь в пределах определенных частот. Долгое время считалось, что в области низких частот наибольшей опасностью обладает 50-периодный ток. При дальнейшем повышении частоты в пределах 50 - 400 Гц ток сохраняет примерно одинаковые значения. Дальнейшее повышение частоты снижает опасность поражения. Но вредно или не вредно это для организма человека, утвердительного ответа пока не существует.

Отмечается сравнительная опасность для человека выпрямленного тока. Наличие в нем частотных составляющих утяжеляет исход электротравмы. Пока это малоизученный раздел электробезопасности.

Воздействие окружающей среды.

Окружающая среда во многих случаях может оказывать влияние на поражение человека электрическим током. К факторам этого влияния относятся атмосферное давление, температура, влажность, электрическое или магнитное поля и др.

Повышение температуры воздуха влияет на потоотделение у человека, в результате чего падает электрическое сопротивление его тела и возрастает опасность поражения электрическим током.

Аналогичные явления связаны также с повышенной влажностью. Здесь отмечается снижение не только электрического сопротивления, но и общей сопротивляемости организма электрическому току.

Влияние указанных двух факторов температуры и влажности зафиксировано в нормативных документах.

Третий атмосферный фактор давление окружающего воздуха также оказывает влияние на чувствительность к электрическому току. При повышении давления опасность поражения уменьшается. Так, например, статистика показывает, что при подводной электросварке не было зарегистрировано смертельных и тяжелых электротравм, хотя случаи соприкосновения водолазов, работающих под водой, с токоведущими элементами и контактами отмечались неоднократно.

Обратная картина была установлена для пониженного атмосферного давления, что особенно существенно в связи с электрификацией горных районов. Экспериментально доказано, что пониженноеатмосферное давление увеличивает опасность электрического тока для живых организмов.

Медико-биологические свойства человека

Анализ несчастных случаев при поражении электрическим током показывает, что исход поражения связан с медико-биологическими особенностями человека, состоянием его здоровья. Физически здоровые и крепкие люди легче переносят электротравмы, нежели бальные и слабые. Люди, страдающие болезнями кожи, сердечно-сосудистыми, нервными заболеваниями, более восприимчивы к электрическому току.

Поэтому правила техники безопасности при эксплуатации электроустановок предусматривают медицинский отбор персонала для обслуживания электроустановок. Отбор осуществляется при поступлении на работу, периодические осмотры в сроки, устанавливаемые Минздравом в соответствии со списком болезней и расстройств, препятствующих допуску к работе. Отбор преследует и другую цель: не допустить к обслуживанию электроустановок людей с заболеваниями, которые могут мешать их производственной работе или служить причиной ошибочных действий, опасных для других лиц (неразличение цвета сигнала из-за порока зрения, невозможность подать четкую команду из-за болезни горла или заикания и т. п.).

Кроме того, правила техники безопасности не допускают к обслуживанию электроустановок лиц моложе 18 лет и не имеющих определенных знаний в области электробезопасности, соответствующих объему и условиям выполняемых ими работ.

Находясь под воздействием электрического напряжения, организм человека ведет себя в точности, как электрический проводник, поскольку имеет в составе большой объем жидкости (порядка 80% от общей массы тела). Любая жидкость (внутриклеточная, в составе крови, в мышцах, коже) представляет собой электролит, хорошо проводящий электрический ток.

Исходя из этого, под действием приложенного потенциала тело проводит ток, воздействующий на живой организм и способный вызвать в нем необратимые изменения, которые заканчиваются травмами или смертью.

Действие тока

Двигаясь сквозь тело человека, носители заряда вызывают различные виды воздействия, зависящие от времени, условий и величины:

  • Физиологическое (биологическое) воздействие тока. Наиболее чувствительное воздействие электрического тока на организм человека, и наблюдается оно практически всегда. Выражается в самопроизвольных судорогах мышечных волокон, воздействуя напрямую на мышцы или вызывая их отклик через нервную систему;
  • Термическое действие тока. Проявляется ожоговыми разрушениями кожных покровов и более глубоких тканей, поскольку имеет такой же принцип, что и нагрев проводников;
  • Электролитическое действие электрического тока на организм человека. Стоит в ряду самых опасных. Жидкие среды являются электролитами. В их число входят кровяная плазма, жидкость внутри клеток. Под действием тока жидкости подвержены электролизу, вызывающему необратимые изменения.

При любом типе действия электрического тока на организм человека происходят электротравмы разнообразного происхождения и степени последствий:

  • Ожоги составляют самую значительную часть электротравм как следствие воздействия электрического тока на организм. По степени повреждений различают поверхностные и внутренние ожоги. По причине возникновения бывают контактные, которые возникают при непосредственном воздействии, дуговые – из-за возникшего рядом разряда и смешанные. Тепловое действие особенно сильно выражено при высокой силе тока (выше 1 А). При таком значении человек способен выжить только при очень малой длительности импульса;

  • Электрические знаки. Там, где было сосредоточено место электрического удара, можно наблюдать серые или бледно-желтые следы на поверхности кожи;

  • Металлизация кожи. В результате распыления частиц металла с токонесущих частей его частицы внедряются в кожу. Внешняя поверхность кожи в этих местах приобретает металлический оттенок и сильно болезненна;

  • Механические травмы. Являются результатом сильных судорог мышц и, как результат, мышечная ткань и сухожилия получают разрывы;
  • Электроофтальмия. Представляет собой повреждение слизистой оболочки глаз от действия ультрафиолетовой составляющей спектра электрического дугового разряда. Не является собственно электротравмой, но часто сопутствует электрическим разрядам из-за короткого замыкания.

Опасные значения

Электроток разной величины по-разному действует на организм. По усредненным данным, человек начинает ощущать действие напряжения, начиная с небольшой величины, около 0.6-1.0 мА при переменном токе и 5-7 мА для постоянного тока. Сильные и непреодолимые судороги мышц (неотпускающий ток) начинаются с значения 10 мА. Увеличение до 50 мА провоцирует парализацию органов дыхания. При токе 100 мА начинается фибрилляция сердца.

