Живое электричество сообщение. Электричество – мощная природная сила на службе человечества

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Слайд 2

История открытия электрического явления

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н.э. Он обнаружил, что янтарь, потертый о шерсть, приобретет свойства притягивать легкие предметы: пушинки, кусочки бумаги. Позже считалось, что таким свойством обладает только янтарь. В середине XVII века Отто фон Гарике разработал электрическую машину трения. Кроме того, им было обнаружено свойство электрического отталкивания однополярно заряженных предметов, а в 1729 году английский ученый Стивен Грей обнаружил разделение тел на проводники электрического тока и изоляторы. Вскоре его коллега Роберт Симмер, наблюдая за электризацией своих шелковых чулок, пришел к выводу, что электрические явления обусловлены разделением на положительный и отрицательный заряд тел. Тела при трении друг о друга вызывают электризацию этих тел, то есть электризация – это накопление на теле заряда одного типа, причем заряды одного знака отталкиваются, а заряды разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным). В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Опыты, проведенные Дюфе, говорили, что один из зарядов образуется при трении стекла о шелк, а другой – при трении смолы о шерсть. Понятие о положительном и отрицательном заряде ввел немецкий естествоиспытатель Георг Кристоф. Первым количественным исследователем был закон взаимодействия зарядов, экспериментально установленный в 1785 году Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов.

Слайд 3

Почему у наэлектризованных людей волосы поднимаются вверх?

Волосы электризуются одноименным зарядом. Как известно, одноименные заряды отталкиваются, поэтому волосы, подобно листочкам бумажного султана, расходятся во все стороны. Если любое проводящее тело, в том числе и человеческое, изолировать от земли, то его можно зарядить до большого потенциала. Так, с помощью электростатической машины тело человека можно зарядить до потенциала в десятки тысяч вольт.

Слайд 4

Оказывает ли электрический заряд, размещенный в таком случае на теле человека, влияние на нервную систему?

Человеческое тело - проводник электричества. Если его изолировать от земли и зарядить, то заряд располагается исключительно по поверхности тела, поэтому заряжение до сравнительно высокого потенциала не влияет на нервную систему, так как нервные волокна находятся под кожей. Влияние электрического заряда на нервную систему сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.

Слайд 5

Почему птицы безнаказанно садятся на провода высоковольтной передачи?

Тело сидящей на проводе птицы представляет собою ответвление цепи, включенное параллельно участку проводника между лапками птицы. При параллельном соединении двух участков цепи величина токов в них обратно пропорциональна сопротивлению. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна. Следует добавить еще, что разность потенциалов на участке между ногами птицы мала.

Слайд 6

Рыбы и электричество.

Рыбы используют разряды: чтобы освещать свой путь; для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия

Слайд 7

Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшие напряжения, возникающие в обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи.

Слайд 8

Скаты.

«Эта рыба заставляет цепенеть животных, которых она хочет поймать, пересиливая их силой удара, живущего у нее в теле». Аристотель

Слайд 9

Сом.

Электрические органы расположены почти по всей длине тела рыбы, дают разряды напряжением до 360 В.

Слайд 10

ЭЛЕКТРИЧЕСКИЙ УГОРЬ

Самые мощные электрические органы у угрей, обитающих в реках тропической Америки. Их разряды достигают напряжения 650 В.

Слайд 11

Гром одно из грозных явлений.

Гром и молния – это одно из грозных, но величественных явлений, с которыми человек был еще готов с древности. Разбушевавшаяся стихия. Обрушивалась на него в виде ослепляющий гигантских молний, грозных громовых ударов, ливня и града. В страхе перед грозой люди обожествляли её, считая орудием богов.

