Ядерный магнитный резонанс. Использование ЯМР в медицине

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Магнитно-резонансная томография (МРТ) является одним из современных методов лучевой диагностики, позволяющим неинвазивно получать изображения внутренних структур тела человека.

Метод был назван магнитно-резонансной томографией, а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом "ядерный" в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул.

МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Преимущества МРТ

Важнейшим преимуществом МРТ по сравнению с другими методами лучевой диагностики является :
отсутствие ионизирующего излучения и как следствие эффектов канцеро- и мутагенеза, с риском возникновения которых сопряжено (хотя и в очень незначительной степени) воздействие рентгеновского излучения.
МРТ позволяет проводить исследование в любых плоскостях с учетом анатомических особенностей тела пациента, а при необходимости – получать трехмерные изображения для точной оценки взаиморасположения различных структур.
МРТ обладает высокой мягкотканной контрастностью и позволяет выявлять и характеризовать патологические процессы, развивающиеся в различных органах и тканях тела человека.
МРТ является единственным методом неинвазивной диагностики, обладающим высокой чувствительностью и специфичностью при выявлении отека и инфильтрации костной ткани.
развитие МР-спектроскопии и диффузионной МРТ, а также создание новых органотропных контрастных препаратов является основой развития “молекулярной визуализации” и позволяет проводить гистохимические исследовании in vivo.
МРТ лучше визуализирует некоторые структуры головного и спинного мозга, а также другие нервные структуры, в связи с этим она чаще используется для диагностики повреждений, опухолевых образований нервной системы, а также в онкологии, когда необходимо определить наличие и распространенность опухолевого процесса

Физические основы МРТ

В основе МРТ лежит феномен ядерно-магнитного резонанса , открытый в 1946г. физиками Ф.Блохом и Э.Перселлом (Нобелевская премия по физике, 1952г.). Суть этого феномена состоит в способности ядер некоторых элементов, находящихся под воздействием статического магнитного поля, принимать энергию радиочастотного импульса. В 1973г. американский ученый П.Лотербур предложил дополнить феномен ядерно-магнитного резонанса наложением градиентных магнитных полей для пространственной локализации сигнала. С помощью протокола реконструкции изображений, использовавшегося в то время при проведении компьютерной томографии (КТ), ему удалось получить первую МР-томограмму. В последующие годы МРТ претерпела целый ряд качественных преобразований, став в настоящее время наиболее сложной и многообразной методикой лучевой диагностики. Принцип МРТ позволяет получать сигнал от любых ядер в теле человека, но наибольшей клинической значимостью обладает оценка распределения протонов, входящих в состав биоорганических соединений, что определяет высокую мягкотканную контрастность метода, т.е. обследовать внутренние органы.

Теоретически любые атомы, содержащие нечетное число протонов и/или нейтронов, обладают магнитными свойствами. Находясь в магнитном поле, они ориентируются вдоль его линий. В случае приложения внешнего переменного электромагнитного поля, атомы фактически являющиеся диполями, выстраиваются по новым линиям электромагнитного поля. При перестройки вдоль новых силовых линий ядра генерируют электромагнитный сигнал, который можно зарегистрировать приемной катушкой.

В фазу исчезновения магнитного поля, ядра-диполи возвращаются в первоначальное положение, при этом скорость возвращения в первоначальное положение определяется двумя временными константами, Т1 и Т2:
Т1 – это продольное (спин-решетковое) время, отражающее скорость потери энергии возбужденными ядрами
Т2 – это поперечное релаксационное время, зависящее от скорости, с которой возбужденные ядра обмениваются энергией друг с другом

Получаемый от тканей сигнал зависит от числа протонов (протоновой плотности) и значений Т1 и Т2. Применяемые при МРТ пульсовые последовательности предназначены для лучшего использования различий тканей по Т1 и Т2 с целью создания максимального контраста между тканями в норме и патологии.

МРТ позволяет получать большое количество типов изображений, используя пульсовые последовательности с различными временными характеристиками электромагнитных импульсов.

Пульсовые интервалы строят таким образом, чтобы сильнее подчеркивать различия в Т1 и Т2. Наиболее часто используют последовательности «инверсия восстановления» (IR) и «спиновое эхо» (SE) , которые зависят от протонной плотности.

Основным техническим параметром, определяющим диагностические возможности МРТ , является напряженность магнитного поля , измеряемая в Т (тесла). Высокопольные томографы (от 1 до 3 Т) позволяют проводить наиболее широкий спектр исследований всех областей тела человека, включающий функциональные исследования, ангиографию, быструю томографию. Томографы этого уровня являются высокотехнологичными комплексами, требующими постоянного технического контроля и крупных финансовых затрат .

Напротив, низкопольные томографы обычно являются экономичными, компактными и менее требовательными с технической и эксплуатационной точек зрения. Однако возможности визуализации мелких структур на низкопольных томографах ограничены более низким пространственным разрешением, а спектр обследуемых анатомических областей преимущественно ограничен головным и спинным мозгом, крупными суставами.

Обследование одной анатомической области методом МРТ включает выполнение нескольких так называемых импульсных последовательностей. Различные импульсные последовательности позволяют получить специфические характеристики тканей человека, оценить относительное содержание жидкости, жира, белковых структур или парамагнитных элементов (железо, медь, марганец и др.).
Стандартные протоколы МРТ включают в себя Т1-взвешенные изображения (чувствительные к наличию жира или крови) и Т2-взвешенные изображения (чувствительные к отеку и инфильтрации) в двух-трех плоскостях.

Структуры, практически не содержащие протонов (кортикальная кость, кальцификаты, фиброзно-хрящевая ткань), а также артериальный кровоток имеют низкую интенсивность сигнала и на Т1-, и на Т2-взвешенных изображениях.

Время проведения исследования обычно составляет от 20 до 40 мин в зависимости от анатомической области и клинической ситуации.

Точность диагностики и характеризации гиперваскулярных процессов (опухоли, воспаление, сосудистые мальформации) может быть существенно повышена при использовании внутривенного контрастного усиления . Многие патологические процессы (например, мелкие опухоли головного мозга) часто не выявляются без внутривенного контрастирования.

Основой для создания МР-контрастных препаратов стал редкоземельный металл гадолиний (препарат – магневист ). В чистом виде данный металл обладает высокой токсичностью, однако в форме хелата становится практически безопасным (в том числе отсутствует нефротоксичность). Побочные реакции возникают крайне редко (менее 1% случаев) и обычно имеют легкую степень выраженности (тошнота, головная боль, жжение в месте инъекции, парестезии, головокружение, сыпь). При почечной недостаточности частота побочных эффектов не увеличивается.
Введение МР-контрастных препаратов при беременности не рекомендуется, так как неизвестна скорость клиренса из амниотической жидкости.

Разработаны и другие классы контрастных агнетов для МРТ, в том числе – органспецифические и внутрисосудистые .

Ограничения и недостатки МРТ

Большая продолжительность исследования (от 20 до 40 мин)
обязательным условием получения качественных изображений является спокойное и неподвижное состояние пациента, что определяет необходимость седации у беспокойных пациентов или применения анальгетиков у пациентов с выраженным болевым синдромом
необходимость пребывания пациента в неудобном, нефизиологичном положении при некоторых специальных укладках (например, при исследовании плечевого сустава у крупных пациентов)
боязнь замкнутого пространства (клаустрофобия) может быть непреодолимым препятствием для проведения обследования
технические ограничения, связанные с нагрузкой на стол томографа, при обследовании пациентов с избыточной массой тела (обычно более 130 кг).
ограничением к проведению исследования может оказаться окружность талии, несовместимая с диаметром туннеля томографа (за исключением проведения обследования на томографах открытого типа с низкой напряженностью магнитного поля)
невозможность достоверного выявления кальцинатов, оценки минеральной структуры костной ткани (плоские кости, кортикальная пластинка)
не позволяет детально характеризовать паренхиму легких (в этой области она уступает возможностям КТ)
в значительно в большей степени, чем при КТ, возникают артефакты от движения (качество томограмм может быть резко снижено из-за артефактов от движения пациента - дыхания, сердцебиения, пульсации сосудов, непроизвольных движений) и металлических объектов (фиксированных внутри тела или в предметах одежды), а также от неправильной настройки томографа
существенно ограничивается распространение и внедрение данной методики исследования из-за высокой стоимостью самого оборудования (томографа, РЧ-катушек, программного обеспечения, рабочих станций и т.д.) и его технического обслуживания

Основными противопоказаниями к МРТ (магнитно-резонансной томографии) являются:

абсолютные :
наличие искусственных водителей ритма
наличие больших металлических имплантантов, осколков
наличие металлических скобок, зажимов на кровеносных сосудах
искусственные сердечные клапаны
искусственные суставы
вес больного свыше 160 кг

!!! Наличие металлических зубов, золотых нитей, и другого шовного и скрепляющего материала противопоказанием к МРТ – исследованию не является, хотя снижают качество изображения.

относительные :
клаусторофобия – боязнь замкнутого пространства
эпилепсия, шизофрения
беременность (первый триместр)
крайне тяжелое состояние больного
невозможность для пациента сохранять неподвижность во время обследования

Особой подготовки к проведению МРТ-исследования в большинстве случае не требуется , но при исследовании сердца и его сосудов волосы на груди должны быть выбриты. При исследовани органов малого таза (мочевой пузырь, простата) нужно приходить с наполненным мочевым пузырем.Исследования органов брюшной полости проводятся натощак.

!!! В помещение МР-томографа не должны вноситься никакие металлические объекты, так как они могут быть притянуты магнитным полем с большой скоростью, нанести травму пациенту или медицинскому персоналу и надолго вывести из строя томограф.