Опасность от действия электрического тока на организм человека имеет зависимость не только от его параметров, но и от времени. Организм большинства людей способен выдержать кратковременные импульсы тока гораздо больше вышеприведенных значений.

Почему при определении степени опасности учитывается значение силы тока, а не величина напряжения? Это происходит в силу всем известного закона Ома. Тело человека не отличается точно определенным сопротивлением. Его значение зависит от сочетания множества факторов. Поэтому в различных ситуациях опасные значения тока могут возникнуть при различных значениях приложенного напряжения.

Исследования выявили, что в подавляющем числе случаев, даже при самых наихудших условиях, напряжение менее 42 В переменной сети не способно вызвать прохождение опасного тока. Именно поэтому данное значение выбрано при выполнении работ в опасных условиях при возможности попадания под напряжение.

В то же время существует множество источников электропитания, которые отличаются большой электродвижущей силой, но неспособные вызвать смертельно опасный ток. Это хорошо знакомо телевизионным мастерам и автовладельцам.

Напряжение на аноде кинескопа или электродах свечи зажигания составляет десятки тысяч вольт. При прикосновении к этим элементам возникает чувствительный и болезненный удар током, редко приводящий к неблагоприятным последствиям. В основном прикосновение к высоковольтным, но слаботочным источникам напряжения опасно только для людей со слабым сердцем, поскольку возникают кратковременные, но сильные спазмы сердечной мышцы.

Переменный или постоянный ток опаснее и почему

Казалось бы, какое имеет значение, постоянное напряжение или переменное. Однако исследования выявили закономерность, что при частоте 10-500 Гц опасность намного выше при одинаковых значениях, чем наблюдается при постоянном напряжении. Это вызвано не только непосредственным протеканием тока через организм, но и его прямым действием на работу сердечных мышц. Переменный ток вызывает их неконтролируемые сокращения. Как следствие, наступают фибрилляция (хаотичные сокращения) и остановка сердца. Переменный ток имеет более низкие пороговые значения, чем постоянный, в несколько раз, и это достоверно подтверждено экспериментальными данными.

Важно! При большой величине постоянное напряжение с высокой вероятностью вызывает электролитическое действие тока.

Дальнейший рост частоты несет равную угрозу наравне с постоянным током, но, начиная с 1000 Гц и более, опасность падает. Тут вступает в силу скин-эффект, который выражается в том, что высокочастотный ток вытесняется ближе к наружной поверхности проводника, которым является в рассматриваемом случае организм человека. Таким образом, с повышением частоты уменьшается вероятность прохождения тока по критическим направлениям в организме. Увеличивается лишь термическое действие на кожные покровы. Переменное и постоянное напряжения большой величины могут вызвать электромагнитное действие даже при отсутствии прямого контакта. Это выражается в плохом самочувствии, головной боли, сбоях в работе кардиостимуляторов.

Факторы, увеличивающие опасность

Опасное действие электрического тока на человека во многом определяется тем, какие органы встретятся на его пути. Самые чувствительные органы – это сердце, мозг и легкие. Через головной мозг ток протекает в том случае, когда под действие напряжения попадет голова человека, либо она будет касаться заземленного участка, а удар электрического тока произойдет через любой другой орган тела.

Наиболее распространенные прикосновения к элементам, находящимся под опасным потенциалом, происходят руками. По кратчайшему направлению пути движения тока через тело это рука – рука или рука – нога.

Менее опасен случай, когда разряд проходит по направлению нога – нога. Это случается при нахождении в зоне шагового напряжения. Но тут есть другая опасность. При судорогах мышц ног или испуге человек может упасть, и тогда путь прохождения тока будет проходить по опасному направлению.

Состояние человека

Состояние организма человека имеет важное значение при определении опасной силы тока. На данном принципе основана работа полиграфа (детектора лжи), который, среди прочих параметров, измеряет значение влажности кожных покровов. Повышение влажности происходит при волнении, стрессовых состояниях, болезни, алкогольном или наркотическом опьянении. Разные участки кожи имеют неодинаковую чувствительность. К примеру, кончики пальцев имеют намного большие значения электрического сопротивления, чем кожа на тыльной стороне ладони.

При перечисленных ситуациях сопротивление кожного покрова в несколько раз выше, нежели в нормальном состоянии, поэтому опасные значения сильно снижаются, и влияние электрического тока будет выражено сильнее. Подмечено, что женский организм имеет в несколько раз меньший порог допустимого тока, чем мужской. Но, в то же время, у каждого человека наблюдаются свои уникальные особенности в части порогового значения.

Воздействие электрического тока на человека, даже при одинаковых значениях, будет меньше, если человек осознанно готов к неожиданному электрическому удару. Эта особенность характерна для людей, которые занимаются профессиональной деятельностью по обслуживанию электрических установок.

Эффект шагового напряжения опасен тем, что со стороны не видно опасности, поскольку данное напряжение образуется в результате растекания потенциала по земле в результате обрыва высоковольтного провода или пробоя изоляции подземного высоковольтного кабеля.

Слой земли обладает более высоким сопротивлением, чем токоведущий проводник, поэтому на некотором расстоянии от места падения провода высоковольтной линии или пробоя изоляции подземного кабеля образуется разность потенциалов, достигающая опасных значений. Расстояние на поверхности грунта, на котором образуется разность потенциалов, характеризуется длиной шага человека, потому что путь движения тока по самому короткому направлению проходит от одной ноги к другой. Чем больше величина шага, тем выше разность образующихся потенциалов, и, соответственно, значение протекающего тока. Из этого можно сделать вывод, что для того, чтобы безопасно покинуть зону воздействия напряжения, не нужно торопиться и делать большие шаги. Напротив, шаг должен быть как можно более коротким. Также нельзя бежать, поскольку падение приведет к увеличению напряжения.

Опасно ли статическое электричество

Со статическим напряжением знакомы все, кто носит синтетическую одежду. Заряд статического напряжения образуется при взаимном трении одежды из различных материалов, особенно шерсти и синтетики. При последующем прикосновении к заземленному предмету, например, кузову автомобиля, между телом и ним проскакивает искра длиной от нескольких миллиметров до сантиметра и более.