Слайд 12

Молния

Чаще всего мы наблюдаем молнию, напоминающую извилистую реку с притоками. Такие молнии называют линейными, их длина при разряде между облаками достигает более 20км. Молнии других видов можно увидеть значительно реже. Электрический разряд в атмосфере в виде линейной молнии представляет собой электрический ток. Причем сила тока меняется за 0,2 – 0,3 секунды. Примерно 65% всех молний. Которые наблюдаются у нас имеют значение силы тока 10000 А, но редко достигают и 230 000 А. Канал молнии, через который протекает ток, сильно разогревается и ярко светит. Температура канала достигает десятков тысяч градусов, давление повышается, воздух расширяется проходит как бы взрыв раскаленных газов. Это мы воспринимаем как гром. Удар молнии в наземный предмет может вызвать пожар.

Слайд 13

При ударе молнии, например в дерево. Оно нагревается, влага из него испаряется, а давление образовавшегося пара и нагревшихся газов приводят к разрушениям. Для защиты зданий от грозовых разрядов применяют молниеотводы, которые представляют собой металлический стержень, возвышающийся над защищаемым объектом.

Слайд 14

Молния.

В лиственных деревьях ток проходит внутри ствола по сердцевине, где много сока, который под действием тока закипает и пары разрывают дерево.

Посмотреть все слайды

Знали ли Вы, что некоторые растения используют электричество, а некоторые виды рыб ориентируются в пространстве и оглушают добычу с помощью электрических органов?

: В издании «Nature» шла речь о том, как в растениях передаются электрические импульсы. В качестве ярких примеров на ум сразу приходят венерина мухоловка и мимоза стыдливая, у которых движение листьев вызывается электричеством. Но существуют и другие примеры.

«Нервная система млекопитающих передает электрические сигналы со скоростью до 100 метров в секунду. Растения живут в более медленном режиме. И хотя у них нет нервной системы, некоторые растения, такие как мимоза стыдливая (Mimosa pudica ) и венерика мухоловка (Dionaea muscipula ), используют электросигналы, провоцирующие быстрое движение листьев. Передача сигнала в этих растениях достигает скорости 3 см в секунду - и эта скорость сопоставима со скоростью нервных импульсов в мышцах . На странице 422 данного выпуска , автор Мусави и его коллеги исследуют интересный и не до конца понятный вопрос о том, как растения генерируют и передают электрические сигналы . Авторы называют два протеина, схожих с глутаматными рецепторами, которые являются важнейшими компонентами процесса индукции электрической волны, провоцируемой ранением листа. Она распространяется на соседние органы, заставляя их усиливать защитные реакции в ответ на потенциальную атаку травоядных».

Кто бы мог подумать, что, срезая лист, можно спровоцировать электрический сигнал? Эксперименты над растением резуховидка Таля продемонстрировали отсутствие реакции при воздействии на лист , однако при поедании листа возникал электрический сигнал, распространяющийся со скоростью 9 см в минуту.

«Передача электрического сигнала была наиболее эффективна в листьях, расположенных непосредственно над или под раненным листом, - отмечается в статье. – Эти листья соединены между собой сосудистым руслом растения, по которому передается вода и органические компоненты, а также отлично передаются сигналы на дальние расстояния» . Полученный сигнал включают в гене защитные компоненты. «Эти невероятные наблюдения отчетливо демонстрируют, что генерация и передача электрического сигнала играет важнейшую роль в инициации защитных реакций в отдаленных объектах при нападении травоядных».

Авторы оригинальной статьи не затрагивали тему эволюции, если не считать предположения о том, что «глубоко законсервированная функция этих генов, возможно , является связующим звеном между восприятием повреждений и периферийными защитными реакциями». Если это так, что эта функция, должно быть «существовала еще до расхождения в развитии животных и растений».

Электрические рыбки : Два новых вида электрических рыб были найдены в бассейне реки Амазонка, однако они оснащены электричеством по-разному. Одна из них, как и большинство остальных электрических рыб, двухфазна (или является источником переменного тока), а другая – монофазна (является источником постоянного тока). В одной из статей издания «Science Daily» рассматривались эволюционные причины, по которым это устроено именно так, и интересно то, что «эти хрупкие рыбки производят импульсы всего в несколько сотен милливольт с помощью органа, который немного выступает из волокнистого хвоста». Этот импульс слишком слаб, чтобы убить жертву, как это делает знаменитый электрический угорь, однако эти импульсы читаются представителями других видов, и используются представителями противоположного пола для общения. Рыбки используют их для «электролокации» в сложной водной среде ночью» . Что касается их эволюции, то эти две рыбы настолько похожи, что их относят к одному виду, и единственным различием является разница в электрической фазе их сигналов.

