สูตรความก้าวหน้าทางเรขาคณิตและตัวเลข ความก้าวหน้าทางเรขาคณิต

ติดตาม
เข้าร่วมชุมชน "shango.ru"!
ติดต่อกับ:

ความก้าวหน้าทางเรขาคณิตคือลำดับของตัวเลขซึ่งแต่ละเทอม (เริ่มจากวินาที) ได้มาจากเทอมก่อนหน้าโดยการคูณด้วยตัวเลขเดียวกัน q ≠ 0 เรียกว่าตัวเลข q ตัวส่วนความก้าวหน้าทางเรขาคณิต หากต้องการกำหนดความก้าวหน้าทางเรขาคณิต คุณต้องกำหนดเทอมแรกเป็น 1 และตัวส่วน q

ความก้าวหน้าทางเรขาคณิตเพิ่มขึ้นเมื่อ q > 1 ลดลงเมื่อ 0< q < 1.

ตัวอย่างความก้าวหน้าทางเรขาคณิต:

1. 2, 4, 8, 16… . เทอมแรกคือ 1 และตัวส่วนคือ 2

81, 27, 9, 3, 1, 1/3… . เทอมแรกคือ 81 และตัวส่วนคือ 1/3

ดังนั้น เทอมแรกของความก้าวหน้าจะเท่ากับ 1 เทอมที่สอง - a 1 q เทอมที่สาม a 1 q*q = a 1 q 2 เทอมที่สี่ a 1 q 2 *q = a 1 q 3 ... . ดังนั้น, ระยะที่ n ของความก้าวหน้าคำนวณโดยใช้สูตร a n = a 1 q n-1

คำแถลง: ผลรวมของเงื่อนไข n ของความก้าวหน้าทางเรขาคณิตคำนวณโดยสูตร

S n = a 1 +a 1 q+a 1 q 2 +a 1 q 3 +...+a 1 q n-1

คูณด้วยเราจะได้:

S n q = a 1 q+a 1 q 2 +a 1 q 3 +...a 1 q n

ทีนี้ลองลบ S n q จาก S n

ตัวอย่างปัญหาความก้าวหน้าทางเรขาคณิต

1. หาผลรวมของ 10 เทอมแรกของความก้าวหน้าทางเรขาคณิต ถ้ารู้ว่า a 1 = 3, q ​​​​= 4

2. ในหนึ่งนาที ชีวมวลจะเพิ่มขึ้นสองเท่า เธอจะมีน้ำหนักเท่าใดใน 5 นาทีหากน้ำหนักปัจจุบันของเธอคือ 3 กก.

เรากำลังเผชิญกับความก้าวหน้าทางเรขาคณิต โดยที่ 1 = 3 และ q = 2 เพื่อแก้ปัญหา เราจำเป็นต้องหาเทอมที่หกของความก้าวหน้านี้

ลองพิจารณาซีรีย์บางเรื่อง

7 28 112 448 1792...

เป็นที่ชัดเจนอย่างยิ่งว่ามูลค่าขององค์ประกอบใด ๆ ของมันนั้นมากกว่าองค์ประกอบก่อนหน้าถึงสี่เท่าอย่างแน่นอน ซึ่งหมายความว่าซีรีส์นี้มีความก้าวหน้า

ความก้าวหน้าทางเรขาคณิตเป็นลำดับของตัวเลขที่ไม่มีที่สิ้นสุด คุณลักษณะหลักคือได้ตัวเลขถัดไปจากตัวเลขก่อนหน้าโดยการคูณด้วยตัวเลขเฉพาะ นี่แสดงโดยสูตรต่อไปนี้

a z +1 =a z ·q โดยที่ z คือจำนวนขององค์ประกอบที่เลือก

ดังนั้น z ∈ N

ช่วงเวลาที่ศึกษาความก้าวหน้าทางเรขาคณิตที่โรงเรียนคือชั้นประถมศึกษาปีที่ 9 ตัวอย่างจะช่วยให้คุณเข้าใจแนวคิด:

0.25 0.125 0.0625...

จากสูตรนี้ ตัวส่วนของความก้าวหน้าสามารถหาได้ดังนี้:

ทั้ง q และ bz ไม่สามารถเป็นศูนย์ได้ นอกจากนี้ แต่ละองค์ประกอบของความก้าวหน้าไม่ควรเท่ากับศูนย์

ดังนั้น หากต้องการหาตัวเลขถัดไปในชุดข้อมูล คุณต้องคูณตัวเลขสุดท้ายด้วย q

หากต้องการตั้งค่าความก้าวหน้านี้ คุณต้องระบุองค์ประกอบแรกและตัวส่วน หลังจากนี้ คุณสามารถค้นหาคำศัพท์ที่ตามมาและผลรวมได้

พันธุ์

ขึ้นอยู่กับ q และ 1 ความก้าวหน้านี้แบ่งออกเป็นหลายประเภท:

  • หากทั้ง 1 และ q มากกว่า 1 ลำดับดังกล่าวจะเป็นความก้าวหน้าทางเรขาคณิตที่เพิ่มขึ้นพร้อมกับองค์ประกอบที่ตามมาแต่ละองค์ประกอบ ตัวอย่างนี้แสดงไว้ด้านล่าง

ตัวอย่าง: a 1 =3, q=2 - พารามิเตอร์ทั้งสองมีค่ามากกว่าหนึ่ง

จากนั้นสามารถเขียนลำดับจำนวนได้ดังนี้:

3 6 12 24 48 ...

  • ถ้า |q| น้อยกว่าหนึ่ง กล่าวคือ การคูณด้วยมันเท่ากับการหาร ดังนั้นความก้าวหน้าที่มีเงื่อนไขคล้ายกันคือความก้าวหน้าทางเรขาคณิตที่ลดลง ตัวอย่างนี้แสดงไว้ด้านล่าง

ตัวอย่าง: a 1 =6, q=1/3 - a 1 มากกว่า 1, q น้อยกว่า

จากนั้นสามารถเขียนลำดับจำนวนได้ดังนี้:

6 2 2/3 ... - องค์ประกอบใด ๆ ที่มีขนาดใหญ่กว่าองค์ประกอบที่ตามมา 3 เท่า

  • ป้ายสลับ. ถ้าถาม<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

ตัวอย่าง: a 1 = -3, q = -2 - พารามิเตอร์ทั้งสองมีค่าน้อยกว่าศูนย์

จากนั้นสามารถเขียนลำดับจำนวนได้ดังนี้:

3, 6, -12, 24,...

สูตร

มีหลายสูตรสำหรับการใช้ความก้าวหน้าทางเรขาคณิตที่สะดวก:

  • สูตรเทอม Z ช่วยให้คุณสามารถคำนวณองค์ประกอบภายใต้ตัวเลขเฉพาะโดยไม่ต้องคำนวณตัวเลขก่อนหน้า

ตัวอย่าง:ถาม = 3, 1 = 4. จะต้องนับองค์ประกอบที่สี่ของความก้าวหน้า

สารละลาย: 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • ผลรวมขององค์ประกอบแรกที่มีปริมาณเท่ากับ z- ช่วยให้คุณสามารถคำนวณผลรวมขององค์ประกอบทั้งหมดของลำดับได้สูงสุดถึงzรวมอยู่ด้วย

ตั้งแต่ (1-ถาม) อยู่ในตัวส่วน จากนั้น (1 - q)≠ 0 ดังนั้น q จึงไม่เท่ากับ 1

หมายเหตุ: ถ้า q=1 การก้าวหน้าจะเป็นชุดของตัวเลขที่ซ้ำกันอย่างไม่สิ้นสุด

ผลรวมของความก้าวหน้าทางเรขาคณิต ตัวอย่าง: 1 = 2, ถาม= -2. คำนวณ S5

สารละลาย: 5 = 22 - การคำนวณโดยใช้สูตร

  • จำนวนเงินถ้า |ถาม| < 1 и если z стремится к бесконечности.

ตัวอย่าง: 1 = 2 , ถาม= 0.5. หาจำนวนเงิน.

สารละลาย:เอส ซี = 2 · = 4

เอส ซี = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

คุณสมบัติบางอย่าง:

  • คุณสมบัติลักษณะ หากเป็นไปตามเงื่อนไขดังต่อไปนี้ ทำงานเพื่อสิ่งใด ๆzจากนั้นอนุกรมตัวเลขที่กำหนดจะเป็นความก้าวหน้าทางเรขาคณิต:

z 2 = z -1 · ซ+1

  • นอกจากนี้ กำลังสองของตัวเลขใดๆ ในความก้าวหน้าทางเรขาคณิตสามารถหาได้โดยการบวกกำลังสองของตัวเลขอื่นๆ สองตัวใดๆ ในชุดที่กำหนด หากพวกมันอยู่ห่างจากองค์ประกอบนี้เท่ากัน

z 2 = z - ที 2 + z + ที 2 , ที่ไหนที- ระยะห่างระหว่างตัวเลขเหล่านี้

  • องค์ประกอบแตกต่างกันใน qครั้งหนึ่ง.
  • ลอการิทึมขององค์ประกอบของความก้าวหน้าก็ก่อให้เกิดความก้าวหน้าเช่นกัน แต่เป็นเลขคณิตนั่นคือแต่ละองค์ประกอบมีค่ามากกว่าองค์ประกอบก่อนหน้าด้วยจำนวนที่แน่นอน

ตัวอย่างของปัญหาคลาสสิกบางประการ

เพื่อให้เข้าใจได้ดีขึ้นว่าความก้าวหน้าทางเรขาคณิตคืออะไร ตัวอย่างพร้อมคำตอบสำหรับคลาส 9 สามารถช่วยได้

  • เงื่อนไข: 1 = 3, 3 = 48. ค้นหาถาม.

วิธีแก้ไข: แต่ละองค์ประกอบที่ตามมาจะมากกว่าองค์ประกอบก่อนหน้าในถาม ครั้งหนึ่ง.จำเป็นต้องแสดงองค์ประกอบบางอย่างในรูปขององค์ประกอบอื่นๆ โดยใช้ตัวส่วน

เพราะฉะนั้น, 3 = ถาม 2 · 1

เมื่อทำการทดแทนถาม= 4

  • เงื่อนไข: 2 = 6, 3 = 12. คำนวณ S 6.

สารละลาย:เมื่อต้องการทำเช่นนี้ เพียงหา q ซึ่งเป็นองค์ประกอบแรกแล้วแทนที่ลงในสูตร

3 = ถาม· 2 , เพราะฉะนั้น,ถาม= 2

ก 2 = คิว · ก 1 ,นั่นเป็นเหตุผล ก 1 = 3

ส 6 = 189

  • · 1 = 10, ถาม= -2. ค้นหาองค์ประกอบที่สี่ของความก้าวหน้า

วิธีแก้: เมื่อต้องการทำเช่นนี้ ก็เพียงพอที่จะแสดงองค์ประกอบที่สี่ผ่านทางตัวแรกและตัวส่วนแล้ว

ก 4 = ค 3· ก 1 = -80

ตัวอย่างการใช้งาน:

  • ลูกค้าธนาคารฝากเงินจำนวน 10,000 รูเบิล ภายใต้เงื่อนไขที่ลูกค้าจะได้เงินต้นเพิ่ม 6% ทุกปี หลังจาก 4 ปีจะมีเงินเข้าบัญชีเท่าไหร่?

วิธีแก้ปัญหา: จำนวนเงินเริ่มต้นคือ 10,000 รูเบิล ซึ่งหมายความว่าหนึ่งปีหลังจากการลงทุน บัญชีจะมีจำนวนเงินเท่ากับ 10,000 + 10,000 · 0.06 = 10,000 1.06

ดังนั้นจำนวนเงินในบัญชีหลังจากปีอื่นจะแสดงดังนี้:

(10,000 · 1.06) · 0.06 + 10,000 · 1.06 = 1.06 · 1.06 · 10,000

นั่นคือทุกปีจำนวนเงินจะเพิ่มขึ้น 1.06 เท่า ซึ่งหมายความว่าหากต้องการค้นหาจำนวนเงินในบัญชีหลังจาก 4 ปี ก็เพียงพอที่จะค้นหาองค์ประกอบที่สี่ของความก้าวหน้า ซึ่งกำหนดโดยองค์ประกอบแรกเท่ากับ 10,000 และตัวส่วนเท่ากับ 1.06

ส = 1.06 1.06 1.06 1.06 10,000 = 12625

ตัวอย่างปัญหาการคำนวณผลรวม:

ความก้าวหน้าทางเรขาคณิตถูกนำมาใช้ในปัญหาต่างๆ ตัวอย่างการหาผลรวมได้ดังนี้:

1 = 4, ถาม= 2 คำนวณส 5.

วิธีแก้ไข: ทราบข้อมูลทั้งหมดที่จำเป็นสำหรับการคำนวณแล้ว คุณเพียงแค่ต้องแทนที่ข้อมูลเหล่านั้นลงในสูตร

5 = 124

  • 2 = 6, 3 = 18. คำนวณผลรวมของหกองค์ประกอบแรก

สารละลาย:

ในภูมิศาสตร์ ความก้าวหน้า แต่ละองค์ประกอบถัดไปจะมากกว่าองค์ประกอบก่อนหน้า q เท่า นั่นคือเพื่อคำนวณผลรวมที่คุณต้องรู้องค์ประกอบนั้น 1 และตัวส่วนถาม.

2 · ถาม = 3

ถาม = 3

ในทำนองเดียวกันคุณต้องค้นหา 1 , รู้ 2 และถาม.

1 · ถาม = 2

ก 1 =2

6 = 728.

ความก้าวหน้าทางเรขาคณิตเป็นลำดับตัวเลขรูปแบบใหม่ที่เรากำลังจะคุ้นเคย เพื่อการออกเดทที่ประสบความสำเร็จ อย่างน้อยการรู้และเข้าใจก็ไม่เสียหายอะไร แล้วจะไม่มีปัญหาเรื่องความก้าวหน้าทางเรขาคณิต)

ความก้าวหน้าทางเรขาคณิตคืออะไร? แนวคิดเรื่องความก้าวหน้าทางเรขาคณิต

เราเริ่มทัวร์ตามปกติด้วยพื้นฐาน ฉันเขียนลำดับตัวเลขที่ยังไม่เสร็จ:

1, 10, 100, 1000, 10000, …

คุณสามารถมองเห็นรูปแบบและบอกได้ว่าตัวเลขใดจะมาต่อไป? พริกไทยชัดเจนแล้วเลข 100,000, 1,000,000 และต่อๆ ไปก็จะตามมา แม้จะไม่ต้องใช้ความพยายามอะไรมากมาย ทุกอย่างก็ชัดเจนใช่ไหม?)

ตกลง. ตัวอย่างอื่น. ฉันเขียนลำดับนี้:

1, 2, 4, 8, 16, …

บอกได้ไหมว่าเลขไหนจะมาต่อไปตามเลข 16 และชื่อ ที่แปดสมาชิกลำดับ? ถ้าคิดออกว่าจะเป็นเลข 128 ก็ถือว่าดีมาก ครึ่งหนึ่งของการต่อสู้อยู่ที่ความเข้าใจ ความรู้สึกและ ประเด็นสำคัญความก้าวหน้าทางเรขาคณิตได้เสร็จสิ้นแล้ว คุณสามารถเติบโตต่อไปได้)

และตอนนี้เราย้ายจากความรู้สึกไปสู่คณิตศาสตร์ที่เข้มงวดอีกครั้ง

ประเด็นสำคัญของความก้าวหน้าทางเรขาคณิต

จุดสำคัญ #1

ความก้าวหน้าทางเรขาคณิตคือ ลำดับของตัวเลขความก้าวหน้าก็เช่นกัน ไม่มีอะไรแฟนซี ลำดับนี้เท่านั้นที่จัดไว้ แตกต่างกันดังนั้นจึงมีชื่อที่แตกต่างกันออกไป ใช่แล้ว...