Буквально три-четыре столетия назад докторам приходилось ставить диагноз, не имея ничего точнее рентгенологического исследования. Даже тогда было диковинкой, о которой мало кто что-либо слышал. Сейчас столько точных исследований, которые помогают дать четкое представление о той или иной патологии, ее размерах, форме и опасности. Среди таких диагностических процедур . В чем же ее принцип?

За принцип этой диагностической процедуры взят феномен ЯМР (), при помощи которого можно получить послойное изображение органов и тканей организма.

Ядерно-магнитный резонанс – это физическое явление, которое заключается в особенных свойствах ядер атомов. При помощи импульса радиочастотной природы в электромагнитном поле в виде особого сигнала излучается энергия. Компьютер отображает и запечатлевает эту энергию.

ЯМР дает возможность все знать об организме человека из-за насыщенности последнего атомами водорода и магнитных свойств тканей организма. Установить, где находится тот или иной атом водорода, можно благодаря векторному направлению протонных параметров, которые делятся на две расположенные по разные стороны фазы, а также их зависимости от магнитного момента.

Принцип работы МРТ

При помещении ядра атома во внешнее магнитное поле, момент магнитной природы направится в противоположную сторону от магнитного момента поля. Когда на определенный участок организма воздействует с той или иной частотой, некоторые протоны изменяют свое направление, но затем все снова возвращается на круги своя. На этом этапе при помощи специальной системы в компьютере производится сбор данных, полученных с томографа, регистрируются несколько «расслабленных» ядер атома.

Что такое магнитно-резонансная томография?

МРТ — на сегодняшний день единственный метод лучевой диагностики, который может дать наиболее точные данные о состоянии организма человека, метаболизме, строении и физиологических процессах в тканях и органах.

Во время исследования создаются снимки отдельных участков организма. Органы и ткани отображаются в разных проекциях, что дает возможность увидеть их в разрезе. После врачебной оценки таких снимков можно сделать достаточно точные выводы об их состоянии.

Принято считать, что МРТ была основана в 1973 году. Но первые томографы существенно отличались от современных. Качество их изображения было низким, хотя они и были , чем томографы сегодняшнего дня. Прежде чем появились томографы, имеющие вид современных и работающие также качественно и точно, над их усовершенствованием трудились величайшие умы мира.

Современный магнитно-резонансный томограф – это высотехнологичное устройство, работающее благодаря взаимодействию магнитного поля и радиоволн. Прибор выглядит как тоннельная труба с выдвижным столом, на котором и размещают пациента. Работа этого стола устроена так, что может перемещаться в зависимости от томографического магнита.

Пример современного аппарата МРТ

Обследуемый участок окружают радиочастотные датчики, считывающие сигналы и передающие их на компьютер. Полученные данные обрабатываются на компьютере, вследствие чего и получается точное изображение. Эти снимки записывают на пленку либо на диск.

В результате получается не снимок , а точное изображение необходимого участка в нескольких плоскостях. Можно посмотреть мягкие ткани в различных разрезах, при этом костная ткань не отображается, а значит – и мешать не будет.

При помощи этой методики можно визуализировать сосудистое русло, органы, различные ткани тела, нервные волокна, связочный аппарата и мышцы. Можно оценить , измерить температуру любого органа.

МРТ бывает или без него. Контраст делает аппаратуру более чувствительной.

Сам совершенно безболезненен. в свой организм никак не ощущается. Зато ощущается множество различных специфических для данной процедуры звуков: различных сигналов, постукиваний, разных шумов. В некоторых клиниках выдают специальные беруши, чтобы пациента не раздражали эти звуки.

Нужно учесть один немаловажный нюанс. Во время процедуры пациента , который представляет собой тоннелеобразный магнит. Есть люди, которые боятся закрытых пространств. Страх этот может быть различной интенсивности – от небольшого беспокойства до паники. В некоторых лечебных учреждениях есть для таких категорий пациентов. Если же такого томографа нет, то нужно рассказать о своих проблемах доктору, он назначит успокоительное перед исследованием.

Для каких исследований больше всего подходит?

Без магнитно-резонансной томографии не обойтись при диагностике таких состояний:

  • многие недуги воспалительного характера, например, ;
  • нарушения головного и спинного мозга ( , );
  • опухоли, как доброкачественные, так и злокачественные. Этот единственный метод, который предоставляет самые точные данные о метастазах, позволяет видеть даже самые мелкие, которые при других исследованиях незаметны. Помогает выяснить, уменьшаются ли они после проведенной терапии или, наоборот, увеличиваются;
  • (сосудистые нарушения, пороки сердца);
  • травмы органов и ;
  • для определения эффективности проведенного оперативного лечения, химиотерапии и лучей;
  • инфекционные процессы в суставах и костях.

Преимущества и недостатки МРТ

У каждой методики есть свои положительные стороны и свои минусы. Среди плюсов этого исследования отмечают:

  • методика не вызывает боли или каких-нибудь неприятных ощущений, кроме звуков, которые издает аппарат при работе;
  • нет никакого вредного радиоактивного излучения, которое присутствует, к примеру, при рентгенологических методах;
  • после процедуры получаются изображения высокого качества, контрастные вещества не причиняют таких побочных эффектов, как при рентгеновском исследовании;
  • не нужна никакая ;
  • исследование является самым информативным и точным среди других, известных ныне.

Исследование дает возможность получить точные и достоверные данные о строении, размерах, форме тканей и органов. Иногда МРТ является единственной возможностью выявить серьезный недуг в начальной стадии, к сожалению, эффективность процедуры недостаточно высока при диагностике костной ткани и нарушениях функции суставов. Но светила медицины смогли и здесь найти выход: если (компьютерной томографии), можно получить вполне достоверные и информативные данные.

Как у каждой методики, у МРТ есть свои противопоказания. Они могут быть относительными и абсолютными. К абсолютным противопоказаниям относят:

  • если у пациента есть вживленный кардиостимулятор;
  • электромагнитные имплантанты в среднем ухе;
  • различные имплантанты металлического или ферромагнитного происхождения.

К относительным противопоказаниям относят:

  • заболевания сердца, печени и почек в стадии декомпенсации;
  • почечная недостаточность;
  • клаустрофобия, беспокойство в ;
  • в первом триместре.

Насколько эффективно пройдет та или иная процедура зависит от многих обстоятельств. Не стоит при малейших подозрениях на наличие той или иной патологии незамедлительно бежать на МРТ. Не смотря на всю точность этого метода, могут быть некоторые нюансы, которые способен выявить только специалист. Например, проводить исследование с контрастом или без него, или делать МРТ параллельно с КТ, или другим исследованием, лабораторными анализами.

Интернет, безусловно, очень полезная и нужная вещь, как, впрочем, и советы знакомых. Но все это не может заменить объективного врачебного исследования и опроса. Только специалист может правильно подойти к вопросу . Поэтому перед тем как идти на эту процедуру нужно зайти к своему терапевту и взять направление, где будет указан предположительный диагноз и какой именно орган или участок нужно исследовать.

После исследования, с полученными данными также лучше пойти к специалисту. Возможно, он решит назначить еще какие-то дополнительные исследования, чтобы прояснить ситуацию и назначить, если нужно, лечение.

Глава 5. Основы и клиническое применение магнитно-резонансной томографии

Глава 5. Основы и клиническое применение магнитно-резонансной томографии

Магнитно-резонансная томография (МРТ) - один из самых молодых методов лучевой диагностики. Метод основан на феномене ядерно-магнитного резонанса, который известен с 1946 г., когда F. Bloch и E. Purcell показали, что некоторые ядра, находящиеся в магнитном поле, индуцируют электромагнитный сигнал под воздействием радиочастотных импульсов. В 1952 г. за открытие магнитного резонанса им была вручена Нобелевская премия.

В 2003 г. Нобелевская премия по медицине была присуждена британскому ученому Питеру Мэнсфилду (Sir Peter Mansfield) и его американскому коллеге Полу Лотербуру (Paul Lauterbur) за исследования в области МРТ. В начале 1970-х гг. Пол Лотербур открыл возможность получать двухмерное изображение благодаря созданию градиента в магнитном поле. Анализируя характеристики испускаемых радиоволн, он определил их происхождение. Это позволило создавать двухмерные изображения, которые нельзя получить другими методами.

Доктор Мэнсфилд развил исследования Лотербура, установив, каким образом можно анализировать сигналы, которые подает в магнитном поле человеческий организм. Он создал математический аппарат, позволяющий в кратчайший срок преобразовывать эти сигналы в двухмерное изображение.

Споров по поводу приоритета открытия МРТ было много. Американский физик Рэймонд Дамадьян (Raymond Damadian) объявил себя настоящим изобретателем МРТ и создателем первого томографа.

Вместе с тем принципы построения магнитно-резонансных изображений человеческого тела задолго до Рэймонда Дамадьяна разработал Владислав Иванов. Исследования, которые в то время казались сугубо теоретическими, через десятки лет нашли широкое практическое применение в клинике (с 80-х гг. ХХ века).

Для получения МР сигнала и последующего изображения используют постоянное гомогенное магнитное поле и радиочастотный сигнал, который изменяет магнитное поле.

Основные компоненты любого МР-томографа:

Магнит, который создает внешнее постоянное магнитное поле с вектором магнитной индукции В 0 ; в системе СИ единицей измерения магнитной индукции является 1 Тл (Тесла) (для сравнения - магнитное поле Земли составляет примерно 5 x 10 -5 Тл). Одним из основных требований,

предъявляемых к магнитному полю, является его однородность в центре тоннеля;

Градиентные катушки, которые создают слабое магнитное поле в трех направлениях в центре магнита, и позволяют выбрать область исследования;

Радиочастотные катушки, которые используются для создания электромагнитного возбуждения протонов в теле пациента (передающие катушки) и для регистрации ответа сгенерированного возбуждения (приемные катушки). Иногда приемные и передающая катушки совмещены в одну при исследовании различных частей тела, например головы.