Существует огромное количество способов получать информацию об окружающем мире: прикосновение, взгляд, звук, запах, а теперь еще и электричество. Мир живой природы – это чудо общения между отдельными организмами и их окружением. Каждый орган чувств тонко сконструирован и несет огромную пользу для организма. Утонченные системы не являются результатом слепых неконтролируемых процессов. Мы верим, что если рассматривать их, как системы, созданные в соответствии с разумным замыслом, это ускорит процесс исследования, поможет искать понимания высшего замысла и имитировать их, чтобы усовершенствовать сферу инженерии. А настоящим препятствием в развитии науки является такое предположение: «О, этот организм эволюционировал только потому, что он эволюционировал». Это усыпляющий подход, обладающий снотворным воздействием.

«Электричествов живых организмах»


Что такое, кем открыто,что собой представляет электричество

Впервые на электрическийзаряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарьшерстью, после таких простых движений янтарь стал обладать свойством,притягивать мелкие предметы. Это свойство больше походит не на электрическиезаряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этимидвумя явлениями.

В 1747 - 53 Б. Франклинизложил первую последовательную теорию электрических явлений, окончательноустановил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в.началось количественное изучение электрических и магнитных явлений. Появилисьпервые измерительные приборы - электроскопы различных конструкций,электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установилизакон взаимодействия неподвижных точечных электрических зарядов (работыКавендиша были опубликованы лишь в 1879). Этот основной закон электростатики(Кулона закон) впервые позволил создать метод измерения электрических зарядовпо силам взаимодействия между ними.

Следующий этап в развитиинауки об Э. связан с открытием в конце 18 в. Л. Гальвани «животногоэлектричества»

Главным ученым в изученииэлектричества и электрических зарядов является Майкл Фарадей. С помощью опытовон доказал, что действия электрических зарядов и токов не зависят от способа ихполучения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждениеэлектрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти егоработы положили начало электрохимии.

И так, что же такоеэлектричество. Электричество - это совокупность явлений, обусловленныхсуществованием, движением и взаимодействием электрически заряженных тел иличастиц. Явление электричество можно встретить почти везде.

К примеру, если сильнопотереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочкибумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. Притрении янтаря, пластмассы и ряда других материалов в них возникает электрическийзаряд. Само слово «электрический» происходит от латинского слова electrum,означающего «янтарь».

Откуда же беретсяэлектричество

Все окружающие насобъекты содержат миллионы электрических зарядов, состоящих из частиц,находящихся внутри атомов - основы всей материи. Ядро большинства атомоввключает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрическогозаряда, в то время как протоны несут в себе положительный заряд. Вокруг ядравращаются еще одни частицы - электроны, имеющие отрицательный заряд. Какправило, каждый атом имеет одинаковое количество протонов и электронов, чьиравные по величине, но противоположные заряды уравновешивают друг друга. Врезультате мы не ощущаем никакого заряда, а вещество считается незаряженным.Однако, если мы каким-либо образом нарушим это равновесие, то данный объектбудет обладать общим положительным или отрицательным зарядом в зависимости оттого, каких частиц в нем останется больше - протонов или электронов.

Электрические зарядывлияют друг на друга. Положительный и отрицательный заряды притягиваются друг кдругу, а два отрицательных или два положительных заряда отталкиваются друг отдруга. Если поднести к предмету отрицательно заряженную леску, отрицательныезаряды предмета переместятся на другой его конец, а положительные заряды,наоборот, переместятся поближе к леске. Положительные и отрицательные зарядылески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процессназывается электростатической индукцией, и о предмете говорят, что он попадаетв электростатическое поле лески.

