Дія із звичайними дробами. Спільні дії зі звичайними та десятковими дробами

Підписатися
Вступай до спільноти «shango.ru»!
ВКонтакті:

Ця стаття про звичайні дроби. Тут ми познайомимося з поняттям частки цілого, яке приведе нас до визначення звичайного дробу. Далі зупинимося на прийнятих позначеннях для звичайних дробів і наведемо приклади дробів, скажімо про чисельник та знаменник дробу. Після цього дамо визначення правильних та неправильних, позитивних та негативних дробів, а також розглянемо положення дробових чисел на координатному промені. На закінчення перерахуємо основні події з дробами.

Навігація на сторінці.

Частки цілого

Спочатку введемо поняття частки.

Припустимо, що ми маємо певний предмет, складений із кількох абсолютно однакових (тобто, рівних) частин. Для наочності можна уявити, наприклад, яблуко, розрізане кілька рівних частин, чи апельсин, що з кількох рівних часточок. Кожну з цих рівних частин, що становлять цілий предмет, називають часткою цілогоабо просто часткою.

Зауважимо, що частки бувають різні. Пояснимо це. Нехай у нас є два яблука. Розріжемо перше яблуко на дві рівні частини, а друге – на шість рівних частин. Зрозуміло, частка першого яблука відрізнятиметься від частки другого яблука.

Залежно від кількості часток, що становлять цілий предмет, ці частки мають свої назви. Розберемо назви часток. Якщо предмет становлять дві частки, кожна їх називається одна друга частка цілого предмета; якщо предмет становлять три частки, то кожна з них називається одна третя частка, і таке інше.

Одна друга частка має спеціальну назву – половина. Одна третя частка називається третю, а одна четверна частка – чвертю.

Для стислості запису було введено такі позначення часток. Одну другу частку позначають як або 1/2, одну третю частку - як або 1/3; одну четверту частку - як або 1/4 і так далі. Зазначимо, що запис із горизонтальною характеристикою використовується частіше. Для закріплення матеріалу наведемо ще один приклад: запис означає одну сто шістдесят сьому частку цілого.

Поняття частки природно поширюється з предметів на величини. Наприклад, одним із заходів вимірювання довжини є метр. Для вимірювання довжин менших за метр можна використовувати частки метра. Так можна скористатися, наприклад, половиною метра або десятою або тисячною часткою метра. Аналогічно застосовуються частки інших величин.

Звичайні дроби, визначення та приклади дробів

Для опису кількості часток використовуються звичайні дроби. Наведемо приклад, який дозволить нам підійти до визначення звичайних дробів.

Нехай апельсин складається з 12 часток. Кожна частка у разі представляє одну дванадцяту частку цілого апельсина, тобто, . Дві частки позначимо як , три частки - як , і так далі, 12 часток позначимо як . Кожен із наведених записів називають звичайним дробом.

Тепер дамо спільне визначення звичайних дробів.

Озвучене визначення звичайних дробів дозволяє навести приклади звичайних дробів: 5/10 , , 21/1 , 9/4 , . А ось записи не підходять під озвучене визначення звичайних дробів, тобто не є звичайними дробами.

Чисельник і знаменник

Для зручності у звичайному дробі розрізняють чисельник та знаменник.

Визначення.

Чисельникзвичайного дробу (m/n) – це натуральне число m.

Визначення.

Знаменникзвичайного дробу (m/n ) – це натуральне число n .

Отже, чисельник розташований зверху над межею дробу (ліворуч від похилої межі), а знаменник – знизу під межею дробу (праворуч від похилої межі). Для прикладу наведемо звичайний дріб 17/29, чисельником цього дробу є число 17, а знаменником - число 29.

Залишилося обговорити зміст, укладений у чисельнику і знаменнику звичайного дробу. Знаменник дробу показує, з скільки частин складається один предмет, чисельник у свою чергу вказує кількість таких часток. Наприклад, знаменник 5 дробу 12/5 означає, що один предмет складається з п'яти часток, а чисельник 12 означає, що взято 12 таких часток.

Натуральне число як дріб із знаменником 1

Знаменник звичайного дробу може дорівнювати одиниці. У цьому випадку можна вважати, що предмет неподільний, іншими словами, є чимось цілим. Чисельник такого дробу вказує, скільки цілих предметів взято. Таким чином, звичайний дріб виду m/1 має сенс натурального числа m. Так ми довели справедливість рівності m/1=m .

Перепишемо останню рівність так: m=m/1. Ця рівність дає нам можливість будь-яке натуральне число m представляти у вигляді звичайного дробу. Наприклад, число 4 – це дріб 4/1, а число 103498 дорівнює дробу 103498/1.