จุดสำคัญ #2

ด้วยประเด็นสำคัญประการที่สอง คำถามจะซับซ้อนมากขึ้น ย้อนกลับไปสักหน่อยแล้วจำคุณสมบัติหลักของความก้าวหน้าทางคณิตศาสตร์กัน นี่คือ: สมาชิกแต่ละคนมีความแตกต่างจากสมาชิกคนก่อน ด้วยจำนวนที่เท่ากัน

เป็นไปได้ไหมที่จะกำหนดคุณสมบัติหลักที่คล้ายกันสำหรับความก้าวหน้าทางเรขาคณิต? คิดสักนิด... ลองดูตัวอย่างที่ให้มาโดยละเอียด คุณเดาได้ไหม? ใช่! ในความก้าวหน้าทางเรขาคณิต (มีก็ได้!) สมาชิกแต่ละคนจะแตกต่างจากสมาชิกก่อนหน้า จำนวนครั้งเท่ากันเสมอ!

ในตัวอย่างแรก ตัวเลขนี้คือสิบ ไม่ว่าคุณจะเลือกสมาชิกของลำดับใด มันจะมากกว่าลำดับก่อนหน้า สิบครั้ง.

ในตัวอย่างที่สอง มันคือสอง: แต่ละเทอมมีค่ามากกว่าเทอมก่อนหน้า สองครั้ง.

นี่คือประเด็นสำคัญที่ความก้าวหน้าทางเรขาคณิตแตกต่างจากความก้าวหน้าทางคณิตศาสตร์ ในการก้าวหน้าทางคณิตศาสตร์ แต่ละเทอมต่อมาจะได้รับ โดยการเพิ่มค่าเดียวกันกับคำก่อนหน้า และที่นี่ - การคูณงวดก่อนด้วยจำนวนเท่ากัน นั่นคือความแตกต่างทั้งหมด)

จุดสำคัญ #3

ประเด็นสำคัญนี้เหมือนกับความก้าวหน้าทางคณิตศาสตร์โดยสิ้นเชิง กล่าวคือ: สมาชิกแต่ละคนของความก้าวหน้าทางเรขาคณิตยืนอยู่ในตำแหน่งของมันทุกอย่างเหมือนกันทุกประการกับความก้าวหน้าทางคณิตศาสตร์และความคิดเห็นที่ฉันคิดว่าไม่จำเป็น มีเทอมแรกมีร้อยเอ็ดเป็นต้น ให้เราสลับกันอย่างน้อยสองเทอม รูปแบบ (และความก้าวหน้าทางเรขาคณิตด้วย) จะหายไป สิ่งที่เหลืออยู่เป็นเพียงลำดับตัวเลขโดยไม่มีตรรกะใดๆ

นั่นคือทั้งหมดที่ นั่นคือจุดรวมของความก้าวหน้าทางเรขาคณิต

ข้อกำหนดและการกำหนด

แต่ตอนนี้ เมื่อเข้าใจความหมายและประเด็นสำคัญของความก้าวหน้าทางเรขาคณิตแล้ว เราก็สามารถไปยังทฤษฎีได้ ไม่เช่นนั้นทฤษฎีจะเป็นอย่างไรหากไม่เข้าใจความหมายใช่ไหม?

จะแสดงถึงความก้าวหน้าทางเรขาคณิตได้อย่างไร?

ความก้าวหน้าทางเรขาคณิตเขียนในรูปแบบทั่วไปอย่างไร ไม่มีปัญหา! แต่ละเทอมของความก้าวหน้าก็เขียนเป็นตัวอักษรด้วย สำหรับการก้าวหน้าทางคณิตศาสตร์เท่านั้น โดยปกติจะใช้ตัวอักษร "เอ", สำหรับเรขาคณิต – ตัวอักษร "ข" หมายเลขสมาชิกตามปกติจะถูกระบุ ดัชนีที่ด้านล่างขวา- เราเพียงแต่แสดงรายชื่อสมาชิกของความก้าวหน้า โดยคั่นด้วยเครื่องหมายจุลภาคหรืออัฒภาค

แบบนี้:

ข 1, 2 , 3 , 4 , 5 , 6 , …

ความก้าวหน้านี้เขียนโดยย่อดังนี้: (บีเอ็น) .

หรือเช่นนี้เพื่อความก้าวหน้าอันจำกัด:

ข 1, ข 2, ข 3, ข 4, ข 5, ข 6

ข 1 ข 2 … ข 29 ข 30

หรือกล่าวโดยย่อ:

(บีเอ็น), n=30 .

อันที่จริงนั่นคือการกำหนดทั้งหมด ทุกอย่างเหมือนเดิมต่างกันแค่ตัวอักษรเท่านั้นใช่) และตอนนี้เราไปสู่คำจำกัดความโดยตรง

คำจำกัดความของความก้าวหน้าทางเรขาคณิต

ความก้าวหน้าทางเรขาคณิตคือลำดับตัวเลขโดยที่เทอมแรกไม่เป็นศูนย์ และแต่ละเทอมต่อมาจะเท่ากับเทอมก่อนหน้าคูณด้วยจำนวนที่ไม่เป็นศูนย์เดียวกัน

นั่นคือคำจำกัดความทั้งหมด คำและวลีส่วนใหญ่ชัดเจนและคุ้นเคยสำหรับคุณ แน่นอนว่าหากคุณเข้าใจความหมายของความก้าวหน้าทางเรขาคณิต "บนนิ้วของคุณ" และโดยทั่วไปแล้ว แต่ก็มีวลีใหม่สองสามวลีที่ฉันอยากจะให้ความสนใจเป็นพิเศษ

ประการแรกคำว่า: “สมาชิกคนแรกซึ่ง ไม่ใช่ศูนย์".

ข้อจำกัดนี้ในระยะแรกไม่ได้เกิดขึ้นโดยบังเอิญ คุณคิดว่าจะเกิดอะไรขึ้นถ้าสมาชิกคนแรก 1 จะเท่ากับศูนย์ใช่ไหม? เทอมที่สองจะเท่ากับอะไรถ้าแต่ละเทอมมากกว่าเทอมก่อนหน้า? จำนวนครั้งเท่ากันเหรอ?สมมติว่าสามครั้ง? มาดูกัน... คูณเทอมแรก (เช่น 0) ด้วย 3 แล้วได้... ศูนย์! แล้วสมาชิกคนที่สามล่ะ? เป็นศูนย์ด้วย! และเทอมที่สี่ก็เป็นศูนย์ด้วย! และอื่นๆ...

เราเพิ่งได้เบเกิลหนึ่งถุง ลำดับของเลขศูนย์:

0, 0, 0, 0, …

แน่นอนว่าลำดับดังกล่าวมีสิทธิที่จะมีชีวิต แต่ก็ไม่มีประโยชน์ในทางปฏิบัติ ทุกอย่างชัดเจน. สมาชิกใดๆ ของมันคือศูนย์ ผลรวมของเงื่อนไขจำนวนเท่าใดก็ได้เป็นศูนย์... คุณสามารถทำอะไรที่น่าสนใจได้บ้าง? ไม่มีอะไร…

คำสำคัญต่อไปนี้: "คูณด้วยจำนวนที่ไม่เป็นศูนย์เท่าเดิม"

หมายเลขเดียวกันนี้ก็มีชื่อพิเศษของตัวเองเช่นกัน - ตัวส่วนของความก้าวหน้าทางเรขาคณิต- มาเริ่มทำความรู้จักกันดีกว่า)

ตัวส่วนของความก้าวหน้าทางเรขาคณิต

ทุกอย่างง่ายเหมือนปลอกลูกแพร์

ตัวหารของความก้าวหน้าทางเรขาคณิตคือตัวเลข (หรือปริมาณ) ที่ไม่ใช่ศูนย์ที่ระบุกี่ครั้งแต่ละระยะของความก้าวหน้า มากกว่าครั้งก่อน

เช่นเดียวกับความก้าวหน้าทางคณิตศาสตร์ คำสำคัญที่ต้องมองหาในคำจำกัดความนี้คือคำว่า "มากกว่า"- หมายความว่าจะได้ความก้าวหน้าทางเรขาคณิตแต่ละเทอม การคูณถึงตัวส่วนนี้เอง สมาชิกคนก่อน.

ให้ฉันอธิบาย.

ในการคำนวณสมมติว่า ที่สองดิ๊ก จำเป็นต้องเอา อันดับแรกสมาชิกและ คูณให้กับตัวส่วน. สำหรับการคำนวณ ที่สิบดิ๊ก จำเป็นต้องเอา เก้าสมาชิกและ คูณให้กับตัวส่วน.

ตัวหารของความก้าวหน้าทางเรขาคณิตนั้นสามารถเป็นอะไรก็ได้ ใครก็ได้แน่นอน! ทั้งหมด, เศษส่วน, บวก, ลบ, ไม่ลงตัว - ทุกอย่าง ยกเว้นศูนย์ นี่คือสิ่งที่คำว่า "ไม่เป็นศูนย์" ในคำจำกัดความบอกเรา เหตุใดจึงต้องมีคำนี้ที่นี่ - มีรายละเอียดเพิ่มเติมในภายหลัง

ตัวส่วนของความก้าวหน้าทางเรขาคณิตส่วนใหญ่มักระบุด้วยจดหมาย ถาม.

จะหาได้อย่างไร ถาม- ไม่มีปัญหา! เราต้องใช้เวลาระยะหนึ่งของความก้าวหน้าและ หารด้วยเทอมก่อนหน้า- ส่วนที่เป็น เศษส่วน- ดังนั้นชื่อ - "ส่วนแห่งความก้าวหน้า" ตัวส่วนมักจะอยู่ในเศษส่วน ใช่...) แม้ว่าตามตรรกะแล้ว ค่าก็ตาม ถามควรจะเรียกว่า ส่วนตัวความก้าวหน้าทางเรขาคณิตคล้ายกับ ความแตกต่างเพื่อความก้าวหน้าทางคณิตศาสตร์ แต่เราตกลงที่จะโทร ตัวส่วน- และเราจะไม่สร้างวงล้อขึ้นมาใหม่เช่นกัน)

ให้เรากำหนด เช่น ปริมาณ ถามสำหรับความก้าวหน้าทางเรขาคณิตนี้:

2, 6, 18, 54, …

ทุกอย่างเป็นระดับประถมศึกษา เอาล่ะ ใดๆลำดับหมายเลข. เราเอาอะไรก็ตามที่เราต้องการ ยกเว้นอันแรกสุด เช่น 18. และหารด้วย หมายเลขก่อนหน้า- นั่นก็คือตอน 6 โมง

เราได้รับ:

ถาม = 18/6 = 3

นั่นคือทั้งหมดที่ นี่คือคำตอบที่ถูกต้อง สำหรับความก้าวหน้าทางเรขาคณิตนี้ ตัวส่วนคือสาม

ทีนี้ลองหาตัวส่วน ถามสำหรับความก้าวหน้าทางเรขาคณิตอีกอย่างหนึ่ง ตัวอย่างเช่นอันนี้:

1, -2, 4, -8, 16, …

เหมือนกันทั้งหมด. ไม่ว่าสมาชิกจะมีสัญญาณอะไรเราก็ยังรับอยู่ ใดๆจำนวนลำดับ (เช่น 16) และหารด้วย หมายเลขก่อนหน้า(เช่น -8)

เราได้รับ:

= 16/(-8) = -2

แค่นั้นเอง) คราวนี้ตัวหารของความก้าวหน้ากลายเป็นลบ ลบสอง. เกิดขึ้น)

ตอนนี้เรามาดูความก้าวหน้านี้กันดีกว่า:

1, 1/3, 1/9, 1/27, …

และอีกครั้ง ไม่ว่าตัวเลขในลำดับจะเป็นประเภทใดก็ตาม (ไม่ว่าจะเป็นจำนวนเต็ม เศษส่วนคู่ หรือจำนวนลบ หรือจำนวนตรรกยะ) เราจะนำตัวเลขใดๆ ก็ตาม (เช่น 1/9) แล้วหารด้วยตัวเลขก่อนหน้า (1/3) ตามกฎสำหรับการทำงานกับเศษส่วนแน่นอน

เราได้รับ:

แค่นั้นแหละ.) ตัวส่วนกลายเป็นเศษส่วนที่นี่: ถาม = 1/3.

คุณคิดอย่างไรกับ "ความก้าวหน้า" นี้?

3, 3, 3, 3, 3, …

เห็นได้ชัดว่าที่นี่ ถาม = 1 - อย่างเป็นทางการ นี่เป็นความก้าวหน้าทางเรขาคณิตด้วยเท่านั้น สมาชิกที่เหมือนกัน.) แต่ความก้าวหน้าดังกล่าวไม่น่าสนใจสำหรับการศึกษาและการประยุกต์ใช้ในทางปฏิบัติ เช่นเดียวกับความก้าวหน้าที่มีศูนย์ทึบ ดังนั้นเราจะไม่พิจารณาพวกเขา

อย่างที่คุณเห็น ตัวส่วนของความก้าวหน้าสามารถเป็นอะไรก็ได้ - จำนวนเต็ม เศษส่วน บวก ลบ - อะไรก็ได้! มันไม่สามารถเป็นศูนย์ได้ เดาไม่ถูกว่าทำไม?

ลองใช้ตัวอย่างเฉพาะเจาะจงเพื่อดูว่าจะเกิดอะไรขึ้นหากเราเป็นตัวส่วน ถามศูนย์) ยกตัวอย่างให้เรามี 1 = 2 , ก ถาม = 0 - แล้วเทอมที่สองจะเท่ากับอะไร?

เรานับ:

2 = 1 · ถาม= 2 0 = 0

แล้วสมาชิกคนที่สามล่ะ?

3 = 2 · ถาม= 0 0 = 0

ประเภทและพฤติกรรมของความก้าวหน้าทางเรขาคณิต

ทุกอย่างชัดเจนไม่มากก็น้อย: หากความก้าวหน้าแตกต่างกัน เป็นบวก แล้วความก้าวหน้าก็จะเพิ่มขึ้น หากความแตกต่างเป็นลบ ความก้าวหน้าจะลดลง มีเพียงสองตัวเลือกเท่านั้น ไม่มีที่สาม)

แต่ด้วยพฤติกรรมความก้าวหน้าทางเรขาคณิต ทุกอย่างจะน่าสนใจและหลากหลายมากขึ้น!)

ไม่ว่าสมาชิกจะประพฤติตนอย่างไรที่นี่: พวกมันเพิ่มขึ้นและลดลง และเข้าใกล้ศูนย์อย่างไม่มีกำหนด และแม้กระทั่งเปลี่ยนสัญญาณ สลับกันโยนตัวเองเข้าไปใน "บวก" แล้วจึงกลายเป็น "ลบ"! และในความหลากหลายทั้งหมดนี้ คุณต้องสามารถเข้าใจได้ดี ใช่...

ลองคิดดูสิ?) เริ่มจากกรณีที่ง่ายที่สุดกันก่อน

ตัวส่วนเป็นบวก ( ถาม >0)

ด้วยตัวส่วนบวก อย่างแรก เงื่อนไขของความก้าวหน้าทางเรขาคณิตสามารถเข้าได้ บวกกับอนันต์(กล่าวคือเพิ่มขึ้นอย่างไม่มีขีดจำกัด) และสามารถเข้าไปได้ ลบอนันต์(เช่น ลดลงอย่างไม่มีขีดจำกัด) เราคุ้นเคยกับพฤติกรรมแห่งความก้าวหน้านี้แล้ว

ตัวอย่างเช่น:

(บีเอ็น): 1, 2, 4, 8, 16, …

ทุกอย่างเรียบง่ายที่นี่ แต่ละระยะของความก้าวหน้าจะได้รับ มากขึ้นกว่าเดิม- ยิ่งกว่านั้นแต่ละเทอมจะเปิดออก การคูณสมาชิกคนก่อนหน้าบน เชิงบวกหมายเลข +2 (เช่น ถาม = 2 - พฤติกรรมของความก้าวหน้าดังกล่าวชัดเจน: สมาชิกทุกคนของความก้าวหน้าเติบโตอย่างไม่มีกำหนดและเข้าสู่อวกาศ บวกกับความไม่มีที่สิ้นสุด...