Что такое, кем открыто,что собой представляют живые организмы

Живые организмы - главныйпредмет изучения в биологии. Живые организмы не только вписались в существующиймир, но и изолировали себя от него при помощи специальных барьеров. Среда, вкоторой образовались живые организмы, является пространственно – временнымконтинуумом событий, то есть совокупностью явлений физического мира, котораяопределяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрениявсе организмы распределяются по разным группам и категориям, что составляетбиологическую систему их классификации. Самое общее их деление на ядерные ибезъядерные. По числу составляющих организм клеток их делят на одноклеточные имногоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы,т.е. на растения и животные действуют абиотические факторы среды (факторынеживой природы), особенно температура, свет и увлажненность. В зависимости от влиянияфакторов неживой природы, растения и животных делят на различные группы и у нихпоявляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано,живые организмы распределяются на большое количество. Сегодня мы рассмотримживые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температуройтела (теплокровные);

с непостояннойтемпературой тела (хладнокровные).

Организмы с непостояннойтемпературой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постояннойтемпературой тела (птицы, млекопитающие).

Чем связаны физика иживые организмы

Понимание сущности жизни,ее возникновения и эволюции определяет все будущее человечества на Земле каквида живого. Конечно, в настоящее время накоплен огромный материал,осуществляется его тщательное изучение, особенно в области молекулярнойбиологии и генетики, есть схемы или модели развития, есть даже практическоеклонирование человека.

Более того, биологиясообщает множество интересных и важных подробностей живых организмах, упускаячто-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоитиз атомов и молекул, для которых уже получены количественные и в целомправильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физикабыла и остается важным фактором общего развития изучения живых организмов вцелом. В этом смысле физика как феномен культуры, а не только как областьзнания, создает наиболее близкое для биологии социокультурное понимание.Вероятно, именно в физическом познании отражены стили мышления.Логико-методологические аспекты познания и самой естественной науки, какизвестно, почти целиком основаны на опыте физических наук.

Поэтому задача научногопознания живого, может быть, и состоит в обосновании возможности примененияфизических моделей и представлений к определению развития природы и обществатакже на основе физических закономерностей и научного анализа получаемых знанийо механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В.Волькенштейн, «в биологии как науке о живом возможны только два пути: либопризнать невозможным объяснение жизни на основе физики и химии, либо такоеобъяснение возможно и его надо найти, в том числе на основе общихзакономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различныхклассах живых организмах

В конце XVIII веказнаменитые ученые Гальвани и Вольта обнаружили электричество у животных.Первыми животными, на которых ученые делали опыт, чтобы подтвердить своеоткрытие, были лягушки. На клетку воздействуют различные факторы внешней среды- раздражители: физические - механические, температурные, электрические;

Электрическая активностьоказалась неотъемлемым свойством живой материи. Электричество генерируетнервные, мышечные и железистые клетки всех живых существ, однако наиболееразвита эта способность у рыб. Рассмотрим явление электричество у теплокровныхживых организмах.

В настоящее время известно,что из 20 тыс. современных видов рыб около 300 способны создавать ииспользовать биоэлектрические поля. По характеру генерируемых разрядов такиерыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятсяпресноводные южноамериканские электрические угри, африканские электрическиесомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды:угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупныхморских скатов невысоко, поскольку морская вода является хорошим проводником,но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа,например, мормирус и другие представители отряда клюворылообразных не излучаютотдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичныхсигналов (импульсов) высокой частоты, этого поля проявляется в виде такназываемых силовых линий. Если в электрическое поле попадает объект,отличающийся по своей электропроводности от воды, конфигурация поля изменяется:предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей- рассредоточивают. Рыбы воспринимают эти изменения с помощью электрическихрецепторов, расположенных у большинства рыб в области головы, и определяютместонахождение объекта. Таким образом эти рыбы осуществляют подлиннуюэлектрическую локацию.