Накопленный потенциал составляет несколько тысяч вольт, но величина протекающего тока ничтожна и вызывает лишь покалывание. Статическое напряжение опасно для чувствительных электронных компонентов, поэтому работники, которые занимаются ремонтом и облуживанием электронной техники, должны носить одежду из хлопчатобумажных тканей и специальные электростатические браслеты, соединенные с заземлением, для снятия накопленного электрического потенциала.

Меры безопасности

Для снижения опасности получения удара электрического тока разработаны специальные меры: организационные и технические. К первым относятся меры, направленные на исключение появления потенциала на тех частях установок и оборудования, на которых производятся работы. Это отключение токоведущих частей, проверка отсутствия напряжения, ограждение элементов, которые находятся под током и к которым возможно прикосновение, вывешивание предупреждающих и запрещающих плакатов.

К техническим мероприятиям относятся:

  • Инструмент с изоляционными рукоятками;
  • Диэлектрическая спецодежда (перчатки, обувь);
  • Диэлектрические коврики.

Самое главное – не прикасаться к проводникам, если достоверно не известно, находятся они под напряжением или нет.

Первая помощь пострадавшим

От своевременности и правильности действий зависит здоровье и жизнь попавшего под действие высокого напряжения. Порядок действий сводится к следующему:

  • Прекратить действие электротока на пострадавшего. Для этого нужно отключить электроустановку. При невозможности отключения освободить человека от касания оголенных проводников, отодвинув в сторону проводник или самого пострадавшего. При этом крайне обязательно использовать диэлектрические перчатки, изолированный инструмент, или, на крайний случай, сухую деревянную доску. При невозможности освобождения нужно перерубить провод. У топора должно быть сухое деревянное топорище. Оттягивать пострадавшего нужно за край одежды, стараясь не касаться оголенных участков тела, чтобы самому не получить электротравму;
  • Уложить на горизонтальную ровную поверхность пострадавшего, расслабить или расстегнуть ворот одежды для улучшения дыхания, проверить, есть ли дыхание и пульс;
  • Немедленно любыми способами вызвать скорую помощь;
  • Если присутствуют дыхание и пульс, но человек без сознания, то нужно привести его в чувство при помощи ватки, смоченной раствором нашатырного спирта;
  • Если пострадавший не дышит, нужно производить искусственную вентиляцию легких до тех пор, пока он не начнет дышать сам;
  • При отсутствии сердцебиения произвести непрямой массаж сердца.

Меры первой доврачебной помощи необходимо производить непрерывно, до приезда медицинской бригады.

Видео

Электрический ток очень схож с потоком воды, только вместо ее молекул, движущихся вниз по реке, заряженные частицы движутся по проводнику.

Для того чтобы электрический ток протекал через тело, оно должно стать частью электрической цепи.

Постоянный и переменный ток

Степень поражающего действия электрического тока на организм человека будет зависеть от его вида.

Если ток протекает только в одном направлении, он называется постоянным (DC).

Если ток меняет направление, он называется переменным (AC). Переменный ток - лучший способ передачи электроэнергии на большие расстояния.

AC с тем же напряжением, что и DC, является более опасным и вызывает худшие последствия. Действие электрического тока на организм человека в этом случае может вызвать эффект "замораживание мышцы руки". То есть произойдет настолько сильное сокращение мышц (тетания), которое человек будет не в состоянии преодолеть.

Пути получения удара

Прямой контакт с электричеством произойдет, когда кто-то коснется токопроводящей части, например, неизолированного провода. В частных домах это возможно в редких случаях. Косвенный контакт возникает, когда происходит взаимодействие с какой-либо техникой или электроприбором, а из-за неисправности или нарушении правил хранения и эксплуатации корпус устройства может ударить током.

Интересный факт: почему птицы никогда не подвергаются электрическому удару от сидения на кабелях?

Это потому, что между пернатой и кабелем электропередач не возникает разницы напряжений. Ведь земли она не касается, как и другого кабеля. Отсюда совпадает напряжение птицы и кабеля. Но если вдруг крыло птицы коснется, допустим, металлической обмотки на столбе, удар тока не заставит себя ждать.

Сила удара и его последствия

Рассмотрим действие электрического тока на организм человека кратко:

Эффект

Не воспринимается

Вызывает покалывание

Небольшой шок. Не больно. Человек легко отпустит источник тока. Непроизвольная реакция может привести к косвенным травмам

6-25 мА (женщины)

Болезненные потрясения. Потеря контроля мышц

9-30 мА (мужчины)

"Неотпускающий" ток. Человек может быть отброшен от источника питания. Сильная непроизвольная реакция может привести к недобровольным травмам

От 50 до 150 мА

Сильная боль. Остановка дыхания. Реакции мышц. Возможная смерть

Фибрилляция сердца. Повреждение нервных окончаний. Вероятная смерть

Сердечная остановка, сильные ожоги. Смерть наиболее вероятна

Когда ток протекает через тело, нервная система испытывает электрический шок. Интенсивность удара зависит главным образом от силы тока, его пути, проходящего через тело, и продолжительности контакта. В крайних случаях шок вызывает перебои в обычной работе сердца и легких, приводящие к бессознательному состоянию или смерти. Виды действия электрического тока на организм человека подразделяются в зависимости от того, какие осложнения ток нанес организму.

Электролиз

Тут все просто: удар током поспособствует изменению химического состава крови и других жидкостей в организме. Что в дальнейшем скажется на работе всех систем в целом. Если постоянный ток проходит через ткани тела в течение нескольких минут, начинается изъязвление. Такие язвы, хотя обычно не смертельны, могут быть болезненными и лечиться долго.

Ожоги

Термическое действие электрического тока на организм человека проявляется в виде ожогов. Когда электрический ток проходит через любое вещество, имеющее электрическое сопротивление, выделяется тепло. Количество тепла зависит от рассеиваемой мощности.

Электрические ожоги часто оказываются наиболее заметны вблизи участка входа тока в тело, хотя довольно часто возникают и внутренние ожоги, которые, если они не смертельны, могут вызывать долговременную и болезненную травму.