และตอนนี้นี่คือความคืบหน้า:

(บีเอ็น): -1, -2, -4, -8, -16, …

ที่นี่ก็ได้รับความก้าวหน้าแต่ละระยะเช่นกัน การคูณสมาชิกคนก่อนหน้าบน เชิงบวกหมายเลข +2 แต่พฤติกรรมของความก้าวหน้าดังกล่าวกลับตรงกันข้าม: จะได้รับแต่ละระยะของความก้าวหน้า น้อยกว่าครั้งก่อนและพจน์ทั้งหมดลดลงอย่างไม่มีขีดจำกัด ไปจนถึงลบอนันต์

ทีนี้ลองมาคิดว่า: ความก้าวหน้าทั้งสองนี้มีอะไรเหมือนกัน? ถูกต้องแล้ว ตัวส่วน! ที่นี่และที่นั่น ถาม = +2 . จำนวนบวกสอง. และที่นี่ พฤติกรรมความก้าวหน้าทั้งสองนี้มีความแตกต่างกันโดยพื้นฐาน! เดาไม่ถูกว่าทำไม? ใช่! มันคือทั้งหมดที่เกี่ยวกับ สมาชิกคนแรก!อย่างที่พวกเขาพูดกันว่าใครเป็นคนร้องทำนอง) ดูด้วยตัวคุณเอง

ในกรณีแรก ระยะแรกของความก้าวหน้า เชิงบวก(+1) และดังนั้น เงื่อนไขต่อมาทั้งหมดที่ได้รับจากการคูณด้วย เชิงบวกตัวส่วน ถาม = +2 จะเป็นเช่นกัน เชิงบวก.

แต่ในกรณีที่สอง เทอมแรก เชิงลบ(-1) ดังนั้นเงื่อนไขการก้าวหน้าที่ตามมาทั้งหมดจะได้จากการคูณด้วย เชิงบวก ถาม = +2 จะได้รับเช่นกัน เชิงลบ.เพราะ "ลบ" ถึง "บวก" จะให้ "ลบ" เสมอใช่)

อย่างที่คุณเห็น ความก้าวหน้าทางเรขาคณิตนั้นแตกต่างจากความก้าวหน้าทางคณิตศาสตร์ตรงที่มีพฤติกรรมแตกต่างไปจากเดิมอย่างสิ้นเชิง ไม่เพียงแต่ขึ้นอยู่กับ จากตัวส่วนถามแต่ยังขึ้นอยู่กับ ตั้งแต่สมาชิกคนแรก, ใช่.)

ข้อควรจำ: พฤติกรรมของความก้าวหน้าทางเรขาคณิตนั้นถูกกำหนดโดยเฉพาะจากเทอมแรก 1 และตัวส่วนถาม .

และตอนนี้เราเริ่มวิเคราะห์กรณีที่คุ้นเคยน้อยลง แต่มีกรณีที่น่าสนใจมากขึ้น!

ยกตัวอย่างลำดับนี้:

(บีเอ็น): 1, 1/2, 1/4, 1/8, 1/16, …

ลำดับนี้ก็เป็นความก้าวหน้าทางเรขาคณิตเช่นกัน! แต่ละวาระของความก้าวหน้านี้ก็ปรากฏเช่นกัน การคูณสมาชิกคนก่อนหน้าด้วยหมายเลขเดียวกัน มันเป็นเพียงตัวเลข - เศษส่วน: ถาม = +1/2 - หรือ +0,5 - ยิ่งไปกว่านั้น (สำคัญ!) ตัวเลข น้อยกว่าหนึ่ง:ถาม = 1/2<1.

เหตุใดความก้าวหน้าทางเรขาคณิตนี้จึงน่าสนใจ สมาชิกจะมุ่งหน้าไปไหน? มาดูกันดีกว่า:

1/2 = 0,5;

1/4 = 0,25;

1/8 = 0,125;

1/16 = 0,0625;

…….

คุณสังเกตเห็นสิ่งที่น่าสนใจอะไรบ้างที่นี่? ประการแรก การลดลงในแง่ของความก้าวหน้าจะเห็นได้ทันที: สมาชิกแต่ละคน น้อยอันที่แล้วอย่างแน่นอน 2 ครั้ง.หรือตามคำจำกัดความของความก้าวหน้าทางเรขาคณิตในแต่ละเทอม มากกว่าก่อนหน้า 1/2 ครั้ง, เพราะ ตัวส่วนความก้าวหน้า ถาม = 1/2 - และเมื่อคูณด้วยจำนวนบวกที่น้อยกว่าหนึ่ง ผลลัพธ์ก็มักจะลดลง ใช่...

อะไร มากกว่าสามารถเห็นได้จากพฤติกรรมของความก้าวหน้านี้หรือไม่? สมาชิกลดลงหรือเปล่า? ไม่ จำกัดจะไปลบอนันต์เหรอ? เลขที่! พวกเขาหายไปในลักษณะพิเศษ ในตอนแรกจะลดลงอย่างรวดเร็ว และต่อมาก็ช้าลงเรื่อยๆ และในขณะที่ยังคงอยู่ตลอดเวลา เชิงบวก- แม้จะเล็กมากก็ตาม และพวกเขาต่อสู้เพื่ออะไร? คุณไม่เดาเหรอ? ใช่! พวกเขามุ่งมั่นไปสู่ศูนย์!) ยิ่งไปกว่านั้น โปรดใส่ใจ สมาชิกในความก้าวหน้าของเรานั้นมาจากศูนย์ ไม่ถึง!เท่านั้น เข้ามาใกล้เขาอย่างไม่สิ้นสุด. มันสำคัญมาก.)

สถานการณ์ที่คล้ายกันจะเกิดขึ้นในการดำเนินการต่อไปนี้:

(บีเอ็น): -1, -1/2, -1/4, -1/8, -1/16, …

ที่นี่ 1 = -1 , ก ถาม = 1/2 - ทุกอย่างเหมือนเดิม เฉพาะตอนนี้เงื่อนไขจะเข้าใกล้ศูนย์จากอีกด้านหนึ่งจากด้านล่าง อยู่ตลอดเวลา เชิงลบ.)

ความก้าวหน้าทางเรขาคณิตดังกล่าวซึ่งเงื่อนไขดังกล่าว เข้าใกล้ศูนย์โดยไม่มีขีดจำกัด(ไม่ว่าจะมาจากด้านบวกหรือด้านลบก็ตาม) ในทางคณิตศาสตร์มีชื่อพิเศษว่า - ความก้าวหน้าทางเรขาคณิตลดลงอย่างไม่สิ้นสุดความก้าวหน้านี้น่าสนใจและแปลกประหลาดมากจนต้องพูดถึงด้วยซ้ำ บทเรียนแยกต่างหาก .)

ดังนั้นเราจึงพิจารณาความเป็นไปได้ทั้งหมดแล้ว เชิงบวกตัวส่วนมีทั้งตัวใหญ่และตัวเล็ก เราไม่ถือว่าหน่วยเป็นตัวส่วนด้วยเหตุผลที่ระบุไว้ข้างต้น (จำตัวอย่างที่มีลำดับแฝดสาม...)

สรุป:

เชิงบวกและ มากกว่าหนึ่ง (ถาม>1) จากนั้นเงื่อนไขของความก้าวหน้า:

) เพิ่มขึ้นอย่างไม่มีขีดจำกัด (ถ้า 1 >0);

b) ลดลงอย่างไม่มีขีดจำกัด (ถ้า 1 <0).

ถ้าตัวส่วนของความก้าวหน้าทางเรขาคณิต เชิงบวก และ น้อยกว่าหนึ่ง (0< ถาม<1), то члены прогрессии:

ก) ใกล้กับศูนย์อย่างไม่สิ้นสุด ข้างบน(ถ้า 1 >0);

b) ใกล้ถึงศูนย์อย่างไม่สิ้นสุด จากด้านล่าง(ถ้า 1 <0).

ตอนนี้ยังคงต้องพิจารณาคดีต่อไป ตัวส่วนลบ

ตัวส่วนเป็นลบ ( ถาม <0)

เราจะไม่ไปไกลเป็นตัวอย่าง ทำไมล่ะ คุณยายขนดก?!) ตัวอย่างเช่น ระยะแรกของความก้าวหน้าจะเป็น 1 = 1 และลองหาตัวส่วนกัน คิว = -2.

เราได้รับลำดับต่อไปนี้:

(บีเอ็น): 1, -2, 4, -8, 16, …

เป็นต้น.) แต่ละระยะของความก้าวหน้าจะได้รับ การคูณสมาชิกคนก่อนหน้าบน จำนวนลบ-2. ในกรณีนี้ สมาชิกทุกคนที่ยืนอยู่ในตำแหน่งคี่ (อันดับหนึ่ง สาม ห้า ฯลฯ) จะเป็นเช่นนี้ เชิงบวกและในสถานที่คู่ (ที่สอง สี่ ฯลฯ) – เชิงลบ.ป้ายสลับกันอย่างเคร่งครัด บวก-ลบ-บวก-ลบ... ความก้าวหน้าทางเรขาคณิตนี้เรียกว่า - เครื่องหมายที่เพิ่มขึ้นสลับกัน

สมาชิกจะมุ่งหน้าไปไหน? แต่ไม่มีที่ไหนเลย) ใช่ ในค่าสัมบูรณ์ (เช่น โมดูโล่)สมาชิกของความก้าวหน้าของเราเพิ่มขึ้นอย่างไม่มีขีดจำกัด (จึงเป็นที่มาของชื่อ “การเพิ่มขึ้น”) แต่ในขณะเดียวกัน สมาชิกแต่ละคนของความก้าวหน้าก็โยนคุณเข้าสู่ความร้อนแล้วเข้าสู่ความเย็นสลับกัน ไม่ว่าจะ "บวก" หรือ "ลบ" ความก้าวหน้าของเรานั้นไม่แน่นอน... นอกจากนี้ ขอบเขตของความผันผวนยังเพิ่มขึ้นอย่างรวดเร็วในแต่ละขั้นตอน ใช่แล้ว) ดังนั้น ความปรารถนาของสมาชิกความก้าวหน้าจึงไปที่ไหนสักแห่ง โดยเฉพาะที่นี่ เลขที่ไม่ว่าจะบวกอนันต์ หรือลบอนันต์ หรือศูนย์ - ไม่มีเลย

ตอนนี้ให้เราพิจารณาตัวส่วนที่เป็นเศษส่วนระหว่างศูนย์ถึงลบหนึ่ง

เช่น ปล่อยให้มันเป็นไป 1 = 1 , ก คิว = -1/2.

จากนั้นเราจะได้รับความก้าวหน้า:

(บีเอ็น): 1, -1/2, 1/4, -1/8, 1/16, …

และเรามีสัญญาณสลับกันอีกครั้ง! แต่แตกต่างจากตัวอย่างก่อนหน้านี้ ที่นี่มีแนวโน้มที่ชัดเจนอยู่แล้วสำหรับเงื่อนไขที่จะเข้าใกล้ศูนย์) เฉพาะครั้งนี้ เงื่อนไขของเราเข้าใกล้ศูนย์เท่านั้น ไม่ใช่อย่างเคร่งครัดจากด้านบนหรือด้านล่าง แต่อีกครั้ง ลังเล- สลับกันรับค่าบวกและค่าลบ แต่ในขณะเดียวกันพวกเขาก็ โมดูลกำลังเข้าใกล้ศูนย์อันเป็นที่รักมากขึ้นเรื่อยๆ)

ความก้าวหน้าทางเรขาคณิตนี้เรียกว่า เครื่องหมายลดลงไม่สิ้นสุดสลับกัน

เหตุใดสองตัวอย่างนี้จึงน่าสนใจ และความจริงที่ว่าทั้งสองกรณีเกิดขึ้น สลับป้าย!เคล็ดลับนี้เป็นเรื่องปกติสำหรับความก้าวหน้าที่มีตัวส่วนเป็นลบเท่านั้น) ดังนั้น หากในบางงานคุณเห็นความก้าวหน้าทางเรขาคณิตที่มีเทอมสลับกัน คุณจะรู้แน่นอนว่าตัวส่วนของมันเป็นลบ 100% และคุณจะไม่ทำผิดพลาด ในป้าย)

อย่างไรก็ตาม ในกรณีของตัวส่วนลบ เครื่องหมายของเทอมแรกจะไม่ส่งผลกระทบต่อพฤติกรรมของความก้าวหน้าเลย โดยไม่คำนึงถึงสัญญาณของระยะแรกของความก้าวหน้า ไม่ว่าในกรณีใด ๆ จะต้องสังเกตสัญญาณของเงื่อนไข คำถามเดียวก็คือ ในสถานที่ใดบ้าง(คู่หรือคี่) จะมีสมาชิกที่มีเครื่องหมายเฉพาะ

จดจำ:

ถ้าตัวส่วนของความก้าวหน้าทางเรขาคณิต เชิงลบ แล้วสัญญาณของเงื่อนไขความก้าวหน้าอยู่เสมอ สลับกัน

ขณะเดียวกันสมาชิกเองก็:

ก) เพิ่มขึ้นอย่างไม่มีขีดจำกัดโมดูโล่, ถ้าถาม<-1;

b) เข้าใกล้ศูนย์อย่างไม่สิ้นสุดถ้า -1< ถาม<0 (прогрессия бесконечно убывающая).

นั่นคือทั้งหมดที่ กรณีทั่วไปทั้งหมดได้รับการวิเคราะห์แล้ว)

ในกระบวนการวิเคราะห์ตัวอย่างความก้าวหน้าทางเรขาคณิตที่หลากหลาย ฉันใช้คำว่า: "มีแนวโน้มที่จะเป็นศูนย์", "มีแนวโน้มที่จะบวกอนันต์", "มีแนวโน้มที่จะลบอนันต์"... ไม่เป็นไร) คำพูดเหล่านี้ (และตัวอย่างเฉพาะเจาะจง) เป็นเพียงการแนะนำเบื้องต้นเท่านั้น พฤติกรรมลำดับตัวเลขที่หลากหลาย โดยใช้ตัวอย่างความก้าวหน้าทางเรขาคณิต

ทำไมเราต้องรู้ถึงพฤติกรรมของความก้าวหน้าด้วย? เธอไปทำอะไรให้แตกต่าง? มุ่งสู่ศูนย์ บวกอนันต์ ลบอนันต์... มันส่งผลอะไรกับเราบ้าง?