При выполнении МРТ:

Исследуемый объект помещается в сильное магнитное поле;

Подается радиочастотный импульс, после которого происходит изменение внутренней намагниченности с постепенным его возвращением к исходному уровню.

Эти изменения намагниченности многократно считываются для каждой точки исследуемого объекта.

ФИЗИЧЕСКИЕ ОСНОВЫ МРТ

Организм человека примерно на 4/5 состоит из воды, около 90% вещества составляет водород - 1 Н. Атом водорода является простейшей структурой. В центре есть положительно заряженная частица - протон, а на периферии - значительно меньшая по массе: электрон.

Постоянно вращается вокруг ядра (протона) только электрон, но одновременно с этим происходит вращение протона. Он вращается примерно как волчок вокруг собственной оси, и одновременно его ось вращения описывает окружность, так что получается конус (см. рис. 5.1, а, б).

Частота вращения протона (прецессия) очень высока - примерно 40 МГц, т. е. за 1 с. он делает - около 40 млн оборотов. Частота вращения прямо пропорциональна напряженности магнитного поля и называется частотой Лар-мора. Движение заряженной частицы формирует магнитное поле, вектор которого совпадает с направлением конуса вращения. Таким образом, каждый протон можно представить в виде маленького магнита (спина), который имеет свое собственное магнитное поле и полюсы - северный и южный (рис. 5.1).

Протоны имеют самый высокий магнитный момент и, как отмечалось выше, самую большую концентрацию в организме. Вне сильного магнитного поля эти маленькие магниты (спины) ориентированы хаотично. Попадая под действие сильного магнитного поля, которое составляет основу магнитно-резонансной томографической установки, они выстраиваются вдоль основного магнитного вектора В 0 . Возникающая при этом продольная намагниченность спинов будет максимальной (см. рис. 5.2).

После этого подается мощный радиочастотный импульс определенной (резонансной) частоты, близкой к частоте Лармора. Он заставляет все протоны перестраиваться перпендикулярно (90°) основному магнитному вектору В 0 и совершать синхронное вращение, вызывая собственно ядерный резонанс.

Продольная намагниченность становится равной нулю, но возникает поперечная намагниченность, так как все спины направлены перпендикулярно основному магнитному вектору В 0 (см. рис. 5.2).

Рис. 5.1. Принцип ядерного магнитного резонанса: а - протоны вращаются (прецессируют) вокруг собственной оси с частотой примерно 40 млн оборотов в секунду; б - вращение происходит вокруг оси по типу «волчка»; в - движение заряженной частицы вызывает формирование магнитного поля, который

можно представить в виде вектора

Под влиянием основного магнитного вектора В 0 спины постепенно возвращаются к исходному состоянию. Это процесс называется релаксацией. Поперечная намагниченность уменьшается, а продольная увеличивается (см. рис. 5.2).

Скорость этих процессов зависит от наличия химических связей; наличия или отсутствия кристаллической решетки; возможности свободной отдачи энергии с переходом электрона с более высокого на более низкий энергетический уровень (для воды это макромолекулы в окружении); неоднородности магнитного поля.

Время, за которое величина основного вектора намагниченности вернется к 63% первоначального значения, называют временем Т1-релаксации, или спин-решетчатой релаксацией.

После подачи радиочастотного импульса все протоны вращаются синхронно (в одной фазе). Затем из-за небольшой неоднородности магнитного поля спины, вращаясь с разной частотой (частотой Лармора), начинают вращаться в разных фазах. Другая частота резонанса позволяет «привязать» тот или иной протон к конкретному месту в исследуемом объекте.

Время релаксации Т2 наступает приблизительно в момент начала рас-фазировки протонов, которая происходит из-за негомогенности внешнего магнитного поля и наличия локальных магнитных полей внутри исследуемых тканей, т. е. когда спины начинают вращаться в разных фазах. Время,

за которое вектор намагниченности уменьшится до 37% первичного значения, называют временем Т2-релаксации, или спин-спиновой релаксацией.

Рис. 5.2. Этапы МР-исследования: а - объект помещается в сильное магнитное поле. Все векторы направлены вдоль вектора В 0 ; б - подается радиочастотный резонансный 90° сигнал. Спины направлены перпендикулярно вектору В 0 ; в - после этого происходит возврат к первоначальному состоянию (возрастает продольная намагниченность) - Т1 релаксация; г - из-за негомогенности магнитного поля в зависимости от удаленности от центра магнита спины начинают вращаться с разной частотой - происходит расфазировка

Эти изменения намагниченности считываются многократно для каждой точки исследуемого объекта и в зависимости от начала измерения МР-сиг-нала, характерного для разных импульсных последовательностей, мы получаем Т2-взвешенные, Т1-взвешенные или протон-взвешенные изображения.

В МРТ радиочастотные импульсы могут подаваться в различных комбинациях. Эти комбинации называются импульсными последовательностями. Они позволяют добиваться различной контрастности мягкотканных структур и применять специальные методики исследования.

Т1-взвешенные изображения (Т1-ВИ)

На Т1-ВИ хорошо определяются анатомические структуры. Т2-взвешенные изображения (Т2-ВИ)

Т2-ВИ имеют ряд преимуществ перед Т1-ВИ. Их чувствительность к большому количеству патологических изменений выше. Иногда становятся видимыми патологические изменения, которые не могут быть установлены при использовании Т1-взвешенных последовательностей. Кроме того, визуализация патологических изменений более надежная, если имеется возможность сравнения контраста на Т1- и Т2-ВИ.

В биологических жидкостях, содержащих разные по размеру молекулы, внутренние магнитные поля значимо различаются. Эти различия приводят к тому,

что расфазировка спинов наступает быстрее, время Т2 короткое, и на Т2-ВИ спинномозговая жидкость, например, всегда выглядит ярко-белой. Жировая ткань на Т1- и Т2-ВИ дает гиперинтенсивный МР-сигнал, так как характеризуется коротким временем Т1 и Т2.

Более подробно основные физические принципы магнитно-резонансной томографии описаны в переведенном на русский язык учебнике под редакцией профессора Ринка (Rinck) Европейского общества магнитного резонанса в медицине.

Характер получаемого сигнала зависит от множества параметров: числа протонов на единицу плотности (протонная плотность); времени Т1 (спин-решетчатой релаксации); времени Т2 (спин-спиновой релаксации); диффузии в исследуемых тканях; наличия тока жидкости (например, кровотока); химического состава; применяемой импульсной последовательности; температуры объекта; силы химической связи.

Получаемый сигнал отражается в относительных единицах серой шкалы. По сравнению с рентгеновской плотностью (единицы Хаунсфилда - HU), которая отражает степень поглощения рентгеновского излучения тканями организма и является сопоставимым показателем, интенсивность МР-сиг-нала - величина непостоянная, так как зависит от перечисленных выше факторов. В связи с этим абсолютные величины интенсивности МР-сигна-ла не сравнивают. Интенсивность МР-сигнала служит лишь относительной оценкой для получения контраста между тканями организма.

Важным показателем в МРТ является соотношение сигнал/шум. Это соотношение показывает, насколько интенсивность МР-сигнала превышает уровень шума, неизбежный при любых измерениях. Чем это соотношение выше, тем лучше изображение.

Одним из главных преимуществ МРТ является возможность создания максимального контраста между зоной интереса, например опухолью, и окружающими здоровыми тканями. Применяя разные импульсные последовательности, можно добиться большей или меньшей контрастности изображения.

Таким образом, для разных патологических состояний можно подобрать такую импульсную последовательность, где контраст будет максимальным.

В зависимости от напряженности магнитного поля различают несколько типов томографов:

До 0,1 Тл - сверхнизкопольный томограф;

От 0,1 до 0,5 Тл - низкопольный;

От 0,5 до 1 Тл - среднепольный;

От 1 до 2 Тл - высокопольный;

Более 2 Тл - сверхвысокопольный.

В 2004 г. FDA (Federal Food and Drug Administration - Федеральным управлением по пищевым продуктам и лекарственным средствам, США) разрешены к использованию в клинической практике МР-томографы с напряженностью магнитного поля до 3 Тл включительно. Проводятся единичные работы на добровольцах на 7 Тл МР-томографах.

Для создания постоянного магнитного поля используют:

Постоянные магниты, которые построены из ферромагнитных материалов. Их основным недостатком является большой вес - несколько

десятков тонн при небольшой силе индукции - до 0,3 Тл. Отсутствие громоздкой системы охлаждения и потребления электричества для формирования магнитного поля являются достоинствами таких магнитов;

Электромагниты, или резистивные магниты, представляющие собой соленоид, по которому пропускают сильный электрический ток. Они требуют мощной системы охлаждения, потребляют много электроэнергии, но при этом можно добиться большой однородности поля; диапазон магнитного поля таких магнитов составляет от 0,3 до 0,7 Тл.

Сочетания резистивного и постоянного магнита дают так называемые гибридные магниты, в которых получаются более сильные, чем в постоянных магнитах, поля. Они дешевле сверхпроводящих, но уступают им по величине поля.

Наиболее распространены сверхпроводящие магниты, которые являются резистивными, но используют явление сверхпроводимости. При температурах, близких к абсолютному нулю (-273 °С, или °К), происходит резкое падение сопротивления, и, следовательно, можно использовать огромные значения силы тока для генерации магнитного поля. Основным недостатком таких магнитов являются громоздкие, дорогостоящие многоступенчатые системы охлаждения с применением сжиженных инертных газов (Не, N).