Мышечные судороги

Раздражая и возбуждая живые ткани, электрический разряд поступает к мышце, мышца противоестественно и судорожно начинает сжиматься. Происходят различные нарушения в работе организма. Так проявляется биологическое действие электрического тока на организм человека. Длительное непроизвольное сокращение мышц, вызванное внешним электрическим стимулом, несет за собой одно неблагоприятное последствие, когда человек, который держит электрический объект, не может его отпустить.

Остановка дыхания и сердца

Мускулы между ребрами (межреберные мышцы) должны многократно сокращаться и расслабляться, чтобы человек дышал. Таким образом, длительное сокращение этих мышц может препятствовать дыханию.

Сердце - это мускулистый орган, который должен постоянно сокращаться и расслабляться, чтобы выполнять свою функцию в качестве насоса для перекачки крови. Длительное сокращение сердечной мускулатуры будет препятствовать данному процессу и приведет к его остановке.

Фибрилляция желудочков

Желудочки - это камеры, ответственные за перекачку крови из сердца. При ударе током мускулатура желудочков будет претерпевать нерегулярные, несогласованные подергивания, в результате перестанет работать "насосная" функция в сердце. Этот фактор может оказаться фатальным, если не будет исправлен за очень короткий промежуток времени.

Фибрилляция желудочков может быть вызвана очень небольшими электрическими раздражителями. Достаточно тока 20 мкА, проходящего непосредственно через сердце. Именно по этой причине большинство смертей обусловлено возникновением фибрилляции желудочков.

Факторы естественной защиты

У тела есть собственное сопротивление действиям, оказываемым электрическим током на организм человека в виде кожи. Однако оно зависит от множества факторов: от части тела (более толстая или более тонкая кожа), влажности кожи и площади тела, на которую оказывается вредное воздействие. Сухая и влажная кожа имеют очень разные значения сопротивления, но не являются единственным аспектом, который следует учитывать при поражении электрическим током. Порезы и глубокие ссадины способствуют значительному снижению сопротивляемости. Конечно же, сопротивление кожи будет зависеть и от мощности поступаемого тока. Но все-таки существует немало случаев, когда из-за высокой сопротивляемости кожи человек, кроме неприятного удара током, не получал ни единой электротравмы. Действие электрического тока на организм человека не приносило никаких нежелательных последствий.

Как предотвратить поражение электрическим током

Предотвращение ударов электрическим током, особенно в обыденной жизни, является обязательным условием для безопасной жизни. Используется изоляция для любых токоведущих частей. Например, кабели представляют собой изолированные электрические провода, что позволяет их использование без риска каких-либо электрических ударов, а выключатели света, заключенные в коробки, предотвращают доступ к находящимся под напряжением деталям.

Существуют специальные низковольтные аппараты, которые обеспечивают дополнительную защиту от получения электрического удара.

Могут обеспечивать дополнительную электробезопасность. Действие электрического тока на организм человека в этом случае будет нулевым. Данное устройство в случае нежелательной утечки за несколько секунд отключит поврежденный участок электропроводки или неисправный электроприбор, чем не только спасет человека от получения тока, но и убережет от пожара.

Дифавтомат, помимо описанных выше возможностей, обладает защитой от перегрузок и короткого замыкания.

Важно убедиться, что любая электрическая работа, проводимая в доме, осуществляется квалифицированным специалистом-электриком, у которого есть технические знания и опыт, чтобы обеспечить безопасность работы.

Сила электричества в живых существах

Электрохимическая энергия производится в каждой клетке каждого живого организма. Нервная система животного или человека посылает свои сигналы посредством электрохимических реакций.

Практически каждый электрохимический процесс и его технологическое применение играют определенную роль в современной медицине.

В фильме о Франкенштейне используется специфическое действие электрического тока на организм человека. Сила электричества превращает мертвого мужчину в живого монстра. Хотя использование электричества в таком контексте все еще невозможно, электрохимические силы необходимы для того, чтобы наши тела функционировали. Понимание этих сил очень помогло развитию медицины.

Действие электрического тока: первые эксперименты

С 1730 года, после опытов Стивена Грея по передаче электрического тока на расстояние, в течение следующих пятидесяти лет другие исследователи обнаружили, что прикосновение электрически заряженного стержня может привести к сокращению мускулов мертвых животных. Типичным примером влияния электрического тока на биологический объект является ряд экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он посылал электрический ток через нервы в лапку лягушки, и это вызывало сокращение мышц и движение конечности.

В конце девятнадцатого века некоторые врачи начали изучать действие электрического тока на организм человека, но не мертвого, а живого! Это позволило им сделать более подробные карты мышечной системы, которые ранее были недоступны.

Электротерапия и фокусы

В течение восемнадцатого и начала девятнадцатого столетий электрический ток использовался повсеместно. Врачи, ученые и шарлатаны, не всегда отличающиеся друг от друга, использовали электрохимические удары, чтобы лечить любую болезнь, особенно паралич и радикулит.

Тогда же появились специфические шоу, одновременно ужасающие и приводящие в дикий восторг. Суть таковых состояла в том, чтобы оживить труп. Преуспел в этом деле Джованни Альдини, который с помощью электрического тока делал так, чтобы мертвец "оживал": открывал глаза, шевелил конечностями, приподнимался.

Ток в современной медицине

Действие электрического тока на организм человека, помимо лечения (как пример, физиотерапия), также может быть использовано для раннего обнаружения проблем со здоровьем. Специальные устройства записи теперь превращают естественную электрическую активность тела в диаграммы, которые затем используют доктора для анализа отклонений. Врачи теперь диагностируют сердечные аномалии с помощью электрокардиограмм (ЭКГ), нарушения мозга с помощью электроэнцефалограмм (ЭЭГ) и потери нервной функции с помощью электромиограмм (ЭМГ).

Жизнь благодаря электрическому току

Одним из наиболее драматических применений электричества является дефибрилляция, которая в фильмах иногда показана как «запуск» сердца, которое уже перестало работать.