ประเด็นก็คือ ในมหาวิทยาลัยในหลักสูตรคณิตศาสตร์ขั้นสูง คุณจะต้องมีความสามารถในการทำงานกับลำดับตัวเลขที่หลากหลาย (กับลำดับใดๆ ก็ได้ ไม่ใช่แค่ความก้าวหน้าเท่านั้น!) และความสามารถในการจินตนาการได้อย่างแน่ชัดว่าลำดับนี้หรือลำดับนั้นเป็นอย่างไร ประพฤติ - ไม่ว่าจะเพิ่มขึ้นไม่ว่าจะลดลงไม่ จำกัด ไม่ว่าจะมีแนวโน้มเป็นจำนวนเฉพาะ (และไม่จำเป็นต้องเป็นศูนย์) หรือแม้กระทั่งไม่มีแนวโน้มอะไรเลย... ส่วนทั้งหมดมีไว้สำหรับหัวข้อนี้ในหลักสูตรคณิตศาสตร์ การวิเคราะห์ - ทฤษฎีขีดจำกัดและโดยเฉพาะอย่างยิ่งอีกเล็กน้อย - แนวคิด ขีดจำกัดของลำดับหมายเลขหัวข้อที่น่าสนใจมาก! สมควรไปเรียนมหาวิทยาลัยแล้วคิดออก)

ตัวอย่างบางส่วนจากส่วนนี้ (ลำดับที่มีขีดจำกัด) และโดยเฉพาะอย่างยิ่ง ความก้าวหน้าทางเรขาคณิตลดลงอย่างไม่สิ้นสุดพวกเขาเริ่มคุ้นเคยกับมันที่โรงเรียน เราเริ่มคุ้นเคยแล้ว)

นอกจากนี้ความสามารถในการศึกษาพฤติกรรมของลำดับได้ดีจะเป็นประโยชน์ต่อคุณอย่างมากในอนาคตและจะมีประโยชน์มากด้วย การวิจัยฟังก์ชั่นมีความหลากหลายมากที่สุด แต่ความสามารถในการทำงานกับฟังก์ชันต่างๆ ได้อย่างมีประสิทธิภาพ (คำนวณอนุพันธ์ ศึกษามันอย่างครบถ้วน สร้างกราฟ) ทำให้ระดับทางคณิตศาสตร์ของคุณเพิ่มขึ้นอย่างมาก! คุณมีข้อสงสัยหรือไม่? ไม่จำเป็น. จำคำพูดของฉันด้วย)

มาดูความก้าวหน้าทางเรขาคณิตในชีวิตกัน?

ในชีวิตรอบตัวเรา เราพบกับความก้าวหน้าทางเรขาคณิตบ่อยครั้งมาก ถึงแม้จะไม่รู้ก็ตาม)

ตัวอย่างเช่น จุลินทรีย์ต่างๆ ที่ล้อมรอบเราทุกที่ในปริมาณมหาศาล และเราไม่สามารถมองเห็นได้หากไม่มีกล้องจุลทรรศน์ จะทวีคูณอย่างแม่นยำในความก้าวหน้าทางเรขาคณิต

สมมติว่าแบคทีเรียตัวหนึ่งแพร่พันธุ์โดยการแบ่งครึ่ง และให้ลูกหลานออกเป็นแบคทีเรีย 2 ตัว ในทางกลับกันเมื่อคูณแต่ละตัวก็แบ่งครึ่งด้วยทำให้มีแบคทีเรีย 4 ตัวร่วมกัน รุ่นต่อไปจะผลิตแบคทีเรีย 8 ตัว ตามด้วย 16 ตัว 32, 64 ตัวและอื่นๆ ในแต่ละรุ่นต่อๆ ไป จำนวนแบคทีเรียจะเพิ่มขึ้นเป็นสองเท่า ตัวอย่างทั่วไปของความก้าวหน้าทางเรขาคณิต)

นอกจากนี้ แมลงบางชนิด เช่น เพลี้ยอ่อนและแมลงวัน ยังเพิ่มจำนวนทวีคูณอีกด้วย และบางครั้งก็เป็นกระต่ายด้วย)

อีกตัวอย่างหนึ่งของความก้าวหน้าทางเรขาคณิตที่ใกล้ชิดกับชีวิตประจำวันมากขึ้นคือสิ่งที่เรียกว่า ดอกเบี้ยทบต้น.ปรากฏการณ์ที่น่าสนใจนี้มักพบในเงินฝากธนาคารและเรียกว่า การใช้อักษรตัวพิมพ์ใหญ่ของดอกเบี้ยมันคืออะไร?

แน่นอนว่าคุณยังเด็กอยู่ คุณเรียนที่โรงเรียน คุณไม่ได้ไปธนาคาร แต่พ่อแม่ของคุณเป็นผู้ใหญ่และเป็นอิสระแล้ว พวกเขาไปทำงาน หาเงินสำหรับอาหารประจำวัน และนำเงินส่วนหนึ่งไปฝากธนาคาร เพื่อประหยัดเงิน)

สมมติว่าพ่อของคุณต้องการประหยัดเงินจำนวนหนึ่งสำหรับวันหยุดพักผ่อนของครอบครัวในตุรกีและฝากเงิน 50,000 รูเบิลในธนาคารที่ 10% ต่อปีเป็นระยะเวลาสามปี ด้วยการแปลงดอกเบี้ยเป็นรายปีนอกจากนี้ ในช่วงเวลาทั้งหมดนี้ ไม่สามารถดำเนินการใด ๆ กับการฝากเงินได้ คุณไม่สามารถเติมเงินหรือถอนเงินออกจากบัญชีได้ เขาจะทำกำไรได้เท่าไหร่หลังจากสามปีนี้?

ก่อนอื่น เราต้องหาว่า 10% ต่อปีเป็นเท่าใด มันหมายความว่าอย่างนั้น ในหนึ่งปีธนาคารจะเพิ่ม 10% ของจำนวนเงินฝากเริ่มแรก จากสิ่งที่? แน่นอนจาก จำนวนเงินฝากเริ่มต้น

เราคำนวณขนาดของบัญชีหลังจากหนึ่งปี หากจำนวนเงินฝากเริ่มต้นคือ 50,000 รูเบิล (เช่น 100%) หลังจากนั้นหนึ่งปีดอกเบี้ยในบัญชีจะเป็นเท่าใด ถูกต้อง 110%! จาก 50,000 รูเบิล

ดังนั้นเราจึงคำนวณ 110% ของ 50,000 รูเบิล:

50,000·1.1 = 55,000 รูเบิล

ฉันหวังว่าคุณจะเข้าใจว่าการค้นหา 110% ของค่าหมายถึงการคูณค่านั้นด้วยตัวเลข 1.1 หากคุณไม่เข้าใจว่าทำไมถึงเป็นเช่นนั้น ให้จำเกรดห้าและหกไว้ กล่าวคือ – การเชื่อมต่อระหว่างเปอร์เซ็นต์ เศษส่วน และเศษส่วน)

ดังนั้นการเพิ่มขึ้นในปีแรกจะเป็น 5,000 รูเบิล

อีกสองปีจะมีเงินเข้าบัญชีเท่าไหร่? 60,000 รูเบิล? น่าเสียดาย (หรือค่อนข้างโชคดี) ทุกอย่างไม่ง่ายนัก เคล็ดลับทั้งหมดของการแปลงดอกเบี้ยเป็นทุนคือเมื่อมีดอกเบี้ยใหม่แต่ละครั้ง ดอกเบี้ยเดียวกันเหล่านี้จะได้รับการพิจารณาแล้ว จากจำนวนเงินใหม่!จากผู้ที่ เรียบร้อยแล้วอยู่ในบัญชี ในขณะนี้.และดอกเบี้ยที่เกิดขึ้นสำหรับงวดก่อนหน้าจะถูกบวกเข้ากับจำนวนเงินฝากเดิม และด้วยเหตุนี้ ตัวมันเองจึงมีส่วนร่วมในการคำนวณดอกเบี้ยใหม่! นั่นคือพวกเขาจะกลายเป็นส่วนหนึ่งของบัญชีโดยรวมโดยสมบูรณ์ หรือทั่วไป เมืองหลวง.จึงได้ชื่อว่า- การใช้อักษรตัวพิมพ์ใหญ่ของดอกเบี้ย

มันอยู่ในเศรษฐศาสตร์ และในทางคณิตศาสตร์เรียกว่าเปอร์เซ็นต์ดังกล่าว ดอกเบี้ยทบต้น.หรือ เปอร์เซ็นต์ของดอกเบี้ย) เคล็ดลับของพวกเขาคือเมื่อคำนวณตามลำดับ เปอร์เซ็นต์จะถูกคำนวณในแต่ละครั้ง จากค่าใหม่และไม่ใช่จากต้นฉบับ...

ดังนั้นให้คำนวณจำนวนเงินผ่าน สองปีเราต้องคำนวณ 110% ของจำนวนเงินที่จะเข้าบัญชี ในหนึ่งปี.นั่นคือจาก 55,000 รูเบิลแล้ว

เรานับ 110% ของ 55,000 รูเบิล:

55,000·1.1 = 60500 รูเบิล

ซึ่งหมายความว่าเปอร์เซ็นต์ที่เพิ่มขึ้นในปีที่สองจะเป็น 5,500 รูเบิล และเป็นเวลาสองปี - 10,500 รูเบิล

ตอนนี้คุณสามารถเดาได้แล้วว่าหลังจากสามปีจำนวนเงินในบัญชีจะเป็น 110% ของ 60,500 รูเบิล นั่นคืออีกครั้ง 110% จากครั้งก่อน (ปีที่แล้ว)จำนวนเงิน

ที่นี่เราคิดว่า:

60500·1.1 = 66550 รูเบิล

ตอนนี้เราจัดเรียงจำนวนเงินของเราตามปีตามลำดับ:

50000;

55,000 = 50,000 1.1;

60500 = 55000 1.1 = (50000 1.1) 1.1;

66550 = 60500 1.1 = ((50000 1.1) 1.1) 1.1

แล้วมันเป็นยังไงบ้าง? ทำไมไม่ก้าวหน้าทางเรขาคณิต? สมาชิกคนแรก 1 = 50000 และตัวส่วน ถาม = 1,1 - แต่ละเทอมมีขนาดใหญ่กว่าเทอมก่อนหน้าอย่างเคร่งครัด 1.1 เท่า ทุกอย่างเป็นไปตามคำจำกัดความอย่างเคร่งครัด)

และพ่อของคุณจะ "สะสม" โบนัสดอกเบี้ยเพิ่มเติมจำนวนเท่าใดในขณะที่เงิน 50,000 รูเบิลของเขาอยู่ในบัญชีธนาคารของเขาเป็นเวลาสามปี?

เรานับ:

66550 – 50,000 = 16550 รูเบิล

ไม่มากแน่นอน แต่นี่คือหากจำนวนเงินฝากเริ่มต้นมีน้อย ถ้ามีมากกว่านี้ล่ะ? สมมติว่าไม่ใช่ 50 แต่เป็น 200,000 รูเบิลใช่ไหม จากนั้นการเพิ่มขึ้นในสามปีจะเป็น 66,200 รูเบิล (ถ้าคุณคำนวณ) ซึ่งก็ดีมากอยู่แล้ว) แล้วถ้ามีส่วนร่วมมากกว่านี้ล่ะ? แค่นั้นแหละ...

สรุป: ยิ่งเงินฝากเริ่มต้นสูงเท่าใด การแปลงดอกเบี้ยเป็นทุนก็จะยิ่งมีกำไรมากขึ้นเท่านั้น นั่นคือเหตุผลที่ธนาคารจัดให้มีเงินฝากที่มีการแปลงดอกเบี้ยเป็นระยะเวลานาน สมมุติว่าเป็นเวลาห้าปี

นอกจากนี้ โรคร้ายทุกประเภท เช่น ไข้หวัดใหญ่ โรคหัด และโรคร้ายแรงอื่นๆ (โรคซาร์สแบบเดียวกันในช่วงต้นทศวรรษ 2000 หรือโรคระบาดในยุคกลาง) มักแพร่กระจายแบบทวีคูณ ดังนั้นขนาดของโรคระบาดก็ใช่...) และทั้งหมดก็เนื่องมาจากความจริงที่ว่าความก้าวหน้าทางเรขาคณิตด้วย ตัวส่วนบวกทั้งหมด (ถาม>1) – สิ่งที่เติบโตเร็วมาก! จำการสืบพันธุ์ของแบคทีเรีย: จากแบคทีเรียหนึ่งตัวจะได้สองตัวจากสอง - สี่จากสี่ - แปดและอื่น ๆ... มันเหมือนกับการแพร่กระจายของการติดเชื้อใด ๆ )

ปัญหาที่ง่ายที่สุดเกี่ยวกับความก้าวหน้าทางเรขาคณิต

มาเริ่มกันด้วยปัญหาง่ายๆ เช่นเคย ที่จะเข้าใจความหมายได้อย่างหมดจด

1. เป็นที่ทราบกันว่าเทอมที่สองของความก้าวหน้าทางเรขาคณิตมีค่าเท่ากับ 6 และตัวส่วนเท่ากับ -0.5 ค้นหาพจน์ที่หนึ่ง สาม และสี่

ดังนั้นเราจึงได้รับ ไม่มีที่สิ้นสุดความก้าวหน้าทางเรขาคณิตแต่รู้จักกัน เทอมที่สองความก้าวหน้านี้:

ข 2 = 6

นอกจากนี้เรายังได้ทราบอีกด้วย ตัวส่วนความก้าวหน้า:

คิว = -0.5

และคุณจำเป็นต้องค้นหา ครั้งแรกที่สามและ ที่สี่สมาชิกของความก้าวหน้าครั้งนี้

ดังนั้นเราจึงดำเนินการ เราเขียนลำดับตามเงื่อนไขของปัญหา โดยตรงในรูปแบบทั่วไป โดยที่เทอมที่สองคือหก:

ข 1, 6, 3 , 4 , …

ตอนนี้เรามาเริ่มค้นหากันดีกว่า เราเริ่มต้นด้วยสิ่งที่ง่ายที่สุดเช่นเคย คุณสามารถคำนวณได้ เช่น เทอมที่สาม ข 3- สามารถ! คุณและฉันรู้อยู่แล้ว (ในความหมายโดยตรงของความก้าวหน้าทางเรขาคณิต) ว่าเทอมที่สาม (บี 3)มากกว่าวินาที ( 2 ) วี "คิว"ครั้งหนึ่ง!

ดังนั้นเราจึงเขียน:

ข 3 = 2 · ถาม

เราแทนที่หกในนิพจน์นี้แทน ข 2และ -0.5 แทน ถามและเรานับ และเราก็ไม่ละเลยเครื่องหมายลบเช่นกัน แน่นอนว่า...

ข 3 = 6·(-0.5) = -3

แบบนี้. เทอมที่สามกลายเป็นลบ ไม่น่าแปลกใจเลย: ตัวส่วนของเรา ถาม- เชิงลบ. และแน่นอนว่าการคูณบวกด้วยลบจะเท่ากับลบ)

ตอนนี้เรานับระยะที่สี่ถัดไปของความก้าวหน้า:

ข 4 = 3 · ถาม

ข 4 = -3·(-0.5) = 1.5

เทอมที่สี่เป็นอีกครั้งพร้อมเครื่องหมายบวก เทอมที่ห้าจะเป็นลบอีกครั้ง เทอมที่หกจะเป็นบวก ไปเรื่อยๆ ป้ายสลับกัน!

จึงพบพจน์ที่สามและสี่ ผลลัพธ์จะเป็นลำดับต่อไปนี้:

ข 1 ; 6; -3; 1.5; -

ตอนนี้สิ่งที่เหลืออยู่คือการค้นหาเทอมแรก ข 1ตามวินาทีที่รู้จักกันดี เมื่อต้องการทำเช่นนี้ ให้ก้าวไปอีกทางหนึ่งไปทางซ้าย ซึ่งหมายความว่าในกรณีนี้เราไม่จำเป็นต้องคูณเทอมที่สองของความก้าวหน้าด้วยตัวส่วน แต่ แบ่ง.

เราแบ่งและรับ:

เพียงเท่านี้) คำตอบของปัญหาจะเป็นดังนี้:

-12; 6; -3; 1,5; …

อย่างที่คุณเห็น หลักการแก้ปัญหาจะเหมือนกับใน พวกเรารู้ ใดๆสมาชิกและ ตัวส่วนความก้าวหน้าทางเรขาคณิต - เราสามารถหาสมาชิกอื่นๆ ของมันได้ เราจะหาอันที่เราต้องการ) ข้อแตกต่างเพียงอย่างเดียวคือการบวก/ลบจะถูกแทนที่ด้วยการคูณ/หาร

ข้อควรจำ: ถ้าเรารู้จักสมาชิกและตัวส่วนของความก้าวหน้าทางเรขาคณิตอย่างน้อยหนึ่งตัว เราก็จะสามารถหาสมาชิกคนอื่นของความก้าวหน้านี้ได้เสมอ

ตามธรรมเนียมแล้ว ปัญหาต่อไปนี้มาจาก OGE เวอร์ชันจริง:

2.