МР-система со сверхпроводящим магнитом включает следующие компоненты:

Сверхпроводящий электромагнит с многоконтурной системой охлаждения, снаружи окруженной активным сверхпроводящим экраном для минимизации воздействия магнитного поля рассеяния; хладагентом является жидкий гелий;

Стол для пациента, перемещаемый в отверстие магнита;

МР-катушки для визуализации различных органов и систем, которые могут быть передающими, приемными и приемно-передающими;

Шкафы с электронной аппаратурой, система охлаждения, градиенты;

Компьютерную систему для управления, получения и хранения изображений, которая обеспечивает также интерфейс между компьютерной системой и пользователем;

Консоли управления;

Блок аварийной сигнализации;

Переговорное устройство;

Систему видеонаблюдения за пациентом (рис. 5.3). КОНТРАСТНЫЕ ВЕЩЕСТВА

Для лучшего выявления патологических изменений (прежде всего опухолей) сигнал можно усилить путем внутривенного введения парамагнитного контрастного вещества, что будет проявляться усилением МР-сигнала от опухоли, например в зоне нарушения гематоэнцефалического барьера.

Контрастные вещества, используемые в МРТ, изменяют продолжительность Т1- и Т2-релаксации.

Наиболее часто в клинической практике применяют хелатные соединения редкоземельного металла гадолиния - гадовист, магневист, омнискан. Несколько неспаренных электронов и возможность свободной отдачи энергии с переходом электрона с более высокого на более низкий энергетический уровень позволяют значительно снижать Т1- и Т2-релаксацию.

Рис. 5.3. Внешний вид высокопольного магнитно-резонансного томографа: 1) тоннель магнита; 2) стол пациента, который перемещается в тоннель (центр) магнита; 3) пульт управления столом, с системой центровки и позиционирования области исследования; 4) встроенные в стол радиочастотные катушки для исследования позвоночника; 5) основные радиочастотные катушки для исследования головного мозга; 6) наушники

для связи с пациентом

В некоторых нормальных структурах физиологическое распределение соединений гадолиния обычно ведет к усилению сигнала в Т1-ВИ. В полости черепа выделяются только те структуры, которые не имеют гема-тоэнцефалического барьера, например гипофиз, шишковидное тело, сосудистое сплетение желудочков мозга и определенные участки черепных нервов. Усиления не происходит в остальных частях центральной нервной системы, в спинномозговой жидкости, в стволе мозга, во внутреннем ухе и в глазницах, за исключением сосудистой оболочки глаз.

Особенно интенсивно контрастируются соединениями гадолиния патологические очаги с повышенной проницаемостью гематоэнцефалического барьера: опухоли, участки воспаления и повреждения белого вещества (рис. 5.4).

Контрастные вещества на основе гадолиния, оказывая влияние на Т1-ре-лаксацию, при выполнении МР-ангиографии улучшают визуализацию мелких артерий и вен, а также участков с турбулентным током.

Рис. 5.4. Опухоль головного мозга. Контрастное вещество накапливается в опухолевой ткани вследствие нарушения гематоэнцефалического барьера. На постконтрастных Т1-ВИ опухоль характеризуется выраженным гиперинтенсивным МР-сигналом (б) по сравнению

с преконтрастным изображением (а)

МЕТОДИКИ МАГНИТНО-РЕЗОНАНСНОГО ТОМОГРАФИЧЕСКОГО ИССЛЕДОВАНИЯ

Стандартные методики

Стандартными методиками МРТ являются получение Т1-, Т2- и протон-взвешенных изображений (срезов) в различных плоскостях, дающих диагностическую информацию о характере, локализации и распространенности патологического процесса.

Помимо этого, используют специальные методики: контрастное усиление (в том числе динамическое контрастное усиление), МР-ангиографию, МР-миелографию, МР-холангиопанкреатикографию, МР-урографию), жи-роподавление, спектроскопию, функциональную МРТ, МР-диффузию, МР-пер-фузию, кинематическое исследование суставов.

Программное обеспечение МР-томографа позволяет выполнять ангиографию как с введением контрастного вещества, так и без него. В бесконтрастной ангиографии выделяют две основные методики: время-пролетную (ToF or time-of-flight) и фазоконтрастную (PC or phase contrast) ангиографию. Методики основаны на одном физическом принципе, но способ реконструкции изображения и возможности визуализации различаются. Обе методики позволяют получить как двухмерное (2D), так и трехмерное (3D) изображение.

Получение ангиографического изображения основано на селективном возбуждении (насыщении) радиочастотным импульсом тонкого среза исследуемой области. Затем происходит считывание суммарного магнитного спина, который увеличивается в сосуде из-за того, что происходит вытеснение током крови «насыщенных» спинов «ненасыщенными», которые имеют полновесную намагниченность и дают более интенсивный сигнал по сравнению с окружающими тканями (см. рис. 5.5).

Интенсивность сигнала будет тем выше, чем выше напряженность магнитного поля, скорость тока крови, если радиочастотный импульс будет перпендикулярен исследуемому сосуду. Интенсивность сигнала снижается в местах турбулентного движения крови (ме-шотчатые аневризмы, область после стеноза) и в сосудах с небольшой скоростью кровотока. Эти недостатки устраняются в фазоконт-растной и трехмерной время-пролетной ангиографии (3D ToF), где пространственная ориентация кодируется не величиной, а фазой спинов. Для визуализации мелких артерий и вен целесообразнее применить фазоконтрастную либо трехмерную время-пролетную ангиографию (3D ToF). Использование фазоконтрастной методики позволяет визуализировать кровоток в пределах заданных скоростей и видеть медленный кровоток, например, в венозной системе.

Для контрастной МР-ангиографии внутривенно вводят парамагнитные контрастные вещества, улучшающие визуализацию мелких артерий и вен, а также участков с турбулентным током, автоматическим инъектором для МР-томографов.

Специальные методики

МР-холангиография, миелография, урография - группа методик, объединенных общим принципом визуализации только жидкости (гидрография). МР-сигнал от воды выглядит гиперинтенсивным на фоне низкого сигнала от окружающих тканей. Применение МР-миелографии с ЭКГ-совмещением помогает оценить ток спинномозговой жидкости в субарахноидальном пространстве.

Динамическая МРТ используется для выявления прохождения контрастного вещества через область интереса после внутривенного введения препарата. В злокачественных опухолях происходят более быстрый захват и быстрое вымывание по сравнению с окружающими тканями.

Методика жироподавления применяется для дифференциальной диагностики жиросодержащих тканей, опухолей. При использовании Т2-ВИ жидкость и жир выглядят яркими. В результате генерации селективного импульса, свойственного жировой ткани, происходит подавление МР-сигнала от нее. При сравнении с изображениями до жироподавления можно уверенно высказаться о локализации, например, липом.

Рис. 5.5. Общая схема бесконтрастной магнитно-резонансной ангиографии. Получение изображения основано на селективном возбуждении (насыщении) радиочастотным импульсом тонкого среза исследуемой области (темная полоса). В сосуде происходит вымещение током крови «насыщенных» спинов «ненасыщенными», которые имеют полновесную намагниченность и дают интенсивный МР-сигнал по сравнению с окружающими тканями

МР-спектроскопия водородная (1 H) и фосфорная (31 Р) позволяет в результате разделения МР-сигналов от различных метаболитов (холин, креатинин, N-ацетиласпартат, изониозид, глутамат, лактат, таурин, g-аминобутират, аланин, цитрат, аденозинтрифосфатаза, креатинфосфат, фосфомоноэфир, фосфодиэфир, неорганический фосфат-Pi, 2,3-фосфоглицерат) выявлять изменения на биохимическом уровне, до того как возникли изменения, видимые на традиционных Т1- и Т2-ВИ.

При МРТ возможно выполнение функциональной томографии головного мозга на основе методики BOLD (Blood Oxygen Level Dependent - зависящей от уровня кислорода в крови). Выявляются участки, где происходит усиление кровотока и, соответственно притока, кислорода в кору согласно топике раздражаемого анализатора или моторной зоны.

Для выявления изменений головного мозга в острейшем периоде ишеми-ческого инсульта выполняется диффузионная и перфузионная МРТ.

Под диффузией понимают движение свободных молекул воды, которое снижается в ишемизированной ткани мозга. Методика МР-диффузии позволяет выявлять участки понижения так называемого измеряемого коэффициента диффузии (ИКД) в зонах ишемического повреждения головного мозга, когда изменения при обычной (Т1-, Т2- и протон-взвешенной) томографии в первые часы еще не определяются. Зона, выявленная на диффузионных изображениях, соответствует зоне необратимых ишемических изменений. ИКД определяется путем использования специальной серии импульсных последовательностей. Время сканирования составляет чуть больше минуты, введения контрастного вещества не требуется.

Под термином «тканевая перфузия» понимается процесс доставки с кровью кислорода на капиллярном уровне. При перфузионной МРТ вводят 20 мл контрастного вещества внутривенно болюсно с помощью автоматического инъектора с большой скоростью (5 мл/с).

МР-перфузия выявляет изменения на микроциркуляторном уровне, которые обнаруживаются уже в первые минуты от начала клинической симптоматики. С помощью данной методики возможна количественная (MMT - среднее время транспорта, TTP - среднее время прихода КВ) и полуколичественная (CBF - мозговой кровоток, CBV - объем мозгового кровотока) оценка перфузионных показателей.

На МР-томографах с открытым контуром возможно кинематическое (в движении) исследование суставов, когда сканирование делают последовательно со сгибанием или разгибанием сустава на определенный угол. На полученных изображениях оценивают подвижность сустава и участие в нем тех или иных структур (связки, мышцы, сухожилия).

ПРОТИВОПОКАЗАНИЯ

Абсолютным противопоказанием для выполнения МРТ являются металлические инородные тела, осколки, ферромагнитные имплантаты, так как под влиянием сильного магнитного поля они могут нагреваться, смещаться и травмировать окружающие ткани.