Почти все они охотятсяпреимущественно ночью. Некоторые из них обладают плохим зрением, поэтому впроцессе длительной эволюции и выработался у этих рыб такой совершенный способдля обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемыеэлектрическими рыбами при ловле добычи и обороне от врагов, подсказываютчеловеку технические решения при разработке установок для электролова иотпугивания рыб. Исключительные перспективы открывает моделированиеэлектрических систем локации рыб. В современной подводной локационной техникепока не существует систем поиска и обнаружения, которые работали бы по образцуи подобию электролокаторов, созданных в мастерской природы. Учеными многихстран ведется упорная работа по созданию подобной аппаратуры.

ЗЕМНОВОДНЫЕ

Для изучения протеканияэлектричества в земноводных возмем опыт Гальвани. В своих опытах он использовалзадние лапки лягушки, соединенные с позвоночником. Подвешивая эти препараты намедном крючке к железным перилам балкона, он обратил внимание, что, когдаконечности лягушки раскачивались ветром, их мышцы сокращались при каждомприкосновении к перилам. На основании этого Гальвани пришел к выводу, чтоподергивания лапок были вызваны «животным электричеством», зарождающимся вспинном мозге лягушки и передаваемым по металлическим проводникам (крючку иперилам балкона) к мышцам конечностей. Против этого положения Гальвани о«животном электричестве» выступил физик Александр Вольта. В 1792 г. Вольта повторил опыты Гальвани и установил, что эти явления нельзя считать «животнымэлектричеством». В опыте Гальвани источником тока служил не спинной мозглягушки, а цепь, образованная из разнородных металлов – меди и железа. Вольтабыл прав. Первый опыт Гальвани не доказывал наличия «животного электричества»,но эти исследования привлекли внимание ученых к изучению электрических явленийв живых организмах. В ответ на возражение Вольта Гальвани произвел второй опыт,уже без участия металлов. Конец седалищного нерва он набрасывал стекляннымкрючком на мышцу конечности лягушки – и при этом также наблюдалось сокращениемышцы. В живом организме осуществляется и ионная проводимость.

Образованию и разделениюионов в живом веществе способствует наличие воды в белковой системе. От негозависит диэлектрическая постоянная белковой системы.

Носителями зарядов в этомслучае являются ионы водорода - протоны. Только в живом организме все видыпроводимости реализуются одновременно.

Соотношение между разнымипроводимостями меняется в зависимости от количества воды в белковой системе.Сегодня люди еще не знают всех свойств комплексной электропроводности живоговещества. Но ясно то, что именно от них зависят те принципиально отличныесвойства, которые присущи только живому.

На клетку воздействуютразличные факторы внешней среды - раздражители: физические - механические,температурные, электрические.

Работу выполнила: ученица 11 «А» класса МОУ «СОШ №1» г. Изобильного Волкова Евгения Учитель: Васина Ирина Васильевна Электричество в живой природе.


Цель работы: теоретически и экспериментально исследовать возникновение электричества в живой природе.


Задачи исследования: Установить факторы и условия, способствующие возникновению электричества в живой природе. Установить характер воздействия электричества на живые организмы. Сформулировать направления полезного использования получившихся результатов.


Электричество присуще всем живому Во взаимодействии с электромагнитными полями возникла и развилась жизнь на Земле. Электричество присуще всему живому, в том числе и наиболее сложной его форме – жизнедеятельности человека. Очень много сделано учёными в изучении этого удивительного взаимодействия электричества и живого, но многое пока ещё скрывает от нас природа .