- 150; เอ็กซ์; 6; 1.2; -

แล้วมันเป็นยังไงบ้าง? คราวนี้ไม่มีเทอมแรก, ไม่มีตัวส่วน ถามก็แค่ให้ลำดับตัวเลขมา... บางอย่างที่คุ้นเคยอยู่แล้วใช่ไหม? ใช่! ปัญหาที่คล้ายกันได้รับการแก้ไขแล้วในการก้าวหน้าทางคณิตศาสตร์!

ดังนั้นเราจึงไม่กลัว เหมือนกันทั้งหมด. ลองเปิดใจและจดจำความหมายเบื้องต้นของความก้าวหน้าทางเรขาคณิต เราดูลำดับของเราอย่างรอบคอบและหาว่าพารามิเตอร์ของความก้าวหน้าทางเรขาคณิตของทั้งสามค่าหลัก (เทอมแรก, ตัวส่วน, จำนวนเทอม) ซ่อนอยู่ในนั้น

หมายเลขสมาชิก? ไม่มีหมายเลขสมาชิกใช่... แต่มีสี่หมายเลข ติดต่อกันตัวเลข ฉันไม่เห็นประเด็นใดในการอธิบายว่าคำนี้หมายถึงอะไรในขั้นตอนนี้) มีสองคำในลำดับนี้หรือไม่? ตัวเลขใกล้เคียงที่รู้จัก?กิน! เหล่านี้คือ 6 และ 1.2 เราจึงสามารถหาได้ ตัวส่วนความก้าวหน้าเราก็เอาเลข 1.2 มาหาร ไปที่หมายเลขก่อนหน้าถึงหก.

เราได้รับ:

เราได้รับ:

x= 150·0.2 = 30

คำตอบ: x = 30 .

อย่างที่คุณเห็นทุกอย่างค่อนข้างง่าย ปัญหาหลักอยู่ที่การคำนวณเท่านั้น เป็นเรื่องยากโดยเฉพาะในกรณีที่มีตัวส่วนเป็นลบและเศษส่วน ดังนั้นใครมีปัญหาก็ทวนเลขคณิต! วิธีทำงานกับเศษส่วน วิธีทำงานกับจำนวนลบ และอื่นๆ... ไม่เช่นนั้นคุณจะช้าลงอย่างไร้ความปราณีที่นี่

ตอนนี้เรามาแก้ไขปัญหากันเล็กน้อย ตอนนี้มันชักจะน่าสนใจแล้ว! ลองลบหมายเลขสุดท้าย 1.2 ออกจากมัน ตอนนี้เรามาแก้ไขปัญหานี้กัน:

3. มีการเขียนคำศัพท์ติดต่อกันหลายคำของความก้าวหน้าทางเรขาคณิต:

- 150; เอ็กซ์; 6; -

ค้นหาเงื่อนไขของความก้าวหน้าที่ระบุด้วยตัวอักษร x

ทุกอย่างเหมือนกันหมด มีเพียงสองอันที่อยู่ติดกัน มีชื่อเสียงเราไม่มีสมาชิกของความก้าวหน้าอีกต่อไป นี่คือปัญหาหลัก เพราะขนาด ถามเราสามารถกำหนดได้อย่างง่ายดายด้วยเงื่อนไขใกล้เคียงสองคำ เราทำไม่ได้เรามีโอกาสที่จะรับมือกับงานนี้หรือไม่? แน่นอน!

มาเขียนคำที่ไม่รู้จักกันเถอะ " x"โดยตรงในความหมายของความก้าวหน้าทางเรขาคณิต! โดยทั่วไปแล้ว

ใช่ ๆ! ตรงกับตัวหารที่ไม่รู้จัก!

ในด้านหนึ่ง สำหรับ X เราสามารถเขียนอัตราส่วนได้ดังนี้:

x= 150·ถาม

ในทางกลับกัน เรามีสิทธิ์ทุกประการที่จะอธิบาย X เดียวกันนี้ผ่าน ต่อไปสมาชิกผ่านหก! หารหกด้วยตัวส่วน.

แบบนี้:

x = 6/ ถาม

แน่นอน ตอนนี้เราสามารถเทียบทั้งสองอัตราส่วนนี้ได้ เนื่องจากเรากำลังแสดงออก เหมือนขนาด (x) แต่สอง วิธีทางที่แตกต่าง.

เราได้รับสมการ:

คูณทุกอย่างด้วย ถามทำให้ง่ายขึ้นและสั้นลง เราได้สมการ:

q2 = 1/25

เราแก้ไขและรับ:

คิว = ±1/5 = ±0.2

อ๊ะ! ตัวส่วนกลายเป็นสองเท่า! +0.2 และ -0.2 และคุณควรเลือกอันไหน? ทางตัน?

เงียบสงบ! ใช่ ปัญหามีจริงๆ สองโซลูชั่น!ไม่มีอะไรผิดปกติกับที่ มันเกิดขึ้น) คุณไม่แปลกใจเลยที่ตัวอย่างเช่น คุณได้รับสองรากเมื่อแก้ไขปัญหาปกติ? เรื่องเดียวกันนี่..)

สำหรับ คิว = +0.2เราจะได้รับ:

X = 150 0.2 = 30

และสำหรับ ถาม = -0,2 จะ:

X = 150·(-0.2) = -30

เราได้รับคำตอบสองเท่า: x = 30; x = -30.

ข้อเท็จจริงที่น่าสนใจนี้หมายความว่าอย่างไร? และสิ่งที่มีอยู่ สองความก้าวหน้าตอบโจทย์เงื่อนไขของปัญหา!

เช่นเดียวกับสิ่งเหล่านี้:

…; 150; 30; 6; …

…; 150; -30; 6; …

เหมาะสมทั้งสองอย่าง) คุณคิดว่าเหตุใดเราจึงแยกคำตอบกัน เพียงเพราะการกำจัดสมาชิกเฉพาะของความก้าวหน้า (1,2) ซึ่งมาหลังจากหกคน และเมื่อทราบเฉพาะเงื่อนไขก่อนหน้า (n-1)th และเงื่อนไขที่ตามมา (n+1)th ของความก้าวหน้าทางเรขาคณิต เราก็ไม่สามารถพูดอะไรได้อย่างคลุมเครืออีกต่อไปเกี่ยวกับเทอมที่ n ที่อยู่ระหว่างพวกมัน มีสองตัวเลือก - มีบวกและลบ

แต่ไม่มีปัญหา ตามกฎแล้วในงานความก้าวหน้าทางเรขาคณิตจะมีข้อมูลเพิ่มเติมที่ให้คำตอบที่ชัดเจน สมมติว่าคำพูด: "ความก้าวหน้าแบบสลับกัน"หรือ "ก้าวหน้าด้วยตัวส่วนบวก"และอื่นๆ... คำเหล่านี้เองที่ควรใช้เป็นเบาะแสว่าควรเลือกเครื่องหมายบวกหรือลบตัวใดในการเตรียมคำตอบสุดท้าย หากไม่มีข้อมูลดังกล่าว ก็ใช่ งานก็จะมี สองโซลูชั่น)

ตอนนี้เราตัดสินใจด้วยตัวเอง

4. พิจารณาว่าหมายเลข 20 เป็นสมาชิกของความก้าวหน้าทางเรขาคณิตหรือไม่:

4 ; 6; 9; …

5. ให้สัญญาณของความก้าวหน้าทางเรขาคณิตแบบสลับกัน:

…; 5; x ; 45; …

ค้นหาระยะของความก้าวหน้าที่ระบุโดยตัวอักษร x .

6. ค้นหาพจน์บวกที่สี่ของความก้าวหน้าทางเรขาคณิต:

625; -250; 100; …

7. เทอมที่สองของความก้าวหน้าทางเรขาคณิตมีค่าเท่ากับ -360 และเทอมที่ห้าเท่ากับ 23.04 ค้นหาเทอมแรกของความก้าวหน้านี้

คำตอบ (ผิดปกติ): -15; 900; เลขที่; 2.56.

ขอแสดงความยินดีถ้าทุกอย่างได้ผล!

มีบางอย่างไม่พอดีเหรอ? ที่ไหนสักแห่งมีคำตอบสองครั้ง? อ่านเงื่อนไขการมอบหมายงานอย่างละเอียด!

ปัญหาสุดท้ายไม่ได้ผล? ไม่มีอะไรซับซ้อน) เราทำงานโดยตรงตามความหมายของความก้าวหน้าทางเรขาคณิต คุณก็วาดภาพได้ มันช่วย.)

อย่างที่คุณเห็นทุกอย่างเป็นระดับประถมศึกษา หากความก้าวหน้านั้นสั้น ถ้ามันยาวล่ะ? หรือจำนวนสมาชิกที่ต้องการมีมาก? โดยการเปรียบเทียบกับความก้าวหน้าทางคณิตศาสตร์ ผมอยากให้ได้สูตรที่สะดวกซึ่งทำให้หาได้ง่าย ใดๆระยะของความก้าวหน้าทางเรขาคณิตใดๆ ตามหมายเลขของเขาโดยไม่ต้องคูณหลาย ๆ ครั้งด้วย ถาม- และมีสูตรดังนี้!) รายละเอียดอยู่ในบทต่อไป

ความก้าวหน้าทางเรขาคณิตคือลำดับตัวเลข ซึ่งเทอมแรกไม่เป็นศูนย์ และแต่ละเทอมต่อมาจะเท่ากับเทอมก่อนหน้าคูณด้วยตัวเลขที่ไม่เป็นศูนย์เดียวกัน

ความก้าวหน้าทางเรขาคณิตจะแสดงแทน b1,b2,b3, …, พันล้าน, … .

อัตราส่วนของเทอมใดๆ ของความคลาดเคลื่อนทางเรขาคณิตต่อเทอมก่อนหน้าจะเท่ากับจำนวนเดียวกัน นั่นคือ b2/b1 = b3/b2 = b4/b3 = ... = bn/b(n-1) = b( n+1)/bn = … . สิ่งนี้ตามมาจากคำจำกัดความของความก้าวหน้าทางคณิตศาสตร์โดยตรง จำนวนนี้เรียกว่าตัวหารของความก้าวหน้าทางเรขาคณิต โดยปกติแล้วตัวส่วนของความก้าวหน้าทางเรขาคณิตจะแสดงด้วยตัวอักษร q

ลำดับที่ซ้ำซากและต่อเนื่อง

วิธีหนึ่งในการระบุความก้าวหน้าทางเรขาคณิตคือระบุเทอมแรก b1 และตัวส่วนของค่าคลาดเคลื่อนทางเรขาคณิต q ตัวอย่างเช่น b1=4, q=-2 เงื่อนไขทั้งสองนี้กำหนดความก้าวหน้าทางเรขาคณิต 4, -8, 16, -32, ….

ถ้า q>0 (q ไม่เท่ากับ 1) ความก้าวหน้าก็จะเป็น ลำดับที่ซ้ำซากจำเจตัวอย่างเช่น ลำดับ 2, 4,8,16,32, ... เป็นลำดับที่เพิ่มขึ้นแบบโมโนโทน (b1=2, q=2)

หากตัวส่วนของความคลาดเคลื่อนทางเรขาคณิตคือ q=1 เทอมทั้งหมดของความก้าวหน้าทางเรขาคณิตจะเท่ากัน ในกรณีเช่นนี้พวกเขากล่าวว่าความก้าวหน้าคือ ลำดับคงที่

สูตรสำหรับเทอมที่ n ของความก้าวหน้าทางเรขาคณิต

เพื่อให้ลำดับตัวเลข (bn) เป็นความก้าวหน้าทางเรขาคณิต จำเป็นที่สมาชิกแต่ละคนในลำดับตัวเลข (bn) จะต้องเป็นค่าเฉลี่ยเรขาคณิตของสมาชิกที่อยู่ใกล้เคียง โดยเริ่มจากลำดับที่สอง นั่นคือจำเป็นต้องปฏิบัติตามสมการต่อไปนี้
(b(n+1))^2 = bn * b(n+2) สำหรับ n>0 ใดๆ โดยที่ n อยู่ในเซตของจำนวนธรรมชาติ N

สูตรสำหรับเทอมที่ n ของความก้าวหน้าทางเรขาคณิตคือ:

bn=b1*q^(n-1)

โดยที่ n อยู่ในเซตของจำนวนธรรมชาติ N

สูตรสำหรับผลรวมของเทอม n แรกของความก้าวหน้าทางเรขาคณิต

สูตรสำหรับผลรวมของเทอม n แรกของความก้าวหน้าทางเรขาคณิตมีรูปแบบดังนี้

Sn = (bn*q - b1)/(q-1) โดยที่ q ไม่เท่ากับ 1

ลองดูตัวอย่างง่ายๆ:

ในความก้าวหน้าทางเรขาคณิต b1=6, q=3, n=8 จงหา Sn

ในการค้นหา S8 เราใช้สูตรสำหรับผลรวมของเทอม n แรกของความก้าวหน้าทางเรขาคณิต

S8= (6*(3^8 -1))/(3-1) = 19,680

เรามานั่งลงและเริ่มเขียนตัวเลขกันดีกว่า ตัวอย่างเช่น:

คุณสามารถเขียนตัวเลขใดก็ได้ และอาจมีได้มากเท่าที่คุณต้องการ (ในกรณีของเราก็มีอยู่แล้ว) ไม่ว่าเราจะเขียนตัวเลขไปกี่จำนวน เราก็สามารถบอกได้เสมอว่าอันไหนเป็นอันแรกอันไหนเป็นอันที่สองและต่อ ๆ ไปจนถึงตัวสุดท้ายนั่นคือเราสามารถนับได้ นี่คือตัวอย่างลำดับตัวเลข:

ลำดับหมายเลขคือชุดตัวเลขซึ่งแต่ละชุดสามารถกำหนดหมายเลขเฉพาะได้

ตัวอย่างเช่น สำหรับลำดับของเรา:

หมายเลขที่กำหนดจะเฉพาะกับหมายเลขเดียวในลำดับเท่านั้น กล่าวอีกนัยหนึ่ง ไม่มีตัวเลขสามวินาทีในลำดับ ตัวเลขที่สอง (เช่นตัวเลขที่ th) จะเหมือนกันเสมอ

ตัวเลขที่มีตัวเลขนั้นเรียกว่าสมาชิกตัวที่ n ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

ในกรณีของเรา:

ประเภทความก้าวหน้าที่พบบ่อยที่สุดคือเลขคณิตและเรขาคณิต ในหัวข้อนี้เราจะพูดถึงประเภทที่สอง - ความก้าวหน้าทางเรขาคณิต.