Под ферромагнитными имплантатами понимают кардиостимуляторы, автоматические дозаторы лекарственных средств, имплантированные инсу-линовые помпы, искусственный задний проход с магнитным затвором; искусственные клапаны сердца с металлическими элементами, стальные имп-лантаты (зажимы/клипсы на сосудах, искусственные тазобедренные суставы, аппараты металлоостеосинтеза), слуховые аппараты.

Изменяющиеся во времени вихревые токи, генерируемые высокими магнитными полями, могут вызвать ожоги у пациентов с электропроводящими имплантированными устройствами или протезов.

Относительными противопоказаниями для проведения исследования: I триместр беременности; клаустрофобия (боязнь замкнутого пространства); некупированный судорожный синдром; двигательная активность пациента. В последнем случае у больных в тяжелом состоянии или у детей прибегают к анестезиологическому пособию.

ПРЕИМУЩЕСТВА МЕТОДА

Различные импульсные последовательности обеспечивают получение высококонтрастного изображения мягких тканей, сосудов, паренхиматозных органов в любой плоскости с заданной толщиной среза до 1 мм.

Отсутствие лучевой нагрузки, безопасность для больного, возможность многократного повторного выполнения исследования.

Возможность выполнения бесконтрастной ангиографии, а также хо-лангио-панкреатикографии, миелографии, урографии.

Неинвазивное определение содержания различных метаболитов in vivo с помощью водородной и фосфорной МР-спектроскопии.

Возможность функциональных исследований головного мозга для визуализации чувствительных и двигательных центров после их стимуляции.

НЕДОСТАТКИ МЕТОДА

Высокая чувствительность к двигательным артефактам.

Ограничение исследований у пациентов, находящихся на аппаратном поддержании жизненно важных функций (кардиостимуляторы, дозаторы лекарственных веществ, аппаратов ИВЛ и др.).

Плохая визуализация костных структур из-за низкого содержания воды.

ПОКАЗАНИЯ К ПРОВЕДЕНИЮ МРТ

Голова

1. Аномалии и пороки развития головного мозга.

2. Опухоли головного мозга:

Диагностика доброкачественных опухолей;

Диагностика внутримозговых опухолей с оценкой их злокачественности;

Оценка радикальности удаления опухолей и оценка эффективности комбинированного лечения;

Планирование стереотаксического вмешательства и/или биопсии при опухолях головного мозга.

3. Заболевания сосудов головного мозга:

Диагностика артериальных аневризм и сосудистых мальформаций;

Диагностика острого и хронического нарушения мозгового кровообращения;

Диагностика стенозирующих и окклюзирующих заболеваний.

4. Демиелинизирующие заболевания головного мозга:

Определение активности патологического процесса.

5. Инфекционные поражения головного мозга (энцефалит, абсцесс).

7. Гипертензионно-гидроцефальный синдром:

Установление причины повышения внутричерепного давления;

Диагностика уровня и степени обструкции при окклюзионной гидроцефалии;

Оценка состояния желудочковой системы при неокклюзионной гидроцефалии;

Оценка ликворотока.

8. Черепно-мозговая травма:

Диагностика внутричерепных кровоизлияний и ушибов головного мозга.

9. Заболевания и повреждения органа зрения и ЛОР-органов:

Диагностика внутриглазных кровоизлияний;

Выявление инородных (неметаллических) тел в глазнице и околоносовых пазухах;

Выявление гемосинуса при травмах;

Оценка распространенности злокачественных опухолей.

10. Контроль эффективности лечения различных заболеваний и травм головного мозга.

Грудь

1. Исследование органов дыхания и средостения:

Диагностика доброкачественных и злокачественных опухолей средостения;

Определение жидкости в полости перикарда, плевральной полости;

Выявление мягкотканных образований в легких.

2. Исследование сердца:

Оценка функционального состояния миокарда, сердечной гемодинамики;

Выявление прямых признаков инфаркта миокарда;

Оценка морфологического состояния и функции структур сердца;

Диагностика внутрисердечных тромбов и опухолей.

3. Исследование молочных желез:

Оценка состояния регионарных лимфатических узлов;

Оценка состояния имплантатов после протезирования молочных желез;

Пункционная биопсия образований под контролем МРТ.

Позвоночник и спинной мозг

1. Аномалии и пороки развития позвоночника и спинного мозга.

2. Травма позвоночника и спинного мозга:

Диагностика позвоночно-спинномозговой травмы;

Диагностика кровоизлияний и ушибов спинного мозга;

Диагностика посттравматических изменений позвоночника и спинного мозга.

3. Опухоли позвоночника и спинного мозга:

Диагностика опухолей костных структур позвоночника;

Диагностика опухолей спинного мозга и его оболочек;

Диагностика метастатических поражений.

4. Интрамедуллярные неопухолевые заболевания (сирингомиелия, бляшки рассеянного склероза).

5. Сосудистые заболевания спинного мозга:

Диагностика артериовенозных мальформаций;

Диагностика спинального инсульта.

6. Дегенеративно-дистрофические заболевания позвоночника:

Диагностика протрузий и грыж межпозвоночных дисков;

Оценка компрессии спинного мозга, нервных корешков и дурального мешка;

Оценка стеноза позвоночного канала.

7. Воспалительные заболевания позвоночника и спинного мозга:

Диагностика спондилитов различной этиологии;

Диагностика эпидуритов.

8. Оценка результатов консервативного и оперативного лечения заболеваний и повреждений позвоночника и спинного мозга.

Живот

1. Исследование паренхиматозных органов (печень, поджелудочная железа, селезенка):

Диагностика очаговых и диффузных заболеваний (первичные доброкачественные и злокачественные опухоли, метастазы, кисты, воспалительные процессы);

Диагностика повреждений при травме живота;

Диагностика портальной и билиарной гипертензии;

Изучение метаболизма печени на биохимическом уровне (фосфорная МР-спектроскопия).

2. Исследование желчных путей и желчного пузыря:

Диагностика желчнокаменной болезни с оценкой состояния внутри-и внепеченочных протоков;

Диагностика опухолей;

Уточнение характера и выраженности морфологических изменений при остром и хроническом холецистите, холангите;

Постхолецистэктомический синдром.

3. Исследование желудка:

Дифференциальная диагностика доброкачественных и злокачественных опухолей;

Оценка местной распространенности рака желудка;

Оценка состояния регионарных лимфатических узлов при злокачественных опухолях желудка.

4. Исследование почек и мочевыводящих путей:

Диагностика опухолевых и неопухолевых заболеваний;

Оценка распространенности злокачественных опухолей почек;

Диагностика мочекаменной болезни с оценкой функции мочевыделения;

Установление причин гематурии, анурии;

Дифференциальная диагностика почечной колики и других острых заболеваний органов брюшной полости;

Диагностика повреждений при травме живота и поясничной области;

Диагностика специфического и неспецифического воспаления (туберкулез, гломерулонефрит, пиелонефрит).

5. Исследование лимфатических узлов:

Выявление их метастатического поражения при злокачественных опухолях;

Дифференциальная диагностика метастатических и воспалительно измененных лимфатических узлов;

Лимфомы любой локализации.

6. Исследование сосудов полости живота:

Диагностика аномалий и вариантов строения;

Диагностика аневризм;

Выявление стенозов и окклюзии;

Оценка состояния межсосудистых анастомозов.

Таз

1. Аномалии и врожденные нарушения развития.

2. Травмы органов таза:

Диагностика внутритазовых кровоизлияний;

Диагностика повреждений мочевого пузыря.

3. Исследование внутренних половых органов у мужчин (простата, семенные пузырьки):

Диагностика воспалительных заболеваний;

Диагностика доброкачественной гиперплазии простаты;

Дифференциальная диагностика злокачественных и доброкачественных опухолей;

Изучение метаболизма простаты на биохимическом уровне (водородная МР-спектроскопия).

4. Исследование внутренних половых органов у женщин (матка, яичники):

Диагностика воспалительных и невоспалительных заболеваний;

Дифференциальная диагностика злокачественных и доброкачественных опухолей;

Оценка распространенности злокачественного опухолевого процесса;

Диагностика врожденных пороков и заболеваний плода.

Конечности

1. Аномалии и врожденные нарушения развития конечностей.

2. Травмы и их последствия:

Диагностика повреждений мышц, сухожилий, связок, менисков;

Диагностика внутрисуставных повреждений (жидкость, кровь и т. д.);

Оценка целостности капсулы крупных суставов.

3. Воспалительные заболевания (артрит, бурсит, синовиит).

4. Дегенеративно-дистрофические заболевания.

5. Нейродистрофические поражения.

6. Системные заболевания соединительной ткани (ретикулоэндотелиозы и псевдоопухолевые гранулемы, фиброзная дистрофия и т. д.).

7. Опухоли костей и мягких тканей:

Дифференциальная диагностика доброкачественных и злокачественных заболеваний;

Оценка распространенности опухолей.

Таким образом, МРТ является высокоинформативным, безопасным, не-инвазивным (или малоинвазивным) методом лучевой диагностики.

Магнитно-резонансная томография (ядерно-магнитная резонансная томография, МРТ, ЯМРТ, NMR, MRI) – нерентгенологический метод исследования внутренних органов и тканей человека. Здесь не используются Х-лучи, что делает данный метод безопасным для большинства людей.

Как проводится исследование

Технология МРТ достаточно сложна: используется эффект резонансного поглощения атомами электро-магнитных волн. Человека помещают в магнитное поле, которое создает аппарат. Молекулы в организме при этом разворачиваются согласно направлению магнитного поля. После этого радиоволной проводят сканирование. Изменение состояния молекул фиксируется на специальной матрице и передается в компьютер, где проводится обработка полученных данных. В отличие от компьютерной томографии МРТ позволяет получить изображение патологического процесса в разных плоскостях.