История открытия электрических явлений. Фалес Милетский в VI веке до нашей эры описал способность натёртого янтаря притягивать к себе лёгкие предметы. Слово янтарь произошло от латышского gintaras. Греки, собиравшие прозрачный, золотисто-жёлтый янтарь на берегах Балтийского моря, называли его электро. Фалес Милетский


История открытия электрических явлений. Отто фон Гарике Электрическая машина трения


История открытия электрических явлений. Дюфе Шарль Франсуа Кулон Шарль Огюстен Георг Кристоф Роберт Симмер


Опыты Гальвани. Луиджи Гальвани Лаборатория Л.Гальвани


Опыт с лягушкой. Гальвани препарировал мертвую лягушку и вывесил на балкон для просушки её лапку на медной проволоке. Ветер раскачивал лапку, и он заметил, что, прикасаясь к железным перилам, она сокращается. Из этого Гальвани сделал ошибочный вывод, что мышцы и нервы животных вырабатывают электричество. Из всех известных животных только среди рыб встречаются виды, способные генерировать электрический ток и электрические разряды.


Почему у наэлектризованных людей волосы поднимаются вверх? Волосы электризуются одноимённым зарядом. Как известно, одноимённые заряды отталкиваются, поэтому волосы расходятся во все стороны


Оказывает ли электрический заряд влияние на нервную систему человека? Влияние электрического заряда на нервную систему человека сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.


Поглаживая в темноте кошку сухой ладонью, можно заметить небольшие искорки. Почему? При поглаживании кошки происходит электризация руки с последующим искровым разрядом.


Почему птицы безнаказанно садятся на провода высоковольтной передачи? Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожно мала и безвредна.


Биопотенциалы. В клетках, тканях и органах животных и растений между отдельными их участками возникает определённая разность потенциалов. Так называемые биопотенциалы, которые связаны с процессами обмена веществ в организме Электрическая активность оказалась неотъемлемым свойством живой материи. Электричество генерирует нервные, мышечные и железистые клетки всех живых существ, однако наиболее развита эта способность у рыб.


Рыбы используют разряды: чтобы освещать свой путь; для защиты, нападения и оглушения жертвы; передают сигналы друг другу и обнаруживают заблаговременно препятствия. Кое – что об электрических рыбах.


Электрический угорь Электрический сом Электрический скат «Живые электростанции»


Каждый орган состоит из множества «колодцев», вертикальных по отношению к поверхности тела и сгруппированных подобно пчелиным сотам. В каждом колодце, заполненном студенистым веществом, помещается столбик из 350-400 лежащих друг на друге дисков. Диски выполняют роль электродов в электрической батарее. Вся система приводится в действие особой электрической долей мозга. Электрические скаты


Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Он может произвести удар мощностью больше чем в 500 вольт! Угорь создает особенно сильное напряжение тока, когда изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо. Электрический угорь


Африканский речной сом Тело африканского речного сома обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов его достигает 360 В, оно опасно даже для человека и, конечно, гибельно для рыб.


Морская минога Морские миноги всегда приходят в возбуждение от одного присутствия в воде минимального количества химических веществ, выделяемых рыбами, которыми они питаются. Морская минога в возбуждённом состоянии излучает короткие электрические импульсы.


Исследования ученых показали, что многие из обычных, так называемых неэлектрических рыб, которые не имеют специальных электрических органов, все же в состоянии возбуждения способны создавать в воде слабые электрические разряды. Эти разряды образуют вокруг тела рыб характерные биоэлектрические поля. Скаты, тропические рыбы, угри, но не только они…


Скаты, тропические рыбы, угри, но не только они… Установлено, что слабые электрические поля есть у таких рыб, как речной окунь, щука, пескарь, вьюн, карась, красноперка, горбыль и др.


Биохимия электричества Все клетки заряжены. Заряд мембраны является неотъемлемым атрибутом её жизни. Пока клетка жива, у неё есть заряд. Заряд клетки возникает благодаря биохимическим процессам, протекающим в ней. Заряд существует тогда, когда есть разность между концентрациями ионов Na+/K+, определяемая перемещением этих ионов. Когда клетка работает, она теряет свой заряд.


Исследовательская часть. Эксперимент 1: При трении многих тел о мех наблюдается электризация. Я задалась целью выяснить, чей мех электризуется больше. Предварительно просушила шерсть котёнка и собаки (электризация существенно ослабляется при большой влажности). Затем натирала расчёску по очереди о шерсть каждого животного одинаковое количество раз, подносила её к гильзе из фольги, подвешенной на нити, и измеряла угол отклонения от вертикали.