Действительно, запуск кратковременного импульса значительной величины может иногда (но очень редко) перезапускать сердце. Однако чаще дефибрилляторы используются для коррекции аритмии и восстановления его нормального состояния. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем вычислять силу тока, необходимую для пациента на основе этих факторов. Многие общественные места теперь имеют дефибрилляторы, для того чтобы электрический ток и его действие на организм человека в этом случае предотвратил смерти, вызванные дисфункцией сердца.

Следует также упомянуть искусственные кардиостимуляторы, которые контролируют сокращения сердца. Эти устройства имплантируются под кожу или под мышцы груди пациента и передают импульсы электрического тока около 3 В через электрод и сердечную мышцу. Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут работать в течение 14 лет, прежде чем их нужно будет заменить.

Действие электрического тока на организм человека стало обыденным и не только в медицине, но и физиотерапии.

Электромагнитная волна , распространяясь от источника в неограниченном пространстве со скоростью света, создает электромагнитное поле (ЭМП), способное воздействовать на заряженные частицы и токи, в результате чего происходит превращение энергии поля в другие виды энергии.

Действующим началом колебаний диапазона от единиц до нескольких тысяч Гц являются протекающие токи соответствующей частоты через тело как хороший проводник.

Для диапазона частот от нескольких тысяч до 30 мГц характерно быстрое возрастание поглощения энергии, а следовательно, и поглощенной мощности телом с увеличением частоты колебаний. Особенностью диапазона от 30 мГц до 10 гГц является “резонансное” поглощение. У человека такой характер поглощения возникает при действии ЭМП с частотами от 70 до 100 мГц. Для диапазонов от 10 до 200 гГц и от 200 до 3000 гГц характерно максимальное поглощение энергии поверхностными тканями, преимущественно кожей.

С уменьшением длины волны и увеличением частоты глубина проникновения электромагнитных волн в ткани уменьшается. Эта тенденция наблюдается до тех пор, пока длина волны в данном организме существенно превышает размеры клетки. На очень высоких частотах проницаемость тканей для электромагнитного излучения вновь начинает возрастать, например, для рентгеновского и гамма-излучения.

Различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

Электромагнитные поля промышленной частоты

Длительное воздействие электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам в головном мозге и центральной нервной системе . В результате у человека наблюдаются головная боль в височной и затылочной областях, вялость, ухудшение памяти, боли в области сердца, угнетенное настроение, апатия, своеобразная депрессия с повышенной чувствительностью к яркому свету и интенсивному звуку, расстройство сна, сердечно-сосудистой системы, органов пищеварения, дыхания, повышенная раздражительность, а также наблюдаются функциональные нарушения в центральной нервной системе, изменения в составе крови.

Согласно санитарным правилам и нормам СанПиН 2.2.4.1191-03 “Электромагнитные поля в производственных условиях” пребывание в электромагнитных полях промышленной частоты напряженностью до 5 кВ/м допускается в течение всего рабочего дня.

Электростатические поля

Электростатическое поле (ЭСП) образует электростатические заряды, возникающие на поверхностях некоторых материалов как жидких, так и твердых, вследствие электризации.

Электризация возникает при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован от земл и. При разделении двух диэлектрических материалов происходит разделение электрических зарядов. Материал, имеющий большую диэлектрическую проницаемость, заряжается положительно, а меньшую — отрицательно.

Кроме трения, причиной образования статических зарядов является электрическая индукция, в результате которой изолированные от земли тела во внешнем электрическом поле приобретают электрический заряд.

Воздействие ЭСП на человека связано с протеканием через него слабого тока. При этом электротравм не бывает. Однако вследствие рефлекторной реакции на раздражение анализаторов на коже человек отстраняется от заряженного тела, что может привести к механической травме от удара о рядом расположенные элементы конструкций, падение с высоты, испуг с возможной потерей сознания.

Электростатическое поле большой напряженности (несколько десятков киловольт) способно изменять и прерывать клеточное развитие, вызывать катаракту с последующим помутнением хрусталика.

К воздействию электростатического поля наиболее чувствительны центральная нервная и сердечно-сосудистая системы, анализаторы. Люди жалуются на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Длительное пребывание человека в условиях, когда напряженность ЭСП имеет величину более 1 кВ/м, вызывает нервно-эмоциональное напряжение, утомление, снижение работоспособности, нарушение суточного биоритма, снижение адаптационных резервов организма.

Предельно допустимое значение напряженности ЭСП устанавливается СанПиН 2.2.4.1191-03 в зависимости от времени его воздействия на работника за смену, равным 60 кВ/м в течение 1 ч. При напряженности ЭСП менее 20 кВ/м время пребывания в поле не регламентируется.

При напряженности ЭСП, превышающей 60 кВ/м, работа без применения средств защиты не допускается.

Электромагнитные поля радиочастот

Электромагнитные поля радиочастот большой интенсивности вызывают в организме человека тепловой эффект, который может выразиться в нагреве тела, либо отдельных его тканей или органов . Воздействие электромагнитного поля особенно вредно для органов и тканей, недостаточно хорошо снабженных кровеносными сосудами (глаза, мозг, почки, желудок, мочевой и желчный пузырь). Наиболее чувствительны к воздействию радиоволн центральная нервная и сердечно-сосудистая системы. У человека возникают головная боль, повышенная утомляемость, изменение артериального давления, нервно-психические расстройства, а также могут наблюдаться выпадение волос, ломкость ногтей, снижение веса.

Нормирование ЭМП радиочастотного диапазона в производственных условиях проводится СанПиН 2.2.4.1191-03, согласно которым оценка воздействия ЭМП радиочастот на людей осуществляется по интенсивности излучения и энергетической экспозиции.

Предельно допустимые уровни (ПДУ) напряженности электрического и магнитного полей (ЕПДУ, НПДУ) диапазона частот от 10 до 30 кГц при воздействии в течение всей рабочей смены составляют 500 В/м и 50 А/м соответственно. ПДУ напряженности электрического и магнитного полей при продолжительности воздействия до 2 часов за смену равны 1 000 В/м и 100 А/м соответственно.