Магнитно-резонансный томограф
по своему внешнему виду похож на компьютерный. Исследование проходит так же, как и компьютерная томография. Стол постепенно продвигается вдоль сканера. МРТ требует больше времени, чем КТ, и обычно занимает не менее 1 часа (диагностика одного раздела позвоночника занимает 20-30 минут).

Метод был назван магнитно-резонансной томографией , а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом "ядерный" в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул. МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Метод особенно эффективен для изучения динамических процессов (например, состояния кровотока и результатов его нарушения) в органах и тканях.

Преимущества магнитно-резонансной томографии

В настоящее время о вреде магнитного поля ничего не известно. Однако большинство ученых считают, что в условиях, когда нет данных о его полной безопасности, подобным исследованиям не следует подвергать беременных женщин. По этим причинам, а также в связи с высокой стоимостью и малой доступностью оборудования компьютерная и ЯМР томографии назначаются по строгим показаниях в случаях спорного диагноза или безрезультатности других методов исследований. МРТ не может также проводиться у тех людей, в организме которых находятся различные металлические конструкции – искусственные суставы, водители ритма сердца, дефибрилляторы, ортопедические конструкции, удерживающие кости и т.п.

Как и другие методы исследования, компьютерную и магнитно-резонансную томографию назначает только врач. Далеко не во всех медицинских учреждениях проводятся эти исследования, поэтому при необходимости постарайтесь обратиться в диагностический центр.

МРТ – магнитно-резонансная томография – это современный, безопасный (без ионизирующего излучения) и надёжный метод лучевой диагностики . МРТ является уникальным и практически не имеющим аналогов исследованием для диагностики заболеваний центральной нервной системы, позвоночника, мышечно – суставной системы и ряда внутренних органов.

Специальной подготовки к исследованию не требуется, за исключением обследования органов малого таза, когда требуется наполненный мочевой пузырь. Во время исследования пациент в горизонтальном положении помещается в узкий тоннель (трубу) с сильным магнитный полем приблизительно на 15 – 20 минут, в зависимости от вида исследования. Пациент должен сохранять полную неподвижность исследуемой анатомической области. Процедура МРТ безболезненна, однако сопровождается сильным шумом. Для уменьшения дискомфорта вам будут предложены наушники.

Так же возможен психологический дискомфорт из-за нахождения в замкнутом пространстве. Сопровождающие лица могут находиться в помещении МРТ (магнитно-резонансной томографии) с пациентом при условии отсутствия у них противопоказаний к нахождению в магнитном поле и после подписания информационного согласия на каждое лицо, находящегося в области магнитного излучения.

Магнитно-резонансная томография - МРТ - до и после.

Перед проведением МРТ исследования необходимо заполнить анкету, которая позволяет выявить наличие противопоказаний к процедуре. Противопоказаниями к проведению МРТ исследования являются: наличие у пациента кардиостимуляторов (водителей ритма сердца), слуховых аппаратов и имплантов неустановленного происхождения; неадекватное поведение больного (психомоторное возбуждение, паническая атака), состояние алкогольного или наркотического опьянения, клаустрофобия (боязнь и выраженный дискомфорт при нахождении в замкнутых пространствах), невозможность сохранять неподвижность в течение всего исследования (например, вследствие сильной боли или неадекватного поведения), необходимость постоянного мониторинга жизненно-важных показателей (ЭКГ, артериальное давление, частота дыхания) и проведения постоянных реанимационных мероприятий (например, искусственного дыхания).

При наличии в анамнезе хирургических операций и инородных тел (имплантов) необходим сертификат на вживлённый материал или справка от лечащего врача, выполнявшего оперативное вмешательство (вживление) о безопасности проведения МРТ исследования с данным материалом. Информация для пациентов женского пола: менструация, наличие внутриматочной спирали, а так же кормление грудью не являются противопоказаниями для исследования. Беременность рассматривается как относительное противопоказание, в связи, с чем требуется заключение врача-гинеколога о возможности проведения МРТ исследования. Окончательное решение об отказе пациенту от проведения МРТ исследования принимает непосредственно перед исследованием дежурный врач-рентгенолог МРТ.

В связи с наличием сильного магнитного поля в помещение МРТ запрещается провоз каталок для лежачих пациентов, кресел-каталок, вспомогательных устройств, для передвижения (костыли, трости, рамки), содержащих металлические компоненты. Личные вещи, украшения и ценности, одежда, содержащая металл и электромагнитные устройства не допускаются в комнату МРТ сканирования и могут быть оставлены в сейфе в помещении управления МРТ.
Магнитно-резонансная томография безвредна!

Пациенту необходимо знать, что магнито-резонансная томография, как исследование, обладает определёнными диагностическими пределами, а так же возможной ограниченной чувствительностью и специфичностью в диагностике патологических процессов. В связи с этим, а так же при наличии сомнений в целесообразности проведения исследования рекомендуется проконсультироваться с лечащим врачом или врачом МРТ. Решение о проведении МРТ исследования и выборе анатомической области исследования принимает сам пациент на основании направления от лечащего врача или по собственной инициативе. Перед проведением МРТ исследования пациент самостоятельно указывает анатомическую область исследования в письменной форме, тем самым, подтверждая необходимость исследования данной области. После проведения МРТ исследования претензии не принимаются, и оплата за МРТ исследование не возвращается.

В ряде случаев возникает диагностическая необходимость проведения МРТ исследования с внутривенным контрастным усилением. Данные исследования проводятся только по направлению лечащего врача или врача МРТ. Введение контрастного препарата содержит минимальный риск побочных реакций. Пациенту будет предложено заполнить дополнительную анкету – лист информационного согласия на внутривенное введение контрастного препарата. Противопоказаниями к проведению внутреннего контрастного усиления является беременность, кормление грудью, ранее выявленная повышенная чувствительность к препаратам данной группы, а так же почечная недостаточность.

Для повышения диагностической эффективности МРТ исследований пациентам рекомендуется приносить с собой данные предыдущих МРТ исследований, других методов лучевой, лабораторной или функциональной диагностики, а так же амбулаторные карты или направления от лечащих врачей с указанием области и цели исследования.
Наш центр оснащен магнитно-резонансным томографом Magnetom Harmony компании Siemens

В нашем центре проводятся МРТ исследования головного мозга (головы), позвоночника, суставов и всего тела. В нашей клинике установлен Магнитно-резонансный томограф на основе использования сверхпроводящего магнита с напряженностью поля 1.0 Тл.

Кроткий дизайн магнита (всего 160 см, включая кожух) и передне-фронтальный доступ к пациенту для обеспечения комфорта пациента, значительно снижая проблему клаустрофобии.

Набор высокопроизводительных градиентов (20 мТл/м со скоростью нарастания 50 Тл/м/сек, 30 мТл/м при 75 Тл/м/сек и 30 мТл/м при 125 Тл/м/сек по каждой из x, y, z осей), циркулярно-поляризованная технология мультиэлементных радиочастотных катушек, объединенных в единый виртуальный массив для их панорамного использования, и новейшие уникальные импульсные последовательности в их клинически ориентированной вариации (TrueFisp, VIBE, HASTE, EPI, PSIF-Diffusion и пр.) для проведения всевозможных рутинных и скоростных обследований как на задержке дыхания, так и без нее (нейро: голова и отделы позвоночника, ортопедия, абдоминальные, ангиографические и кардиологические обследования), но и протонную спектроскопию, функциональные исследования головного мозга и пр.

Сканер с технологией Maestro Class , позволяющей обеспечить интеллектуальность и экспертность МРТ (магнитно-резонансная томография) обследований (Inline обработка и коррекци я смещений в процессе сбора данных 1D, 2D, 3D PACE) и увеличить дополнительно скорость сбора данных с использованием iPAT технологии до 2-3-х раз. Как следствие, Maestro Сlass расширяет возможности существующих приложений и открывает новые.

Современная медицинская диагностика базируется на двух видах исследований: прикладных (биологических, химических и т.п.) и визуализационных. Если первый вид исследований появился с незапамятных времен, когда человек определял наличие болезни, как говорится, «по запаху и на язык», то визуализация внутренних органов без повреждения организма стала возможной только с открытием свойства радиоактивных материалов производить проникающее излучение, известное сейчас как «рентгеновское».

Открытия физиков в мире элементарных частиц подарили медицине еще один способ получения изображений всех тканей и органов человеческого тела без прямого внедрения. Магнитно-резонансная томография (МРТ) является одним из самых передовых и продолжающих развиваться видов получения информации о состоянии живых организмов.

В диагностике заболеваний позвоночника МРТ является ведущим типом визуализации, т.к. конструкция позвоночного столба включает множество элементов из мягких тканей (межпозвоночные диски, связки, сумки фасеточных суставов), для которых магнитно-резонансная томография является наилучшим способом «неразрушающего контроля».

Что такое МРТ?

В основе визуализационного метода исследований, названного «Магнитно-резонансная томография», лежит одно из открытий квантовой физики и физики элементарных частиц, что ядра определенных элементов способны излучать излишки энергии, поглощенной под воздействием ориентированных магнитных полей и радиочастотных излучений.

Явление «ядерного магнитного резонанса», на котором базируется магнитно-резонансное исследование предметов (живых и неодушевленных), было открыто в 1922 году в ходе эксперимента по определению «спиновой квантизации» в электронах. Именно тогда ученые-физики поняли, что понятие квантовой физики «спин» (момент импульса частицы) имеет физическое выражение.

В ходе исследований по воздействию радиочастотных (РЧ) излучений на частицы, находящиеся в сильном магнитном поле, в 1937 году было выявлено, что ядра образцов поглощают РЧ-энергию определенной частоты и излучают после отключения внешнего импульса. Такое действие могут производить только частицы, ядра которых обладают электрическим зарядом и спином. Такие свойства присущи элементам, в ядре которых присутствует один «лишний» протон (т.е. количество протонов превышает количество электронов). Современная МР томография использует в исследованиях свойства нескольких «органических» элементов, самым популярным из которых является водород Н(1).