Исследовательская часть.


Исследовательская часть.


Исследовательская часть. Вывод: Чем жестче шерсть, тем лучше способность электризовать другие тела. Возможно, и кошачья шерсть обладает хорошими свойствами электризовать. Однако для проверки этих утверждений требуется дальнейшее исследование с большим числом опытов.


Исследовательская часть. Эксперимент 2: Для того, чтобы выяснить, как электричество влияет на человека, я провела опыт. Взяла три расчески: деревянную, металлическую пластмассовую. Расчесав волосы (сухие) расческами, выяснилось, что после этого волосы притягиваются к расчёски. Но лучше всего они притягиваются к пластмассовой расческе, а хуже всего - к деревянной. Это можно объяснить тем, что дерево хуже электризуется. Перед натиранием расчёски о волосы количество положительных и отрицательных зарядов на волосах и расчёске одно и тоже. После натирания расчески о волосы на последних появляется положительный заряд, а на расчёске - отрицательный. Вывод: Когда электризуются волосы это не очень удобно и вообще не естественно, поэтому лучше пользоваться деревянными расчёсками, это будет лучше для ваших волос и для вас.


Исследовательская часть. Эксперимент 3: Электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля. Я провела опыты с этими плодами и действительно получила ток.


Исследовательская часть.


Исследовательская часть.


Исследовательская часть.


Диаграмма электрического тока.


ЗАКЛЮЧЕНИЕ: Конечно, электрическая энергия растений и животных, в настоящее время не могут заменить полноценные мощные источники энергии. Однако и недооценивать их не стоит. С развитием современных нанотехнологий и энергосберегающих решений наука может дойти до такого совершенства, когда например, миниатюрные системы можно будет годами питать, просто воткнув их в ствол. Начало уже положено, а будущее – за нашим молодым поколением, которому предстоит стать разработчиками новейших технологий и производств, направленных на развитие экономики страны.

В конце XVIII века знаменитые ученые Гальвани и Вольта обнаружили электри­чество у животных. Первыми животными, на которых ученые делали опыт, чтобы подтвердить свое открытие, были лягушки. Электричество генерирует нервные, мышечные и железистые клетки всех живых существ, однако наиболее развита эта способность у рыб.


В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля.
По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектри­ческие. К первым относятся пресноводные южноамериканские электрические угри, африканские электрические сомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды: угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупных морских скатов невысоко, поскольку морская вода является хорошим проводником, но сила тока их разрядов, напри­мер ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа, например, мормирус, гнатонемус, гимнарх и другие пред­ставители отряда клюворылообразных не излучают отдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичных сигналов (импульсов) высокой частоты, создавая вокруг своего тела электрическое поле. Конфигурация этого поля проявляется в виде так называемых силовых линий. Если в электри­ческое поле попадает объект, отличающийся по своей электропроводности от воды, конфигурация поля изменяется: предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей - рассредоточивают. Рыбы воспринимают эти изменения с помощью электрических рецепторов, расположенных у большинст­ва рыб в области головы, и определяют местонахождение объекта. Таким образом эти рыбы осуществляют подлинную электрическую локацию.

Клюворылообразные рыбы живут в Африке, в медленно текущих илистых мут­ных водах рек, а также в озерах и болотах, почти все они охотятся преимуществен­но ночью. Некоторые из них обладают плохим зрением, поэтому в процессе дли­тельной эволюции и выработался у этих рыб такой совершенный способ для об­наружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемые электрическими рыбами при ловле добычи и обороне от врагов, подсказывают человеку технические решения при разработке установок для электролова и отпугивания рыб. Исключительные перспективы открывает моделирование электрических систем локации рыб. В современной подводной локационной технике пока не существует систем поиска и обнаружения, которые работали бы по образцу и подобию электролокаторов, созданных в мастерской природы. Учеными многих стран ведется упорная работа по созданию подобной аппаратуры.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»