เหตุใดความก้าวหน้าทางเรขาคณิตจึงจำเป็นต้องมีและประวัติของมัน

แม้แต่ในสมัยโบราณ พระภิกษุชาวอิตาลี เลโอนาร์โดแห่งปิซา (รู้จักกันดีในชื่อฟีโบนัชชี) ก็ยังจัดการกับความต้องการทางการค้าในทางปฏิบัติ พระภิกษุต้องเผชิญกับภารกิจในการกำหนดน้ำหนักที่น้อยที่สุดที่สามารถนำมาใช้ชั่งน้ำหนักผลิตภัณฑ์ได้คือเท่าใด ในงานของเขา Fibonacci พิสูจน์ว่าระบบน้ำหนักดังกล่าวเหมาะสมที่สุด: นี่เป็นหนึ่งในสถานการณ์แรกๆ ที่ผู้คนต้องรับมือกับความก้าวหน้าทางเรขาคณิต ซึ่งคุณคงเคยได้ยินมาและอย่างน้อยก็มีความเข้าใจโดยทั่วไปแล้ว เมื่อคุณเข้าใจหัวข้อนี้ครบถ้วนแล้ว ให้ลองคิดดูว่าเหตุใดระบบดังกล่าวจึงเหมาะสมที่สุด

ในปัจจุบันในทางปฏิบัติในชีวิตความก้าวหน้าทางเรขาคณิตปรากฏขึ้นเมื่อนำเงินไปลงทุนในธนาคารเมื่อมีการเพิ่มจำนวนดอกเบี้ยจากจำนวนเงินที่สะสมในบัญชีสำหรับงวดก่อนหน้า กล่าวอีกนัยหนึ่ง หากคุณฝากเงินเข้าธนาคารออมสิน หลังจากนั้นหนึ่งปี เงินฝากก็จะเพิ่มขึ้นตามจำนวนเดิม นั่นคือ จำนวนเงินใหม่จะเท่ากับเงินสมทบคูณด้วย ในอีกปีหนึ่งจำนวนนี้จะเพิ่มขึ้นเช่น จำนวนที่ได้รับในขณะนั้นจะถูกคูณอีกครั้งไปเรื่อยๆ สถานการณ์ที่คล้ายกันอธิบายไว้ในปัญหาของการคำนวณสิ่งที่เรียกว่า ดอกเบี้ยทบต้น– เปอร์เซ็นต์จะถูกนำมาคำนวณในแต่ละครั้งจากจำนวนเงินที่อยู่ในบัญชีโดยคำนึงถึงดอกเบี้ยก่อนหน้า เราจะพูดถึงงานเหล่านี้ในภายหลัง

มีกรณีง่ายๆ อีกหลายกรณีที่ใช้ความก้าวหน้าทางเรขาคณิต ตัวอย่างเช่น การแพร่กระจายของไข้หวัดใหญ่ คนหนึ่งทำให้อีกคนติดเชื้อ ในทางกลับกัน การติดเชื้อระลอกที่สองจึงเป็นบุคคลหนึ่ง และในทางกลับกัน พวกเขาก็ติดเชื้ออีกคน... และอื่นๆ.. .

อย่างไรก็ตาม ปิรามิดทางการเงินซึ่งมี MMM เดียวกันนั้นเป็นการคำนวณที่ง่ายและแห้งโดยพิจารณาจากคุณสมบัติของความก้าวหน้าทางเรขาคณิต น่าสนใจ? ลองคิดดูสิ

ความก้าวหน้าทางเรขาคณิต

สมมติว่าเรามีลำดับตัวเลข:

คุณจะตอบทันทีว่านี่เป็นเรื่องง่ายและชื่อของลำดับนั้นขึ้นอยู่กับความแตกต่างของสมาชิก เป็นอย่างไรบ้าง:

หากคุณลบตัวเลขก่อนหน้าออกจากตัวเลขถัดไป คุณจะเห็นว่าแต่ละครั้งคุณจะได้รับผลต่างใหม่ (และอื่นๆ) แต่ลำดับนั้นมีอยู่แน่นอนและสังเกตได้ง่าย - แต่ละตัวเลขที่ตามมาจะมีขนาดใหญ่กว่าตัวเลขก่อนหน้าหลายเท่า!

ลำดับตัวเลขประเภทนี้เรียกว่า ความก้าวหน้าทางเรขาคณิตและถูกกำหนดไว้

ความก้าวหน้าทางเรขาคณิต () เป็นลำดับตัวเลข เทอมแรกแตกต่างจากศูนย์ และแต่ละเทอมเริ่มจากวินาทีจะเท่ากับเทอมก่อนหน้าคูณด้วยตัวเลขเดียวกัน จำนวนนี้เรียกว่าตัวหารของความก้าวหน้าทางเรขาคณิต

ข้อจำกัดที่ว่าเทอมแรก ( ) ไม่เท่ากันและไม่สุ่ม สมมติว่าไม่มีเลย และเทอมแรกยังคงเท่ากัน และ q เท่ากับ อืม.. ปล่อยให้มันเป็นไป ปรากฎว่า:

ยอมรับว่านี่ไม่ใช่ความก้าวหน้าอีกต่อไป

ตามที่คุณเข้าใจ เราจะได้ผลลัพธ์เดียวกันหากมีตัวเลขอื่นที่ไม่ใช่ศูนย์ a ในกรณีเหล่านี้ จะไม่มีความคืบหน้า เนื่องจากชุดตัวเลขทั้งหมดจะเป็นศูนย์ทั้งหมดหรือตัวเลขเดียว และส่วนที่เหลือทั้งหมดจะเป็นศูนย์

ทีนี้มาดูรายละเอียดเพิ่มเติมเกี่ยวกับตัวส่วนของความก้าวหน้าทางเรขาคณิต นั่นก็คือ o

ทำซ้ำ: - นี่คือตัวเลข แต่ละเทอมต่อมาจะเปลี่ยนแปลงกี่ครั้ง?ความก้าวหน้าทางเรขาคณิต

คุณคิดว่ามันจะเป็นอย่างไร? ถูกต้อง ทั้งเชิงบวกและเชิงลบ แต่ไม่ใช่ศูนย์ (เราพูดถึงเรื่องนี้สูงกว่านี้เล็กน้อย)

สมมติว่าของเราเป็นบวก ให้ในกรณีของเราก. เทอมที่สองมีมูลค่าเท่าใด และ? คุณสามารถตอบได้ง่ายๆ ว่า:

ถูกตัอง. ดังนั้นหากเงื่อนไขที่ตามมาทั้งหมดของความก้าวหน้ามีเครื่องหมายเดียวกัน - พวกเขา เป็นบวก.

เกิดอะไรขึ้นถ้ามันเป็นลบ? ตัวอย่างเช่น ก. เทอมที่สองมีมูลค่าเท่าใด และ?

นี่เป็นเรื่องราวที่แตกต่างไปจากเดิมอย่างสิ้นเชิง

พยายามนับเงื่อนไขของความก้าวหน้านี้ คุณได้รับเท่าไหร่? ฉันมี. ดังนั้น หากสัญญาณของเงื่อนไขของความก้าวหน้าทางเรขาคณิตสลับกัน นั่นคือ หากคุณเห็นความก้าวหน้าโดยมีสัญลักษณ์สลับกันสำหรับสมาชิก ตัวส่วนจะเป็นลบ ความรู้นี้สามารถช่วยคุณทดสอบตัวเองเมื่อแก้ไขปัญหาในหัวข้อนี้

ทีนี้มาฝึกกันหน่อย: ลองพิจารณาว่าลำดับตัวเลขใดเป็นความก้าวหน้าทางเรขาคณิตและลำดับใดเป็นความก้าวหน้าทางคณิตศาสตร์:

เข้าใจแล้ว? ลองเปรียบเทียบคำตอบของเรา:

  • ความก้าวหน้าทางเรขาคณิต – 3, 6.
  • ความก้าวหน้าทางคณิตศาสตร์ – 2, 4
  • ไม่ใช่ทั้งเลขคณิตหรือความก้าวหน้าทางเรขาคณิต - 1, 5, 7

กลับไปที่ความก้าวหน้าครั้งล่าสุดของเราแล้วลองค้นหาคำศัพท์แบบเดียวกับในเลขคณิต ดังที่คุณอาจเดาได้ มีสองวิธีในการค้นหา

เราคูณแต่ละเทอมอย่างต่อเนื่องด้วย

ดังนั้น เทอมที่ 3 ของความก้าวหน้าทางเรขาคณิตที่อธิบายไว้จึงเท่ากับ

ดังที่คุณเดาไว้แล้ว ตอนนี้คุณจะได้สูตรที่จะช่วยคุณค้นหาสมาชิกของความก้าวหน้าทางเรขาคณิต หรือคุณได้พัฒนาเองแล้วโดยอธิบายวิธีการหาสมาชิกทีละขั้นตอน? หากเป็นเช่นนั้น ให้ตรวจสอบความถูกต้องของเหตุผลของคุณ

ให้เราอธิบายสิ่งนี้ด้วยตัวอย่างการค้นหาเทอมที่ 3 ของความก้าวหน้านี้:

กล่าวอีกนัยหนึ่ง:

หาค่าของความก้าวหน้าทางเรขาคณิตที่กำหนดด้วยตัวเอง

เกิดขึ้น? ลองเปรียบเทียบคำตอบของเรา:

โปรดทราบว่าคุณได้ตัวเลขเดียวกันกับวิธีก่อนหน้าทุกประการ เมื่อเราคูณตามลำดับด้วยแต่ละเทอมก่อนหน้าของความก้าวหน้าทางเรขาคณิต
เรามาลอง "ลดความเป็นตัวตน" ของสูตรนี้ - มาวางไว้ในรูปแบบทั่วไปแล้วจะได้:

สูตรที่ได้รับนั้นเป็นจริงสำหรับทุกค่า - ทั้งบวกและลบ ตรวจสอบด้วยตัวเองโดยการคำนวณเงื่อนไขของความก้าวหน้าทางเรขาคณิตโดยมีเงื่อนไขต่อไปนี้: , a.

คุณนับไหม? ลองเปรียบเทียบผลลัพธ์:

ยอมรับว่าเป็นไปได้ที่จะหาเงื่อนไขของความก้าวหน้าในลักษณะเดียวกับเงื่อนไข อย่างไรก็ตาม มีความเป็นไปได้ที่จะคำนวณไม่ถูกต้อง และถ้าเราพบเทอมที่ 3 ของความก้าวหน้าทางเรขาคณิตแล้ว จะมีอะไรง่ายกว่าการใช้ส่วนที่ "ถูกตัดทอน" ของสูตร

ลดความก้าวหน้าทางเรขาคณิตอย่างไม่สิ้นสุด

เมื่อเร็ว ๆ นี้เราได้พูดคุยเกี่ยวกับความจริงที่ว่ามันสามารถเป็นได้ทั้งมากกว่าหรือน้อยกว่าศูนย์อย่างไรก็ตามมีค่าพิเศษที่เรียกว่าความก้าวหน้าทางเรขาคณิต ลดลงอย่างไม่สิ้นสุด.

ทำไมคุณถึงคิดว่าได้รับชื่อนี้?
ก่อนอื่น ลองเขียนความก้าวหน้าทางเรขาคณิตที่ประกอบด้วยคำศัพท์กันก่อน
สมมติว่า:

เราเห็นว่าแต่ละเทอมต่อๆ มามีค่าน้อยกว่าเทอมก่อนหน้าด้วยตัวประกอบ แต่จะมีตัวเลขไหม? คุณจะตอบทันทีว่า “ไม่” นั่นคือสาเหตุที่มันลดลงอย่างไม่สิ้นสุด - มันลดลงเรื่อยๆ แต่ไม่เคยกลายเป็นศูนย์เลย

เพื่อให้เข้าใจได้อย่างชัดเจนว่าสิ่งนี้มีลักษณะอย่างไร เรามาลองวาดกราฟความก้าวหน้าของเรากัน ดังนั้น ในกรณีของเรา สูตรจะอยู่ในรูปแบบต่อไปนี้:

บนกราฟเราคุ้นเคยกับการวางแผนการพึ่งพาดังนั้น:

แก่นแท้ของนิพจน์ไม่เปลี่ยนแปลง: ในรายการแรกเราแสดงการพึ่งพาค่าของสมาชิกของความก้าวหน้าทางเรขาคณิตกับเลขลำดับของมัน และในรายการที่สอง เราเพียงแต่เอาค่าของสมาชิกของความก้าวหน้าทางเรขาคณิตเป็น และกำหนดเลขลำดับให้ไม่ใช่เป็น แต่เป็น สิ่งที่ต้องทำคือสร้างกราฟ
ให้ดูสิ่งที่คุณได้. นี่คือกราฟที่ฉันคิดขึ้นมา:

คุณเห็นไหม? ฟังก์ชันลดลง มีแนวโน้มเป็นศูนย์ แต่ไม่เคยข้ามฟังก์ชันดังกล่าว ดังนั้นจึงลดลงอย่างไม่สิ้นสุด มาทำเครื่องหมายจุดของเราบนกราฟและในเวลาเดียวกันว่าพิกัดและหมายถึงอะไร:

พยายามแสดงกราฟของความก้าวหน้าทางเรขาคณิตในเชิงแผนผังหากเทอมแรกเท่ากัน วิเคราะห์ความแตกต่างกับกราฟก่อนหน้าของเราคืออะไร?

คุณจัดการหรือไม่? นี่คือกราฟที่ฉันคิดขึ้นมา:

เมื่อคุณเข้าใจพื้นฐานของหัวข้อความก้าวหน้าทางเรขาคณิตแล้ว คุณรู้ว่ามันคืออะไร คุณรู้วิธีหาคำศัพท์ และคุณรู้ด้วยว่าความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดคืออะไร มาดูคุณสมบัติหลักของมันกันดีกว่า

คุณสมบัติของความก้าวหน้าทางเรขาคณิต

คุณจำคุณสมบัติของเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์ได้หรือไม่? ใช่ ใช่ จะค้นหามูลค่าของความก้าวหน้าจำนวนหนึ่งได้อย่างไรเมื่อมีค่าก่อนหน้าและค่าที่ตามมาของข้อกำหนดของความก้าวหน้านี้ คุณจำได้ไหม? นี้:

ตอนนี้เราต้องเผชิญกับคำถามเดียวกันทุกประการเกี่ยวกับเงื่อนไขของความก้าวหน้าทางเรขาคณิต เพื่อให้ได้สูตรมาเริ่มวาดและหาเหตุผลกัน คุณจะเห็นว่ามันง่ายมาก และถ้าคุณลืม คุณก็สามารถเอามันออกมาได้ด้วยตัวเอง

ลองใช้ความก้าวหน้าทางเรขาคณิตง่ายๆ อีกอันที่เรารู้และ จะหาได้อย่างไร? ด้วยความก้าวหน้าทางคณิตศาสตร์ มันง่ายและไม่ซับซ้อน แต่แล้วที่นี่ล่ะ? ในความเป็นจริงก็ไม่มีอะไรซับซ้อนในเรขาคณิตเช่นกัน - คุณเพียงแค่ต้องเขียนแต่ละค่าที่มอบให้เราตามสูตร

คุณอาจถามว่าเราควรทำอย่างไรกับเรื่องนี้ตอนนี้? ใช่ ง่ายมาก ขั้นแรก เรามาอธิบายสูตรเหล่านี้ในรูปภาพแล้วลองดำเนินการต่างๆ เพื่อให้ได้ค่า

เรามาสรุปจากตัวเลขที่ให้มากันดีกว่า เน้นเฉพาะการแสดงออกผ่านสูตรเท่านั้น เราจำเป็นต้องค้นหาค่าที่เน้นด้วยสีส้ม โดยรู้คำศัพท์ที่อยู่ติดกัน เรามาลองดำเนินการต่าง ๆ กับพวกเขาซึ่งเป็นผลมาจากสิ่งที่เราจะได้

ส่วนที่เพิ่มเข้าไป.
ลองเพิ่มสองนิพจน์แล้วเราจะได้:

อย่างที่คุณเห็นจากนิพจน์นี้ เราไม่สามารถแสดงออกมาได้ในทางใดทางหนึ่ง ดังนั้นเราจะลองใช้ตัวเลือกอื่น - การลบ

การลบ

อย่างที่คุณเห็น เราไม่สามารถแสดงสิ่งนี้ได้เช่นกัน ดังนั้นลองคูณนิพจน์เหล่านี้ด้วยกัน

การคูณ

ทีนี้ลองดูสิ่งที่เรามีอย่างละเอียดโดยการคูณเงื่อนไขของความก้าวหน้าทางเรขาคณิตที่มอบให้เราโดยเปรียบเทียบกับสิ่งที่ต้องค้นหา:

เดาสิ่งที่ฉันกำลังพูดถึง? อย่างถูกต้อง เพื่อค้นหาเราจำเป็นต้องหารากที่สองของจำนวนความก้าวหน้าทางเรขาคณิตที่อยู่ติดกับจำนวนที่ต้องการคูณกัน:

เอาล่ะ. ตัวคุณเองได้รับคุณสมบัติของความก้าวหน้าทางเรขาคณิต ลองเขียนสูตรนี้ในรูปแบบทั่วไป เกิดขึ้น?