Способы защиты от вредного воздействия электромагнитных полей

Защита человека от опасного воздействия электромагнитного облучения осуществляется следующими способами: уменьшением излучения от источника; экранированием источника излучения и рабочего места; установлением санитарно-защитной зоны; поглощением или уменьшение образования зарядов статического электричества; устранением зарядов статического электричества; применением средств индивидуальной защиты.

Уменьшение мощности излучения от источника реализуется применением поглотителей электромагнитной энергии; блокированием излучения.

Поглощение электромагнитных излучений осуществляется поглотительным материалом путем превращения энергии электромагнитного поля в тепловую. В качестве такого материала применяют каучук, поролон, пенополистерол, ферромагнитный порошок со связывающим диэлектриком.

Экранирование источника излучения и рабочего места производится специальными экранами. При этом различают отражающие и поглощающие экраны. Первые изготавливают из материала с низким электросопротивлением — металлы и их сплавы (медь, латунь, алюминий, сталь, цинк). Они могут быть сплошные и сетчатые. Экраны должны быть заземлены для обеспечения стекания в землю образующихся на них зарядов.

Поглощающие экраны выполняют из радиопоглощающих материалов: эластичных или жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин.

Для устранения зарядов статического электричества используют заземление частей оборудования, увлажнение воздуха.

Электрический ток

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест . На производстве из-за несоблюдения правил электробезопасности происходит 75% электропоражений.

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое, биологическое, световое воздействие.

Термическое воздействие тока характеризуется нагревом кожи и тканей до высокой температуры вплоть до ожогов.

Электролитическое воздействие заключается в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие проявляется в раздражении и возбуждении живых тканей и сопровождается судорожными сокращениями мышц.

Световое действие приводит к поражению слизистых оболочек глаз.

Виды поражения организма человека электрическим током

Электротравмы — это травмы, полученные от воздействия электрического тока на организм, которые условно разделяют на общие (электрический удар), местные и смешанные.

Электрический удар

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца .

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог - это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока . Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает. Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

При напряжении свыше 1 000 В в результате случайных коротких замыканий может возникнуть и дуговой ожог.

Электрические знаки и электрические метки

Электрические знаки или электрические метки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Обычно электрические знаки имеют круглую или овальную форму с углубленным в центре размером от 1 до 5 мм.

Металлизация кожи

Металлизация кожи — это выпадение мельчайших частичек расплавленного металла на открытые поверхности кожи . Обычно такое явление происходит при коротких замыканиях, производстве электросварочных работ. На пораженном участке возникает боль от ожога и наличия инородных тел.

Механические повреждения

Механические повреждения — следствие судорожных сокращений мышц под действием тока, проходящего через человека, приводящее к разрыву кожи, мышц, сухожилий . Это происходит при напряжении ниже 380 В, когда человек не теряет сознания и пытается самостоятельно освободиться от источника тока.

Факторы, определяющие исход воздействия электрического тока на человека

Согласно ГОСТу 12.1.019 “ССБТ. Электробезопасность. Общие требования” степень опасного и вредного воздействия на человека электрического тока зависит от силы тока, напряжения, рода тока, частоты электрического тока и пути прохождения через тело человека, продолжительности воздействия и условий внешней среды.

Сила тока — главный фактор, от которого зависит исход поражения: чем больше сила тока, тем опаснее последствия. Сила тока (в амперах) зависит от приложенного напряжения (в вольтах) и электрического сопротивления организма (в омах).

По степени воздействия на человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный.

Ощутимый

Ощутимым называют электрический ток, который при прохождении через организм вызывает ощутимое раздражение. Минимальная величина, которую начинает ощущать человек при переменном токе с частотой 50 Гц, составляет 0,6-1,5 мА.

Неотпускающий

Неотпускающим считают ток, при котором непреодолимые судорожные сокращения мышц руки, ноги или других частей тела не позволяют пострадавшему самостоятельно оторваться от токоведущих частей (10,0-15,0 мА).

Фибрилляционный ток

Фибрилляционный — ток, вызывающий при прохождении через организм фибрилляцию сердца — быстрые хаотические и разновременные сокращения волокон сердечной мышцы, приводящие к его остановке (90,0-100,0 мА). Через несколько секунд происходит остановка дыхания. Чаще всего смертельные исходы наступают от напряжения 220 В и ниже. Именно низкое напряжение заставляет беспорядочно сокращаться сердечные волокна и приводит к моментальному сбою в работе желудочков сердца.

Безопасный ток

Допустимым следует считать ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10 с — 2 мА, а при 120 с и менее — 6 мА.

Безопасным напряжением считают 36 В (для светильников местного стационарного освещения, переносных светильников и т. д.) и 12 В (для переносных светильников при работе внутри металлических резервуаров, котлов). Но при определенных ситуациях и такие напряжения могут представлять опасность.

Безопасные уровни напряжения получают из осветительной сети, используя для этого понижающие трансформаторы. Распространить применение безопасного напряжения на все электрические устройства невозможно.

В производственных процессах используются два рода тока — постоянный и переменный. Они оказывают различное воздействие на организм при напряжениях до 500 В. Опасность поражения постоянным током меньше, чем переменным. Наибольшую опасность представляет ток частотой 50 Гц, которая является стандартной для отечественных электрических сетей.

Путь, по которому электрический ток проходит через тело человека, во многом определяет степень поражения организма. Возможны следующие варианты направлений движения тока по телу человека:
  • человек обеими руками дотрагивается до токоведущих проводов (частей оборудования), в этом случае возникает направление движения тока от одной руки к другой, т. е. “рука-рука”, эта петля встречается чаще всего;
  • при касании одной рукой к источнику путь тока замыкается через обе ноги на землю “рука-ноги”;
  • при пробое изоляции токоведущих частей оборудования на корпус под напряжением оказываются руки работающего, вместе с тем стекание тока с корпуса оборудования на землю приводит к тому, что и ноги оказываются под напряжением, но с другим потенциалом, так возникает путь тока “руки-ноги”;
  • при стекании тока на землю от неисправного оборудования земля поблизости получает изменяющийся потенциал напряжения, и человек, наступивший обеими ногами на такую землю, оказывается под разностью потенциалов, т. е. каждая из этих ног получает разный потенциал напряжения, в результате возникает шаговое напряжение и электрическая цепь “нога-нога”, которая случается реже всего и считается наименее опасной;
  • прикосновение головой к токоведущим частям может вызвать в зависимости от характера выполняемой работы путь тока на руки или на ноги — “голова-руки”, “голова-ноги”.