Находясь в сильном однородном магнитном поле ядро водорода, состоящее из одного протона, под воздействием радиоимпульса, излученного на определенной частоте (Ларморовская частота резонанса), способно «возбудиться»: энергия поглощенного РЧ-импульса переводит атом водорода на более высокий энергетический уровень. Но это нестабильное состояние неспособно сохраняться без внешнего воздействия, и когда импульсы прекращаются, происходит возврат к стабильному состоянию (релаксация). В процессе этого «остывания» ядро излучает электромагнитную волну, которую можно зафиксировать. Дальнейшее – дело сложных математических пространственных вычислений, в ходе которых сигнал определенного атома превращается в «пиксель» с определенными координатами.

Что заставляет ядро водорода поглощать энергию РЧ-импульса? Именно взаимодействие собственного магнитного поля ядра и наведенного вокруг «объекта исследований», большого, постоянного и ориентированного в определенном направлении магнитного поля, созданного сильными электромагнитами. Каждое ядро атома водорода является единичной магнитной системой, обладающей уникальной направленностью магнитного момента. Магнитные моменты всех протонов принудительно ориентируются в том направлении, в каком направлен вектор магнитной индукции внешнего поля. Энергия РЧ-импульса, излученного на частоте, совпадающей с частотой вращения протонов, поглощается, изменяя положение оси, ориентированной вдоль общего направления магнитного поля (поворачивается на 90 (Т1) и 180 градусов (Т2)). Возврат в нормальное, т.е. «невозбужденное», состояние с разворотом оси вращения в первоначальном направлении сопровождается излучением электромагнитной волны с той же частотой, на которой произошло поглощение энергии. В положениях Т1 и Т2 ядра водорода «запасают» разное количество энергии, и соответственно мощность излучения различается (первое состояние дает меньший импульс, нежели второе).

Это самое простое объяснение сути ядерно-магнитного резонанса в единичной системе, какой является атом водорода, но в плотном веществе для получения результатов требуется более сложное приложение магнитных полей. Для этого введены дополнительные магнитные поля, названные «градиентные». С их помощью можно менять направленность общего магнитного поля в трех измерениях, что позволяет получать изображения в любой проекции (плоскости) и формировать трехмерные изображения с помощью компьютерной обработки (как в компьютерной рентгеновской томографии).

По справедливости томографию следовало бы называть «ядерно-магнитной», т.к. используется именно излучение ядер атомов. Но после аварии, повлекшей разрушение атомного реактора на Чернобыльской АЭС и заражение прилежащих территорий радиоактивными выбросами, любое название, содержащее слово «ядерный», воспринимается со значительной долей нездорового скептицизма. Сокращение было принято для сохранения спокойствия населения, не знакомого с квантовой физикой.

История изобретения, устройство и принцип действия

Современные магнитно-резонансные томографы выпускаются в нескольких технически продвинутых странах, из которых на долю США приходится до 40% общего объема производства. Это не случайно, т.к. большинство основных технологических открытий, касающихся МР томографии, было сделано в американских научных центрах:

  • 1937 год – профессор Колумбийского университета (Нью-Йорк, США) Исидор Раби провел первый эксперимент по исследованию ядерно-магнитного резонанса в молекулярных лучах;
  • 1945 год – в двух университетах (Стэнфорде и Гарварде) проводились фундаментальные исследования ЯМР в твердых объектах (Ф. Блох и Э. Парселл);
  • 1949 год – Э.Ф. Рамсей (Колумбийский университет) сформулировал теорию химического сдвига, легшую в основание МР спектроскопии, обеспечившей химические лаборатории самой точной аналитической аппаратурой;
  • 1971-1977 годы – физик Раймонд Ваган Дамадиан с группой коллег (Бруклинский медицинский центр) создал первый МР-сканер и получил изображение внутренних органов живых объектов (и в том числе человека). В ходе исследований медики выявили, что изображения опухолей сильно отличаются от здоровых тканей. На проектирование и проведение работ потребовалось около 7 лет;
  • 1972 год – химик Пол Лаутербур (Госуниверситет г. Нью-Йорк) получил первое двумерное изображение, используя собственные разработки по применению переменных градиентных магнитных полей.

В 1975 году швейцарский физикохимик Рихард Эрнст предложил методы увеличения чувствительности МРТ (использование преобразований Фурье, фазовое и частотное кодирование), значительно увеличившие качество двумерных изображений.

В 1977 году Р. Дамадиан представил научному миру первое изображение среза грудной клетки человека, сделанное на первом МР-сканере. В дальнейшем техника только совершенствовалась. Особенно большой вклад в развитие МРТ внесло развитие компьютерной техники и программирования, позволившее программно управлять сложным комплексом электромагнитного оборудования и обрабатывать полученное излучение для получения пространственного изображения или двумерных «срезов» в любой плоскости.

На текущий момент существует 4 типа МР-томографов:

  1. На постоянных магнитах (небольшие, переносные, со слабым магнитным полем до 0,35 Тл). Позволяют производить «полевые» исследования во время операций. Наибольшее применение получают постоянные неодимовые магниты.
  2. На резистивных электромагнитах (до 0,6 Тл). Достаточно громоздкие стационарные аппараты с мощной системой охлаждения.
  3. Гибридные системы (на постоянных и резистивных магнитах);
  4. На сверхпроводящих электромагнитах (мощные стационарные системы с криогенной системой охлаждения).

Самое высокое качество изображения, четкое и контрастное, ученые получают на криогенных МР-томографах с сильными магнитными полями до 9,4 Тл (в среднем – 1,5 -3 Тл). Но практика показывает, что для получения качественного изображения требуется не столько мощное поле, но в большей мере быстрая обработка сигналов и хорошая контрастность. С развитием программного обеспечения мощность магнитов стандартных медицинских МР-сканеров снижена до 1-1,5 Тл. Самые мощные томографы изготавливаются для научных медицинских исследований.

Стандартный МР-томограф состоит из нескольких блоков:

  1. Система из нескольких магнитов:
  • большой торовидный магнит, создающий постоянное поле;
  • градиентные магнитные катушки, с помощью которых производится изменение направления вектора магнитной индукции («смещаются полюсы») в трех измерениях. Для смещения градиента изобретены катушки разных форм и размеров (8-образные, седловидные, парные (Гельмготца), Максвелла, Голея). Контролируемая компьютером работа одиночных и парных катушек способна направить моменты ядер в любую сторону или даже развернуть относительно первоначально заданного большим магнитом направления;
  • шиммирующие катушки, необходимые для стабилизации общего поля. Малые магнитные поля этих катушек компенсируют посторонние наводки или возможную неоднородность поля, созданного большим и градиентными магнитами;
  • РЧ-катушка. Радиочастотные катушки создают магнитное поле, пульсирующее с частотой резонанса. Разработаны и применяются три вида катушек: передающие, принимающие и комбинированные (передающе-принимающие). РЧ-излучатель одновременно является и детектором, т.к. при наведении на катушку внешнего излучения, созданного «релаксирующими» протонами, в ее контуре возникают индукционные токи, фиксируемые как РЧ-сигналы. Конструкции детекторов – катушек делятся на два типа: поверхностные и объемные, т.е. окружающие объект. Формы зависят от способов улавливания сигналов, при которых учитываются мощность и направленность излучений. Например, объемная катушка «птичья клетка» служит для получения более качественных изображений головы и конечностей. На томографе установлено несколько парных и одиночных РЧ-катушек для всех видов и направлений РЧ-сигналов.

Самое мощное поле создается сверхпроводящими магнитами. Большой кольцевой магнит, создающий постоянное поле, погружен в герметичный сосуд, наполненный сжиженным гелием (t= -269 о С). Этот сосуд замкнут в другом, большем герметичном сосуде. В пространстве между двумя стенками создан вакуум, что не позволяет гелию нагреться ни на долю градуса (количество вложенных вакуумных сосудов может быть больше двух). Чем меньше сопротивление в проводе катушки, тем выше мощность магнитного поля. Именно этим свойством обосновано применение сверхпроводников, сопротивление в которых близко к 0 Ом.

Система управления томографом состоит из устройств:

  • компьютер;
  • программатор градиентных импульсов (формирует направление магнитного поля с помощью изменения амплитуды и вида градиентных полей);
  • градиентный усилитель (управляет мощностью градиентных импульсов через изменение выходной мощности катушек);
  • источник и программатор РЧ-импульсов формируют амплитуду резонансного излучения;
  • РЧ-усилитель изменяет мощность импульсов до необходимого уровня.

Компьютер управляет блоками формирования полей и импульсов, принимает данные из детекторов и обрабатывает, трансформируя поток аналоговых сигналов в цифровую «картину», которую выводят на монитор и печать.

МР-сканер (т.е. магнитная система) в обязательном порядке окружается системой экранирования от внешних «наводок» электромагнитного и радиоизлучения, которые могут исходить от источников радиосигналов и любых металлических предметов, попавших в сильное магнитное поле. Металлическая сетка или сплошное листовое покрытие стен комнаты создают электрически проводящий экран типа «клетка Фарадея».

МРТ в медицинской диагностике

Магнитно-резонансная томография полностью отличается от рентгеновского просвечивания, т.к. это буквально не «аналоговый» (т.е. фотографический) способ получения изображения, а построение образа с помощью оцифрованных данных. То есть картинка, которую человек видит на экране, является продуктом дешифровки множества микроскопически малых сигналов, которые улавливает детектор томографа (РЧ-катушка). Каждый из этих электромагнитных импульсов обладает определенной мощностью и пространственными координатами внутри тела. Обработка и построение изображения на основании полученных импульсов «релаксации протонов» производится мощным компьютером по специальным программам.