ลืมเงื่อนไขเพื่อ? ลองคิดดูว่าเหตุใดจึงสำคัญ เช่น ลองคำนวณเอง จะเกิดอะไรขึ้นในกรณีนี้? ถูกต้องไร้สาระเพราะสูตรมีลักษณะดังนี้:

ดังนั้นอย่าลืมข้อจำกัดนี้

ทีนี้ลองคำนวณดูว่ามันเท่ากับอะไร

คำตอบที่ถูกต้อง - ! หากคุณไม่ลืมค่าที่เป็นไปได้ที่สองในระหว่างการคำนวณ แสดงว่าคุณเก่งมากและสามารถเข้าสู่การฝึกได้ทันที และหากคุณลืม ให้อ่านสิ่งที่จะกล่าวถึงด้านล่าง และให้ความสนใจว่าเหตุใดจึงต้องเขียนรากทั้งสองลงใน คำตอบ.

ลองวาดความก้าวหน้าทางเรขาคณิตของเราทั้งคู่ - อันหนึ่งมีค่าและอีกอันมีค่าแล้วตรวจสอบว่าทั้งคู่มีสิทธิ์ที่จะมีอยู่หรือไม่:

เพื่อที่จะตรวจสอบว่ามีความก้าวหน้าทางเรขาคณิตหรือไม่ จำเป็นต้องดูว่าเงื่อนไขที่ให้มาทั้งหมดเหมือนกันหรือไม่ คำนวณ q สำหรับกรณีที่หนึ่งและสอง

ดูว่าทำไมเราต้องเขียนสองคำตอบ? เพราะสัญลักษณ์ของคำที่คุณกำลังมองหานั้นขึ้นอยู่กับว่ามันเป็นบวกหรือลบ! และเนื่องจากเราไม่รู้ว่ามันคืออะไร เราจึงต้องเขียนคำตอบทั้งบวกและลบ

ตอนนี้คุณได้เข้าใจประเด็นหลักและได้รับสูตรสำหรับคุณสมบัติของความก้าวหน้าทางเรขาคณิตแล้ว การค้นหา การรู้ และ

เปรียบเทียบคำตอบของคุณกับคำตอบที่ถูกต้อง:

คุณคิดอย่างไรจะเกิดอะไรขึ้นถ้าเราไม่ได้รับค่าของเงื่อนไขของความก้าวหน้าทางเรขาคณิตที่อยู่ติดกับจำนวนที่ต้องการ แต่อยู่ห่างจากมันเท่ากัน ตัวอย่างเช่นเราจำเป็นต้องค้นหาและให้และ เราสามารถใช้สูตรที่เราได้มาในกรณีนี้ได้หรือไม่? พยายามยืนยันหรือหักล้างความเป็นไปได้นี้ในลักษณะเดียวกัน โดยอธิบายว่าแต่ละค่าประกอบด้วยอะไรบ้าง เหมือนที่คุณทำเมื่อได้รับสูตรตั้งแต่แรก
คุณได้อะไร?

ตอนนี้ดูอย่างระมัดระวังอีกครั้ง
และตามลำดับ:

จากนี้เราสามารถสรุปได้ว่าสูตรนี้ใช้งานได้ ไม่ใช่แค่กับเพื่อนบ้านเท่านั้นด้วยเงื่อนไขที่ต้องการของความก้าวหน้าทางเรขาคณิตแต่ก็ด้วย ระยะเท่ากันจากสิ่งที่สมาชิกตามหา

ดังนั้น สูตรเริ่มต้นของเราจึงอยู่ในรูปแบบ:

นั่นคือ หากในกรณีแรกเราพูดอย่างนั้น ตอนนี้เราบอกว่ามันสามารถเท่ากับจำนวนธรรมชาติใดๆ ที่น้อยกว่าได้ สิ่งสำคัญคือตัวเลขที่ให้มาทั้งสองจะเหมือนกัน

ฝึกฝนโดยใช้ตัวอย่างที่เฉพาะเจาะจง เพียงใช้ความระมัดระวังอย่างยิ่ง!

  1. - หา.
  2. - หา.
  3. - หา.

ตัดสินใจแล้ว? ฉันหวังว่าคุณจะเอาใจใส่เป็นอย่างยิ่งและสังเกตเห็นจุดเล็กๆ น้อยๆ

ลองเปรียบเทียบผลลัพธ์กัน

ในสองกรณีแรก เราใช้สูตรข้างต้นอย่างใจเย็นและรับค่าต่อไปนี้:

ในกรณีที่สาม เมื่อเราตรวจสอบซีเรียลนัมเบอร์ของตัวเลขที่ให้มาอย่างละเอียดแล้ว เราก็เข้าใจว่าตัวเลขเหล่านั้นไม่ได้อยู่ห่างจากตัวเลขที่เรากำลังมองหาอยู่ไม่เท่ากัน มันเป็นตัวเลขก่อนหน้า แต่ถูกลบออก ณ ตำแหน่งหนึ่ง จึงเป็นเช่นนั้น ไม่สามารถใช้สูตรได้

วิธีแก้ปัญหา? จริงๆแล้วมันไม่ยากอย่างที่คิด! ให้เราเขียนว่าแต่ละหมายเลขที่ให้มาคืออะไรและหมายเลขที่เรากำลังมองหาประกอบด้วย

ดังนั้นเราจึงมีและ มาดูกันว่าเราสามารถทำอะไรกับพวกเขาได้บ้าง? ผมเสนอให้แบ่งตาม.. เราได้รับ:

เราแทนที่ข้อมูลของเราลงในสูตร:

ขั้นตอนต่อไปที่เราหาได้คือ - สำหรับสิ่งนี้ เราจำเป็นต้องหารากที่สามของจำนวนผลลัพธ์

ทีนี้ลองดูอีกครั้งว่าเรามีอะไรบ้าง เรามีมัน แต่เราต้องค้นหามันให้เจอ และมันก็เท่ากับ:

เราพบข้อมูลที่จำเป็นทั้งหมดสำหรับการคำนวณ แทนลงในสูตร:

คำตอบของเรา: .

ลองแก้ไขปัญหาอื่นที่คล้ายกันด้วยตัวเอง:
ที่ให้ไว้: ,
หา:

คุณได้รับเท่าไหร่? ฉันมี - .

อย่างที่คุณเห็นโดยพื้นฐานแล้วคุณต้องการ จำเพียงสูตรเดียว- คุณสามารถถอนส่วนที่เหลือทั้งหมดได้ด้วยตัวเองโดยไม่ยากเมื่อใดก็ได้ ในการทำเช่นนี้ เพียงเขียนความก้าวหน้าทางเรขาคณิตที่ง่ายที่สุดลงบนกระดาษแล้วจดว่าตัวเลขแต่ละตัวมีค่าเท่ากับเท่าใดตามสูตรที่อธิบายไว้ข้างต้น

ผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิต

ตอนนี้เรามาดูสูตรที่ช่วยให้เราสามารถคำนวณผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิตได้อย่างรวดเร็วในช่วงเวลาที่กำหนด:

หากต้องการหาสูตรสำหรับผลรวมของเทอมของความก้าวหน้าทางเรขาคณิตอันจำกัด ให้คูณทุกส่วนของสมการข้างต้นด้วย เราได้รับ:

ดูให้ดี: สองสูตรสุดท้ายมีอะไรเหมือนกัน? ถูกต้อง สมาชิกทั่วไป เป็นต้น ยกเว้นสมาชิกตัวแรกและตัวสุดท้าย ลองลบสมการที่ 1 จากสมการที่ 2 กัน คุณได้อะไร?

ตอนนี้แสดงเงื่อนไขของความก้าวหน้าทางเรขาคณิตผ่านสูตรและแทนที่นิพจน์ผลลัพธ์เป็นสูตรสุดท้ายของเรา:

จัดกลุ่มนิพจน์ คุณควรได้รับ:

สิ่งที่ต้องทำคือแสดง:

ดังนั้นในกรณีนี้

จะเกิดอะไรขึ้นถ้า? แล้วสูตรไหนได้ผลล่ะ? ลองนึกภาพความก้าวหน้าทางเรขาคณิตที่ เธอชอบอะไร? ชุดตัวเลขที่เหมือนกันนั้นถูกต้อง ดังนั้นสูตรจึงมีลักษณะดังนี้:

มีตำนานมากมายเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์และเรขาคณิต หนึ่งในนั้นคือตำนานของเซตผู้สร้างหมากรุก

หลายคนรู้ว่าเกมหมากรุกถูกประดิษฐ์ขึ้นในอินเดีย เมื่อกษัตริย์ฮินดูได้พบกับเธอ เขาก็รู้สึกยินดีกับความเฉลียวฉลาดของเธอและท่าทางที่หลากหลายในตัวเธอ เมื่อรู้ว่ามันถูกประดิษฐ์ขึ้นโดยอาสาสมัครคนหนึ่งของเขา กษัตริย์จึงตัดสินใจให้รางวัลแก่เขาเป็นการส่วนตัว เขาเรียกนักประดิษฐ์มาเองและสั่งให้เขาขอทุกสิ่งที่เขาต้องการโดยสัญญาว่าจะตอบสนองแม้แต่ความปรารถนาที่เก่งที่สุด

Seta ขอเวลาคิด และเมื่อวันรุ่งขึ้น Seta ปรากฏตัวต่อหน้ากษัตริย์ เขาก็ทำให้กษัตริย์ประหลาดใจด้วยความสุภาพเรียบร้อยในคำขอของเขาอย่างที่ไม่เคยมีมาก่อน เขาขอให้มอบเมล็ดข้าวสาลีหนึ่งเมล็ดสำหรับกระดานหมากรุกตัวแรก, เมล็ดข้าวสาลีสำหรับอันที่สอง, เมล็ดข้าวสาลีสำหรับอันที่สาม, อันที่สี่, ฯลฯ

กษัตริย์โกรธและขับไล่เซธออกไป โดยบอกว่าคำขอของคนรับใช้นั้นไม่คู่ควรกับความมีน้ำใจของกษัตริย์ แต่สัญญาว่าจะรับธัญพืชของเขาสำหรับสี่เหลี่ยมทั้งหมดของกระดาน

และตอนนี้คำถาม: การใช้สูตรสำหรับผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิตคำนวณว่า Seth ควรได้รับเมล็ดจำนวนเท่าใด

มาเริ่มใช้เหตุผลกัน เนื่องจากตามเงื่อนไข เซธขอเมล็ดข้าวสาลีสำหรับสี่เหลี่ยมแรกของกระดานหมากรุก สี่เหลี่ยมที่สอง ที่สาม สี่ เป็นต้น จากนั้นเราจะเห็นว่าปัญหาเกี่ยวกับความก้าวหน้าทางเรขาคณิต ในกรณีนี้จะเท่ากับอะไร?
ขวา.

สี่เหลี่ยมรวมของกระดานหมากรุก ตามลำดับ, . เรามีข้อมูลทั้งหมด เหลือเพียงเสียบเข้ากับสูตรและคำนวณ

หากต้องการจินตนาการอย่างน้อยประมาณ "สเกล" ของจำนวนที่กำหนด เราจะแปลงโดยใช้คุณสมบัติของดีกรี:

แน่นอน หากคุณต้องการ คุณสามารถใช้เครื่องคิดเลขและคำนวณว่าคุณจะได้จำนวนเท่าใด และหากไม่เป็นเช่นนั้น คุณจะต้องเชื่อคำพูดของฉัน: ค่าสุดท้ายของนิพจน์จะเป็น
นั่นคือ:

ล้านล้านสี่ล้านล้านล้านล้านล้านล้าน

วุ้ย) หากคุณต้องการจินตนาการถึงความใหญ่โตของตัวเลขนี้ ให้ประมาณว่าโรงนาจะต้องใหญ่แค่ไหนเพื่อรองรับเมล็ดพืชทั้งหมดได้
หากโรงนามีความสูง ม. และกว้าง ม. ความยาวจะต้องขยายออกไปอีกเป็นกม. กล่าวคือ ไกลจากโลกถึงดวงอาทิตย์ถึงสองเท่า

หากพระราชามีวิชาคณิตศาสตร์ที่เข้มแข็ง พระองค์สามารถเชิญนักวิทยาศาสตร์มานับเมล็ดข้าวได้ เพราะในการนับเมล็ดข้าวหนึ่งล้านเมล็ด พระองค์ทรงต้องใช้เวลาอย่างน้อยหนึ่งวันในการนับอย่างไม่เหน็ดเหนื่อย และเนื่องจากจำเป็นต้องนับล้านล้านเมล็ด จะต้องนับตลอดชีวิต

ทีนี้มาแก้ปัญหาง่ายๆ ที่เกี่ยวข้องกับผลรวมของเทอมของความก้าวหน้าทางเรขาคณิตกัน
นักเรียนห้อง 5A วาสยา ป่วยเป็นไข้หวัดใหญ่ แต่ยังไปโรงเรียนต่อไป ทุกๆ วัน วาสยาทำให้คนสองคนติดเชื้อ และในทางกลับกัน ก็ทำให้คนติดเชื้อเพิ่มอีกสองคน และอื่นๆ มีเพียงคนในชั้นเรียนเท่านั้น ทั้งชั้นจะป่วยเป็นไข้หวัดใหญ่ภายในกี่วัน?