Все варианты различаются степенью опасности. Наиболее опасными являются варианты “голова-руки”, “голова-ноги”, “руки-ноги” (петля полная). Это объясняется тем, что в зону поражения попадают жизненно важные системы организма — головной мозг, сердце.

Продолжительность воздействия тока влияет на конечный исход поражения. Чем дольше воздействуeт электрический ток на организм, тем тяжелее последствия.

Условия внешней среды , окружающей человека в ходе производственной деятельности, могут повысить опасность поражения электрическим током. Увеличивают опасность поражения током повышенная температура и влажность, металлический или другой токопроводящий пол.

По степени опасности поражения человека током все помещения делятся на три класса: без повышенной опасности, с повышенной опасностью, особо опасные.

Защита от воздействия электрического тока

Для обеспечения электробезопасности необходимо точное соблюдение правил технической эксплуатации электроустановок и проведение мероприятий по защите от электротравматизма.

ГОСТ 12.1.038-82 устанавливает предельно допустимые напряжения и токи, протекающие через тело человека при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц. Для переменного тока 50 Гц допустимое значение напряжения прикосновения составляет 2 В, а силы тока — 0,3 мА, для тока частотой 400 Гц — соответственно 2 В и 0,4 мА; для постоянного тока — 8В и 1,0 мА (эти данные приведены для продолжительности воздействия не более 10 мин в сутки).

Мерами и способами обеспечения электробезопасности служат:
  • применение безопасного напряжения;
  • контроль изоляции электрических проводов;
  • исключение случайного прикосновения к токоведущим частям;
  • устройство защитного заземления и зануления;
  • использование средств индивидуальной защиты;
  • соблюдение организационных мер обеспечения электробезопасности.

Одним из аспектов может быть применение безопасного напряжения — 12 и 36 В. Для его получения используют понижающие трансформаторы, которые включают в стандартную сеть с напряжением 220 или 380 В.

Для защиты от случайного прикосновения человека к токоведущим частям электроустановок используют ограждения в виде переносных щитов, стенок, экранов.

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом (металлоконструкция зданий и др.) металлических нетоковедущих частей, которые могут оказаться под напряжением. Цель защитного заземления — устранение опасности поражения человека электрическим током в случае прикосновения его к металлическому корпусу электрооборудования, который в результате нарушения изоляции оказался под напряжением.

Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник — это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или его эквивалентом.

Защитное отключение — это система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении в ней опасности поражения током. Продолжительность срабатывания защитного отключения составляет 0,1- 0,2 с. Данный способ защиты используют как единственную защиту или в сочетании с защитным заземлением и занулением.

Применение малых напряжений. К малым относят напряжение до 42В, его применяют при работе с переносными электроинструментами, использовании переносных светильников.

Контроль изоляции . Изоляция проводов со временем теряет свои диэлектрические свойства. Поэтому необходимо периодически проводить контроль сопротивления изоляции проводов с целью обеспечения их электробезопасности.

Средства индивидуальной защиты — подразделяются на изолирующие, вспомогательные, ограждающие. Изолирующие защитные средства обеспечивают электрическую изоляцию от токоведущих частей и земли. Они подразделяются на основные и дополнительные. К основным изолирующим средствам в электроустановках до 1000 В относят диэлектрические перчатки, инструмент с изолированными ручками. К дополнительным средствам — диэлектрические галоши, коврики, диэлектрические подставки.

Чем опасен электрический ток? Как электрический ток действует на человека

Факт действия электрического тока на человека был установлен в последней четверти XVIII века. Опасность этого действия впервые установил изобретатель электрохимического высоковольтного источника напряжения В. В. Петров. Описание первых промышленных электротравм появилось значительно позже: в 1863 г. - от постоянного тока и в 1882 г. - от переменного.

Электрический ток, электротравмы и электротравматизм

Под электротравмой понимают травму, вызванную действием электрического тока или электрической дуги .

Электротравматизм характеризуют такие особенности: защитная реакция организма появляется только после попадания человека под напряжение, т. е. когда электрический ток уже протекает через его организм; электрический ток действует не только в местах контактов с телом человека и на пути прохождения через организм, но и вызывает рефлекторное действие, проявляющееся в нарушении нормальной деятельности сердечно-сосудистой и нервной системы, дыхания и т. д. Электротравму человек может получить как при непосредственном контакте с токоведущими частями, так и при поражении напряжением прикосновения или шага, через электрическую дугу.

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, однако по числу травм с тяжелым, и особенно летальным, исходом занимает одно из первых мест. Наибольшее число электротравм (60-70 %) происходит при работе на электроустановках напряжением до 1000 В. Это объясняется широким распространением таких электроустановок и сравнительно низким уровнем электротехнической подготовки лиц, эксплуатирующих их. Электроустановок напряжением свыше 1000 В в эксплуатации значительно меньше, и обслуживает их , что и обусловливает меньшее количество электротравм.

Причины поражения человека электрическим током следующие: прикосновение к неизолированным токоведущим частям; к металлическим частям оборудования, оказавшимся под напряжением вследствие повреждения изоляции; к неметаллическим предметам, оказавшимся под напряжением; поражение током напряжения шага и через дугу.

Виды поражений человека электрическим током

Электрический ток , протекающий через организм человека, воздействует на него термически, электролитически и биологически. Термическое действие характеризуется нагревом тканей, вплоть до ожогов; электролитическое - разложением органических жидкостей, в том числе и крови; биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением и возбуждением живых тканей и сокращением мышц.

Различают два вида поражения организма электрическим током: электрические травмы и электрические удары.