В МРТ используется набор последовательностей РЧ-импульсов, которые создают определенные режимы «возбуждения» протонов водорода в тканях организма с уникальной интенсивностью поглощения и соответствующего возврата энергии. Фактически последовательности являются компьютерными программами, согласно которым производится излучение РЧ-сигналов с определенной амплитудой и мощностью и управление градиентами магнитных полей.

Водород является самым распространенным элементом в теле, т.к. не только присутствует во всех органических молекулах, но и, как компонент воды, содержится в большинстве тканей. Именно поэтому (а также потому, что в ядре только один протон, что позволяет легче вызвать резонанс) томография лучше отображает мягкие ткани, в которых концентрация воды значительно выше. На МРТ-изображении кости, содержащие крайне мало свободных молекул воды, выглядят как непроглядно черные области.

Многочисленные эксперименты показали, насколько различным может быть время релаксации протона, если атом, в котором находится эта элементарная частица, находится в определенном виде ткани. Причем если эта ткань здорова, время «отклика» будет значительно отличаться. Именно по времени релаксации, т.е. скорости возврата РЧ-импульса, компьютером определяется яркость объекта.

В медицинской диагностике с помощью МРТ обследуют не только плотные ткани, но и жидкости: МР-ангиография позволяет определять места образования тромбов, выявлять турбулентности и направление тока крови, измерять просвет сосудов. В исследованиях жидкой среды помогают специальные вещества, изменяющие время отклика протонов в составе жидкости. Контрастные вещества содержат соединения элемента «гадолиний», у которого имеются уникальные магнитные свойства ядер атомов, за которые его называют «парамагнетик».

Также с помощью МРТ измеряется внутренняя температура в любой точке тела. Бесконтактная термометрия основана на измерении резонансных частот тканей (температура измеряется на основании отклонений частоты релаксации в ядах водорода в атомах воды).

В основе построения изображений лежит фиксация трех базовых параметров, которыми обладают протоны:

  • время релаксации Т1 (спин-решеточная, поворот оси вращения протона на 90 о);
  • время релаксации Т2 (спин-спиновая, поворот оси вращения протона на 180 о);
  • протонная плотность (концентрация атомов в ткани).

Другими двумя условиями, влияющими на контрастность и яркость изображения, являются время повторения последовательности и время появления эхо-сигнала.

Используя в последовательностях РЧ-импульсы с определенной мощностью и амплитудой и измеряя время отклика Т1 и Т2, исследователи получают изображения одних и тех же точек тела (тканей) с разной контрастностью и яркостью. Например, короткое время Т1 дает мощный РЧ-сигнал релаксации, что при построении образа выглядит ярким пятном. По комбинации световых характеристик ткани в разных последовательностях выявляются увеличение концентрации воды, жира или конкретное изменение характеристик ткани, говорящее о наличии опухоли или уплотнения.

Для полноты информации о магнитно-резонансной томографии нужно сказать, что управление магнитными полями и радиочастотными импульсами не обходится без «казусов», необычно выглядящих изображений. Их называют «артефактами». Это любая точка, область или черта, присутствующие на изображении, но отсутствующие в организме в виде изменения ткани. Причиной появления таких артефактов могут быть:

  • случайные наводки от неизвестных металлических предметов, попавших в магнитное поле;
  • неисправности аппаратуры;
  • физиологические особенности организма («фантомы», пятна, вызванные движением внутренних органов при дыхании или сердцебиении);
  • неверные действия оператора.

Для устранения «артефактов» проводится внеочередная калибровка и тестирование аппаратуры, пациент и помещение проверяются на наличие инородных предметов, производится повторное обследование в нескольких режимах.

Использование МРТ в диагностике заболеваний позвоночника

Позвоночник – самая подвижная часть опорно-двигательного аппарата. Именно мягкие ткани обеспечивают и подвижность, и целостность позвоночной системы. Если подсчитать все известные и распространенные заболевания позвоночника, на долю повреждений мягких тканей придется до 90% от всех учтенных болезней. А если включить неврологические болезни спинного мозга и спинномозговых нервов и различные виды опухолей, то статистика возрастет до 95-97%. Иначе говоря, болезни, повреждающие костные ткани позвонков, встречаются более чем редко по сравнению с болезнями мягких тканей: межпозвоночных дисков, суставных сумок, связок и мышц спины.

Если сравнивать симптомы различных нарушений целостности мягких тканей, сходство будет исключительным:

  • боли (локальные и распространенные в определенной области);
  • «корешковый синдром» (нарушения целостности спинномозговых нервов и связанные с ними искажения сенсорных сигналов и ответных реакций);
  • различные по силе параличи (плегии), парезы и потери чувствительности.

Именно поэтому результаты магнитно-резонансной томографии имеют высокий статус «решающего слова» в визуализационной диагностике заболеваний позвоночника. Иной раз качественный снимок пораженного участка – это единственный способ окончательно утвердить диагноз, сделанный на основании предварительного осмотра, неврологических тестов и анализов.

Показанием для проведения обследования в МРТ считается наличие воспалительных процессов в области позвоночного столба, сопровождающихся активной иммунной реакцией (повышение температуры тела, отекание тканей, покраснение кожного покрова). Анализы подтверждают наличие иммунной реакции, но не способны указать точное положение места инфицирования и воспаления. МР томограмма с точностью до 1 мм устанавливает координаты очага, ареал распространения воспалительного процесса. МР ангиограммы укажут границы тромбирования сосудов и отека тканей. В исследовании хронических заболеваний (остеохондроз во всех стадиях, спондилоартроз и т.п.) МРТ показывает исключительную полезность.

Также прямым показанием для применения МРТ являются симптомы, указывающие на возможное образование абсцессов в эпидуральной области: сильные локализованные боли, «корешковый синдром», прогрессирующая потеря чувствительности и парализация конечностей и внутренних органов.

Инфекционные заболевания, способные повредить все типы тканей (туберкулез, остеомиелит), требуют комплексного исследования с помощью МРТ и компьютерной томографии (КТ). На МР томограммах выявляются поражения нервных тканей, хрящевых межпозвоночных дисков, суставных сумок. КТ дополняет общую картину данными о разрушениях костных тканей тел позвонков и отростков.

Повреждения спинного мозга и близких к ним тканей (кровеносных сосудов, оболочек мозга, внутренней надкостницы спинномозгового канала) требуют многосторонних и кропотливых исследований на МРТ, т.к. большая часть нарушений нервных тканей связана с образованием опухолей (доброкачественных и раковых), изредка – абсцессов (эпидуральных и субдуральных). Исследования магнитно-резонансной томографии первоначально были нацелены на выявление именно опухолевых образований в ЦНС. Многолетние наблюдения и систематизация накопленного опыта позволяют исследователям определять появляющиеся новообразования на первой стадии, «в зачаточном состоянии».

Развитие сканерной техники направлено на повышение детализации, контрастности и яркости изображения объектов любого размера, а также на максимально быстрое получение данных после излучения РЧ-импульса. Современный МР-томограф способен «показывать» происходящие процессы в реальном времени: сердцебиение, движение жидкостей, дыхание, сокращение мышц, образование тромба. Малые открытые МР-сканеры на постоянных магнитах позволяют производить операции с минимальным уровнем повреждений поверхностных тканей (интервенционная МРТ).

Компьютерное программирование позволяет построить по данным, полученным со сканера, объемное изображение на экране монитора или с помощью лазерной техники.

Развивается направление МРТ исследований позвоночника в вертикальном положении. Подвижная установка оборудована столом, меняющим положение на 90 о, что позволяет снять в реальном времени изменения в позвоночном столбе при увеличении вертикальных нагрузок. Особенно ценны такие данные при изучении травм (переломов разных типов) и спондилолистеза.

По отзывам проходивших обследование, они не испытывают никаких болезненных ощущений. Самое большое впечатление на них производит шум, который создает аппаратура: «сильный стук в стенках тоннеля, как будто поблизости работает перфоратор». Это вращается подвижная деталь постоянного магнита.


Противопоказания

Однозначным препятствием проведению МРТ обследования является наличие в теле пациента имплантатов и устройств, содержащих металлы, в любой степени обладающие свойствами ферромагнетиков. Для информации: только чистый титан, применяющийся для создания вертебральных систем фиксации, не обладает магнитными свойствами.

Наличие в теле пациента кардиостимулятора, кохлеарного имплантата с электронным оборудованием и металлическими деталями сразу вызовет в магнитном поле возмущения, которые на томограмме создадут «артефакт». Кроме того, электронный аппарат выйдет из строя, причинив владельцу максимальный ущерб. К такому же результату приведет наличие в теле искусственных суставов, штифтов, скоб или даже осколков металла, оставшихся после ранения. Некоторые химические соединения, входящие в состав красок для татуажа, также обладают ферромагнитными свойствами (в частности, микроскопические частицы способны нагреваться в сильном магнитном поле, что приводит к ожогам глубоких слоев эпидермиса).

Во время обследования от пациента требуется максимальная неподвижность во время достаточно продолжительного времени. Препятствием к проведению МРТ может быть психическая нестабильность, определенные фобии (клаустрофобия, например), которые вызовут у обследуемого шоковое состояние, истерику, непроизвольную подвижность.

Для повышения качества изображения могут применяться контрастные вещества (соединения гадолиния), свойства которых еще не до конца изучены. Например, как они могут подействовать на развитие плода во время первых трех месяцев беременности. Поэтому не рекомендуется проводить обследования беременных женщин, требующие применения контрастных веществ. Кроме того, у людей, имеющих индивидуальную физиологическую непереносимость, эти препараты могут вызвать непредвиденную анафилактическую реакцию.

Совершенствование техники, использующей явление ядерно-магнитного резонанса, дает медикам, химикам и биологам мощный инструмент для исследования текущих процессов в живом организме и поиска патологий на самых ранних стадиях развития.

Статьи по теме



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»