ดังนั้นระยะแรกของความก้าวหน้าทางเรขาคณิตคือวาสยานั่นคือบุคคล ระยะที่สามของความก้าวหน้าทางเรขาคณิตคือคนสองคนที่เขาติดเชื้อในวันแรกที่มาถึง ผลรวมของเงื่อนไขความก้าวหน้าจะเท่ากับจำนวนนักเรียน 5A ดังนั้นเราจึงพูดถึงความก้าวหน้าซึ่ง:

ลองแทนที่ข้อมูลของเราลงในสูตรเพื่อหาผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิต:

ทั้งชั้นจะป่วยภายในไม่กี่วัน ไม่เชื่อสูตรและตัวเลขเหรอ? พยายามพรรณนาถึง "การติดเชื้อ" ของนักเรียนด้วยตัวเอง เกิดขึ้น? ดูว่ามันมีลักษณะอย่างไรสำหรับฉัน:

คำนวณด้วยตัวเองว่าจะใช้เวลากี่วันก่อนที่นักเรียนจะป่วยด้วยไข้หวัดใหญ่หากแต่ละคนติดเชื้อ และมีคนในชั้นเรียนเพียงคนเดียว

คุณได้รับคุณค่าอะไร? ปรากฎว่าทุกคนเริ่มป่วยหลังจากผ่านไปหนึ่งวัน

อย่างที่คุณเห็นงานดังกล่าวและการวาดภาพนั้นมีลักษณะคล้ายกับปิรามิดซึ่งแต่ละงานจะ "นำ" ผู้คนใหม่มา อย่างไรก็ตาม ไม่ช้าก็เร็ว เมื่อสิ่งหลังไม่สามารถดึงดูดใครได้ ในกรณีของเรา ถ้าเราจินตนาการว่าคลาสถูกแยกออกจากกัน บุคคลนั้นจะปิดเชน () ดังนั้นหากบุคคลหนึ่งมีส่วนร่วมในปิรามิดทางการเงินซึ่งมีการให้เงินหากคุณพาผู้เข้าร่วมอีกสองคนมาด้วย บุคคลนั้น (หรือโดยทั่วไป) จะไม่พาใครมาด้วย ดังนั้นจะสูญเสียทุกสิ่งที่พวกเขาลงทุนในการหลอกลวงทางการเงินนี้

ทุกสิ่งที่กล่าวไว้ข้างต้นหมายถึงความก้าวหน้าทางเรขาคณิตที่ลดลงหรือเพิ่มขึ้น แต่อย่างที่คุณจำได้ เรามีประเภทพิเศษ - ความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่มีที่สิ้นสุด จะคำนวณผลรวมของสมาชิกได้อย่างไร? และเหตุใดความก้าวหน้าประเภทนี้จึงมีลักษณะเฉพาะบางประการ? ลองคิดออกด้วยกัน

ก่อนอื่น เรามาดูภาพวาดความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดจากตัวอย่างของเราอีกครั้ง:

ตอนนี้เรามาดูสูตรสำหรับผลรวมของความก้าวหน้าทางเรขาคณิตที่ได้มาจากก่อนหน้านี้เล็กน้อย:
หรือ

เรามุ่งมั่นเพื่ออะไร? ถูกต้องแล้ว กราฟแสดงว่ามีแนวโน้มเป็นศูนย์ นั่นคือที่จะเกือบเท่ากันตามลำดับเมื่อคำนวณนิพจน์เราจะได้เกือบ ในเรื่องนี้ เราเชื่อว่าเมื่อคำนวณผลรวมของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุด วงเล็บนี้สามารถละเลยได้ เนื่องจากมันจะเท่ากัน

- สูตรคือผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุด

สำคัญ!เราใช้สูตรสำหรับผลรวมของเทอมของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดก็ต่อเมื่อเงื่อนไขระบุอย่างชัดเจนว่าเราต้องค้นหาผลรวม ไม่มีที่สิ้นสุดจำนวนสมาชิก

หากมีการระบุตัวเลข n ไว้ เราจะใช้สูตรสำหรับผลรวมของ n พจน์ แม้ว่า หรือ ก็ตาม

ตอนนี้เรามาฝึกกัน

  1. ค้นหาผลรวมของเทอมแรกของความก้าวหน้าทางเรขาคณิตด้วย และ
  2. จงหาผลรวมของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดด้วย และ

ฉันหวังว่าคุณจะระมัดระวังเป็นอย่างยิ่ง ลองเปรียบเทียบคำตอบของเรา:

ตอนนี้คุณรู้ทุกอย่างเกี่ยวกับความก้าวหน้าทางเรขาคณิตแล้ว และถึงเวลาเปลี่ยนจากทฤษฎีไปสู่การปฏิบัติ ปัญหาความก้าวหน้าทางเรขาคณิตที่พบบ่อยที่สุดที่พบในการสอบคือปัญหาในการคำนวณดอกเบี้ยทบต้น สิ่งเหล่านี้คือสิ่งที่เราจะพูดถึง

ปัญหาในการคำนวณดอกเบี้ยทบต้น

คุณคงเคยได้ยินชื่อที่เรียกว่าสูตรดอกเบี้ยทบต้น คุณเข้าใจความหมายหรือไม่? ถ้าไม่ ลองมาคิดกันดู เพราะเมื่อคุณเข้าใจกระบวนการแล้ว คุณจะเข้าใจได้ทันทีว่าความก้าวหน้าทางเรขาคณิตเกี่ยวข้องกับมันอย่างไร

เราทุกคนไปที่ธนาคารและรู้ว่ามีเงื่อนไขสำหรับการฝากเงินที่แตกต่างกัน: นี่คือเงื่อนไขและบริการเพิ่มเติม และดอกเบี้ยด้วยวิธีการคำนวณสองวิธีที่แตกต่างกัน - ง่ายและซับซ้อน

กับ ดอกเบี้ยง่ายๆทุกอย่างชัดเจนไม่มากก็น้อย: ดอกเบี้ยจะเกิดขึ้นหนึ่งครั้งเมื่อสิ้นสุดระยะเวลาฝาก นั่นคือถ้าเราบอกว่าเราฝากเงิน 100 รูเบิลเป็นเวลาหนึ่งปี พวกเขาจะได้รับเครดิตในช่วงปลายปีเท่านั้น ดังนั้นเมื่อสิ้นสุดการฝากเงินเราจะได้รับรูเบิล

ดอกเบี้ยทบต้น- นี่คือตัวเลือกที่มันเกิดขึ้น การแปลงดอกเบี้ยเป็นทุน, เช่น. นอกเหนือจากจำนวนเงินฝากและการคำนวณรายได้ในภายหลังไม่ใช่จากเริ่มต้น แต่จากจำนวนเงินฝากสะสม การใช้อักษรตัวพิมพ์ใหญ่ไม่ได้เกิดขึ้นอย่างต่อเนื่อง แต่มีความถี่อยู่บ้าง ตามกฎแล้ว ระยะเวลาดังกล่าวจะเท่ากัน และส่วนใหญ่ธนาคารมักใช้เดือน ไตรมาส หรือปี

สมมติว่าเราฝากเงินรูเบิลเท่ากันทุกปี แต่ใช้มูลค่าเงินฝากเป็นรายเดือน เรากำลังทำอะไรอยู่?

คุณเข้าใจทุกอย่างที่นี่หรือไม่? ถ้าไม่ลองคิดดูทีละขั้นตอน

เรานำรูเบิลไปที่ธนาคาร ภายในสิ้นเดือน เราควรมีจำนวนเงินในบัญชีของเราซึ่งประกอบด้วยรูเบิลของเราพร้อมดอกเบี้ยนั่นคือ:

เห็นด้วย?

เราสามารถเอามันออกจากวงเล็บ แล้วเราจะได้:

เห็นด้วยสูตรนี้คล้ายกับที่เราเขียนไว้ตอนต้นมากกว่าแล้ว ที่เหลือก็แค่หาเปอร์เซ็นต์

ในคำชี้แจงปัญหา เราจะแจ้งเกี่ยวกับอัตรารายปี ดังที่คุณทราบ เราไม่ได้คูณด้วย - เราแปลงเปอร์เซ็นต์เป็นเศษส่วนทศนิยม นั่นคือ:

ขวา? ตอนนี้คุณอาจถามว่าตัวเลขมาจากไหน? ง่ายมาก!
ฉันพูดซ้ำ: คำแถลงปัญหาพูดถึง ประจำปีดอกเบี้ยที่เกิดขึ้น รายเดือน- ดังที่คุณทราบ ในหนึ่งปีของเดือน ธนาคารจะคิดดอกเบี้ยรายปีส่วนหนึ่งต่อเดือนจากเรา:

เข้าใจไหม? ทีนี้ลองเขียนว่าส่วนนี้ของสูตรจะเป็นอย่างไรถ้าฉันบอกว่าคำนวณดอกเบี้ยรายวัน
คุณจัดการหรือไม่? ลองเปรียบเทียบผลลัพธ์:

ทำได้ดี! กลับไปที่งานของเรา: เขียนจำนวนเงินที่จะเข้าบัญชีของเราในเดือนที่สองโดยคำนึงถึงดอกเบี้ยที่เกิดขึ้นจากจำนวนเงินฝากสะสม
นี่คือสิ่งที่ฉันได้รับ:

หรืออีกนัยหนึ่ง:

ฉันคิดว่าคุณได้สังเกตเห็นรูปแบบหนึ่งแล้วและเห็นความก้าวหน้าทางเรขาคณิตในเรื่องทั้งหมดนี้ เขียนว่าสมาชิกจะเท่ากับเท่าใด หรือกล่าวอีกนัยหนึ่งคือเราจะได้รับเงินจำนวนเท่าใดเมื่อสิ้นเดือน
ทำ? มาตรวจสอบกัน!

อย่างที่คุณเห็น หากคุณฝากเงินในธนาคารด้วยอัตราดอกเบี้ยธรรมดาเป็นเวลาหนึ่งปี คุณจะได้รับรูเบิล และหากใช้อัตราดอกเบี้ยทบต้น คุณจะได้รับรูเบิล ผลประโยชน์มีน้อย แต่สิ่งนี้จะเกิดขึ้นเฉพาะในช่วงปีนั้นเท่านั้น แต่สำหรับระยะเวลาที่นานกว่านั้น การลงทุนจะทำกำไรได้มากกว่ามาก:

ลองดูปัญหาอีกประเภทหนึ่งเกี่ยวกับดอกเบี้ยทบต้น หลังจากสิ่งที่คุณคิดได้แล้วมันจะเป็นเรื่องพื้นฐานสำหรับคุณ ดังนั้นภารกิจ:

บริษัท Zvezda เริ่มลงทุนในอุตสาหกรรมนี้ในปี 2000 ด้วยทุนเป็นดอลลาร์ ทุกปีตั้งแต่ปี 2544 ก็มีกำไรเท่ากับทุนของปีก่อน บริษัท Zvezda จะได้รับกำไรเท่าใด ณ สิ้นปี 2546 หากไม่ถอนกำไรออกจากการหมุนเวียน

เมืองหลวงของบริษัท Zvezda ในปี 2543
- เมืองหลวงของ บริษัท Zvezda ในปี 2544
- เมืองหลวงของ บริษัท Zvezda ในปี 2545
- เมืองหลวงของ บริษัท Zvezda ในปี 2546

หรือเราจะเขียนสั้นๆ ว่า:

สำหรับกรณีของเรา:

พ.ศ. 2543, 2544, 2545 และ 2546

ตามลำดับ:
รูเบิล
โปรดทราบว่าในปัญหานี้ เราไม่มีการหารโดยหรือตาม เนื่องจากเปอร์เซ็นต์จะได้รับเป็นรายปีและมีการคำนวณเป็นรายปี นั่นคือเมื่ออ่านปัญหาเกี่ยวกับดอกเบี้ยทบต้นให้ใส่ใจกับเปอร์เซ็นต์ที่ได้รับและคำนวณในช่วงเวลาใดจากนั้นจึงทำการคำนวณต่อ
ตอนนี้คุณรู้ทุกอย่างเกี่ยวกับความก้าวหน้าทางเรขาคณิตแล้ว

การฝึกอบรม.

  1. ค้นหาเทอมของความก้าวหน้าทางเรขาคณิตหากทราบแล้ว และ
  2. หาผลรวมของเทอมแรกของความก้าวหน้าทางเรขาคณิตถ้าทราบ และ
  3. บริษัท MDM Capital เริ่มลงทุนในอุตสาหกรรมนี้ในปี 2546 โดยมีทุนเป็นสกุลเงินดอลลาร์ ทุกปีตั้งแต่ปี 2547 ก็มีกำไรเท่ากับทุนของปีก่อน บริษัท MSK Cash Flows เริ่มลงทุนในอุตสาหกรรมนี้ในปี 2548 ด้วยมูลค่า 10,000 ดอลลาร์ เริ่มทำกำไรในปี 2549 ด้วยจำนวนเงิน เงินทุนของบริษัทหนึ่งมีมูลค่ามากกว่าอีกบริษัทหนึ่ง ณ สิ้นปี 2550 กี่ดอลลาร์หากไม่ถอนกำไรออกจากการหมุนเวียน?

คำตอบ:

  1. เนื่องจากคำแถลงปัญหาไม่ได้บอกว่าความก้าวหน้านั้นไม่มีที่สิ้นสุดและจำเป็นต้องค้นหาผลรวมของจำนวนเงื่อนไขที่ระบุ การคำนวณจึงดำเนินการตามสูตร:

  2. บริษัท เอ็มดีเอ็ม แคปปิตอล:

    2546, 2547, 2548, 2549, 2550.
    - เพิ่มขึ้น 100% นั่นคือ 2 เท่า
    ตามลำดับ:
    รูเบิล
    บริษัท MSK กระแสเงินสด:

    2548, 2549, 2550.
    - เพิ่มขึ้นทีละครั้ง
    ตามลำดับ:
    รูเบิล
    รูเบิล

มาสรุปกัน

1) ความก้าวหน้าทางเรขาคณิต ( ) เป็นลำดับตัวเลข เทอมแรกแตกต่างจากศูนย์ และแต่ละเทอมเริ่มจากวินาทีจะเท่ากับเทอมก่อนหน้าคูณด้วยตัวเลขเดียวกัน จำนวนนี้เรียกว่าตัวหารของความก้าวหน้าทางเรขาคณิต

2) สมการของเงื่อนไขของความก้าวหน้าทางเรขาคณิตคือ

3) สามารถรับค่าใดก็ได้ยกเว้นและ

  • ถ้าเงื่อนไขที่ตามมาทั้งหมดของความก้าวหน้ามีเครื่องหมายเดียวกัน - พวกเขา เป็นบวก;
  • ถ้าแล้วเงื่อนไขที่ตามมาทั้งหมดของความก้าวหน้า สัญญาณทางเลือก;
  • เมื่อใด – ความก้าวหน้าเรียกว่าลดลงอย่างไม่สิ้นสุด

4) ที่ – คุณสมบัติของความก้าวหน้าทางเรขาคณิต (เงื่อนไขที่อยู่ติดกัน)

หรือ
, ที่ (เงื่อนไขระยะเท่ากัน)

เมื่อพบแล้วอย่าลืมว่า ควรมีสองคำตอบ.

ตัวอย่างเช่น,

5) ผลรวมของเงื่อนไขของความก้าวหน้าทางเรขาคณิตคำนวณโดยสูตร:
หรือ


หรือ

สำคัญ!เราใช้สูตรสำหรับผลรวมของเทอมของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดก็ต่อเมื่อเงื่อนไขระบุอย่างชัดเจนว่าเราจำเป็นต้องค้นหาผลรวมของเทอมที่มีจำนวนอนันต์

6) ปัญหาเกี่ยวกับดอกเบี้ยทบต้นยังคำนวณโดยใช้สูตรสำหรับระยะที่ 3 ของความก้าวหน้าทางเรขาคณิต โดยมีเงื่อนไขว่าเงินทุนไม่ได้ถูกถอนออกจากการหมุนเวียน:

ความก้าวหน้าทางเรขาคณิต สั้น ๆ เกี่ยวกับสิ่งสำคัญ

ความก้าวหน้าทางเรขาคณิต( ) เป็นลำดับตัวเลข โดยเทอมแรกแตกต่างจากศูนย์ และแต่ละเทอมเริ่มจากวินาทีจะเท่ากับเทอมก่อนหน้าคูณด้วยตัวเลขเดียวกัน เบอร์นี้มีชื่อว่า ตัวหารของความก้าวหน้าทางเรขาคณิต

ตัวส่วนของความก้าวหน้าทางเรขาคณิตสามารถใช้ค่าใดๆ ก็ได้ ยกเว้น และ

  • หากเงื่อนไขที่ตามมาทั้งหมดของความก้าวหน้ามีเครื่องหมายเดียวกัน - ถือว่าเป็นค่าบวก
  • ถ้า จากนั้นสมาชิกที่ตามมาทั้งหมดของความก้าวหน้าจะสลับสัญญาณกัน
  • เมื่อใด – ความก้าวหน้าเรียกว่าลดลงอย่างไม่สิ้นสุด

สมการของเงื่อนไขความก้าวหน้าทางเรขาคณิต - .

ผลรวมของเงื่อนไขความก้าวหน้าทางเรขาคณิตคำนวณโดยสูตร:
หรือ

หากความก้าวหน้าลดลงอย่างไม่สิ้นสุด ดังนั้น:

มาเป็นนักเรียน YouClever

เตรียมความพร้อมสำหรับการสอบ Unified State หรือการสอบ Unified State ในวิชาคณิตศาสตร์

และยังเข้าถึงหนังสือเรียน YouClever ได้โดยไม่มีข้อจำกัด...



กลับ

×
เข้าร่วมชุมชน "shango.ru"!
ติดต่อกับ:
ฉันสมัครเป็นสมาชิกชุมชน “shango.ru” แล้ว