Электрические травмы - это местные поражения тканей и органов: электрические ожоги, электрические знаки и электрометаллизация кожи.

Электрические ожоги возникают в результате нагрева тканей человека протекающим через него электрическим током силой более 1 А. Ожоги могут быть поверхностные, когда поражаются кожные покровы, и внутренние - при поражении глубоколежащих тканей тела. По условиям возникновения различают контактные, дуговые и смешанные ожоги.

Электрические знаки представляют собой пятна серого или бледно-желтого цвета в виде мозоли на поверхности кожи в месте контакта с токоведущими частями. Электрические знаки, как правило, безболезненны и с течением времени сходят.

Электрометаллизация кожи - это пропитывание поверхности кожи частицами металла при его разбрызгивании или испарении под действием электрического тока. Пораженный участок кожи имеет шероховатую поверхность, окраска которой определяется цветом соединений металла, попавшего на кожу. Электрометаллизация кожи не представляет собой опасности и с течением времени исчезает, как и электрические знаки. Большую опасность представляет металлизация глаз.

К электрическим травмам, кроме того, относятся механические повреждения в результате непроизвольных судорожных сокращений мышц при протекании тока (разрывы кожи, кровеносных сосудов и нервов, вывихи суставов, переломы костей), а также электроофтальмия - воспаление глаз в результате действия ультрафиолетовых лучей электрической дуги.

Электрический удар представляет собой возбуждение живых тканей электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц. По исходу электрические удары условно разделяют на пять групп: без потери сознания; с потерей сознания, но без нарушения сердечной деятельности и дыхания; с потерей сознания и нарушением сердечной деятельности или дыхания; клиническая смерть и электрический шок.

Клиническая, или «мнимая», смерть - это переходное состояние от жизни к смерти. В состоянии клинической смерти сердечная деятельность прекращается и дыхание останавливается. Длительность клинической смерти 6...8 мин. По истечении этого времени происходит гибель клеток коры головного мозга, жизнь угасает и наступает необратимая биологическая смерть. Признаки клинической смерти: остановка или фибрилляция сердца (и, как следствие, отсутствие пульса), отсутствие дыхания, кожный покров синеватый, зрачки глаз резко расширены из-за кислородного голодания коры головного мозга и не реагируют на свет.

Электрический шок - это тяжелая нервнорефлекторная реакция организма на раздражение электрическим током. При шоке возникают глубокие расстройства дыхания, кровообращения, нервной системы и других систем организма. Сразу после действия тока наступает фаза возбуждения организма: появляется реакция на боль, повышается артериальное давление и др. Затем наступает фаза торможения: истощается нервная система, снижается артериальное давление, ослабевает дыхание, падает и учащается пульс, возникает состояние депрессии. Шоковое состояние может длиться от нескольких десятков минут до суток, а затем может наступить выздоровление или биологическая смерть.

Пороговые значения электрического тока

Электрический ток различной силы оказывает различное действие на человека. Выделены пороговые значения электрического тока: пороговый ощутимый ток - 0,6...1,5 мА при переменном токе частотой 50 Гц и 5... 7 мА при постоянном токе; пороговый неотпускающий ток (ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник) - 10...15 мА при 50 Гц и 50...80 мА при постоянном токе; пороговый фибрилляционный ток (ток, вызывающий при прохождении через организм фибрилляцию сердца) - 100 мА при 50 Гц и 300 мА при постоянном электрическом токе.

От чего зависит степень действия электрического тока на организм человека

Исход поражения также зависит от длительности протекания тока через человека. С увеличением длительности нахождения человека под напряжением эта опасность увеличивается.

Индивидуальные особенности организма человека значительно влияют на исход поражения при электротравмах. Например, неотпускающий ток для одних людей может быть пороговым ощутимым для других. Характер действия тока одной и той же силы зависит от массы человека и его физического развития. Установлено, что для женщин пороговые значения тока примерно в 1,5 раза ниже, чем для мужчин.

Степень действия тока зависит от состояния нервной системы и всего организма. Так, в состоянии возбуждения нервной системы, депрессии, болезни (особенно болезней кожи, сердечно-сосудистой системы, нервной системы и др.) и опьянения люди более чувствительны к протекающему через них току.

Значительную роль играет и «фактор внимания». Если человек подготовлен к электрическому удару, то степень опасности резко снижается, в то время как неожиданный удар приводит к более тяжелым последствиям.

Существенно влияет на исход поражения путь тока через тело человека. Опасность поражения особенно велика, если ток, проходя через жизненно важные органы - сердце, легкие, головной мозг, - действует непосредственно на эти органы. Если ток не проходит через эти органы, то его действие на них только рефлекторное и вероятность поражения меньше. Установлены наиболее часто встречающиеся пути тока через человека, так называемые «петли тока». В большинстве случаев цепь тока через человека возникает по пути правая рука - ноги. Однако утрату трудоспособности более чем на три рабочих дня вызывает протекание тока по пути рука - рука - 40 %, путь тока правая рука - ноги - 20 %, левая рука - ноги - 17 %, остальные пути встречаются реже.

Что опаснее - переменный или постоянный электрический ток?

Опасность переменного тока зависит от частоты этого тока. Исследованиями установлено, что токи в диапазоне от 10 до 500 Гц практически одинаково опасны. С дальнейшим увеличением частоты значения пороговых токов повышаются. Заметное снижение опасности поражения человека электрическим током наблюдается при частотах более 1000 Гц.

Постоянный ток менее опасен и пороговые значения его в 3 - 4 раза выше, чем переменного тока частотой 50 Гц. Однако при разрыве цепи постоянного тока ниже порогового ощутимого возникают резкие болевые ощущения, вызываемые током переходного процесса. Положение о меньшей опасности постоянного тока по сравнению с переменным справедливо при напряжениях до 400 В. В диапазоне 400...600 В опасности постоянного и переменного тока частотой 50 Гц практически одинаковы, а с дальнейшим увеличением напряжения относительная опасность постоянного тока увеличивается. Это объясняется физиологическими процессами действия на живую клетку.

Следовательно, действие электрического тока на организм человека многообразно и зависит от многих факторов.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»