Отже, будь-яке натуральне число m можна подати у вигляді звичайного дробу зі знаменником 1 як m/1 , а будь-який звичайний дріб виду m/1 можна замінити натуральним числом m.

Чорта дробу як знак розподілу

Уявлення вихідного предмета як n часток є нічим іншим як поділ на n рівних частин. Після того, як предмет розділений на n частиною, ми можемо розділити порівну між n людьми – кожен отримає по одній частці.

Якщо ж у нас є спочатку m однакових предметів, кожен з яких розділений на n частиною, то ці m предметів ми можемо порівну поділити між n людьми, роздавши кожній людині по одній частці кожного з m предметів. При цьому у кожної людини буде m часткою 1/n, а m часткою 1/n дає звичайний дріб m/n. Таким чином, звичайний дріб m/n можна застосовувати для позначення розподілу предметів m між n людьми.

Так ми отримали явний зв'язок між звичайними дробами та поділом (дивіться загальне уявлення про розподіл натуральних чисел). Цей зв'язок виражається в наступному: рису дробу можна розуміти як знак розподілу, тобто m/n=m:n.

За допомогою звичайного дробу можна записати результат поділу двох натуральних чисел, для яких не виконується поділ націло. Наприклад, результат розподілу 5 яблук на 8 чоловік можна записати як 5/8, тобто, кожному дістанеться п'ять восьмих часток яблука: 5:8 = 5/8.

Рівні та нерівні звичайні дроби, порівняння дробів

Досить природною дією є порівняння звичайних дробів, адже зрозуміло, що 1/12 апельсина відрізняється від 5/12, а 1/6 частка яблука така сама, як інша 1/6 частка цього яблука.

В результаті порівняння двох звичайних дробів виходить один із результатів: дроби або рівні, або не рівні. У першому випадку ми маємо рівні звичайні дроби, а у другому – нерівні звичайні дроби. Дамо визначення рівних та нерівних звичайних дробів.

Визначення.

рівні, якщо справедлива рівність a d = b c .

Визначення.

Два звичайні дроби a/b та c/d не рівні, якщо рівність a d = b c не виконується.

Наведемо кілька прикладів рівних дробів. Наприклад, звичайний дріб 1/2 дорівнює дробу 2/4, так як 1 · 4 = 2 · 2 (при необхідності дивіться правила та приклади множення натуральних чисел). Для наочності можна уявити два однакових яблука, перше розрізане навпіл, а друге – на 4 частки. При цьому очевидно, що дві четверті частки яблука становлять 1/2 частку. Іншими прикладами рівних звичайних дробів є дроби 4/7 і 36/63, а також пара дробів 81/50 та 1620/1000.

А прості дроби 4/13 і 5/14 не рівні, оскільки 4·14=56 , а 13·5=65 , тобто, 4·14≠13·5 . Іншим прикладом нерівних звичайних дробів є дроби 17/7 та 6/4.

Якщо при порівнянні двох звичайних дробів з'ясувалося, що вони не рівні, то можливо знадобиться дізнатися, який із цих звичайних дробів меншеінший, а яка – більше. Щоб це з'ясувати, використовується правило порівняння звичайних дробів, суть якого зводиться до приведення порівнюваних дробів до спільного знаменника та подальшого порівняння чисельників. Детальна інформація з цієї теми зібрана у статті порівняння дробів: правила, приклади, рішення.

Дробові числа

Кожен дріб є записом дробового числа. Тобто, дріб – це лише «оболонка» дробового числа, його зовнішній вигляд, а все смислове навантаження міститься саме в дробовому числі. Однак для стислості та зручності поняття дробу та дробового числа поєднують і говорять просто дріб. Тут доречно перефразувати відомий вислів: ми говоримо дріб – маємо на увазі дробове число, ми говоримо дробове число – маємо на увазі дріб.

Дроби на координатному промені

Всі дробові числа, що відповідають звичайним дробам, мають своє унікальне місце на тобто існує взаємно однозначна відповідність між дробами і точками координатного променя.

Щоб на координатному промені потрапити в точку, що відповідає дробу m/n, потрібно від початку координат у позитивному напрямку відкласти m відрізків, довжина яких становить 1/n частку одиничного відрізка. Такі відрізки можна отримати, розділивши одиничний відрізок на n рівних частин, що можна зробити з допомогою циркуля і лінійки.

Наприклад покажемо точку М на координатному промені, відповідну дробу 14/10 . Довжина відрізка з кінцями в точці O і найближчої до неї точці, позначеної маленьким штрихом, становить 1/10 частку одиничного відрізка. Крапка з координатою 14/10 віддалена від початку координат на відстань 14 таких відрізків.

Рівним дробам відповідає те саме дробове число, тобто, рівні дроби є координатами однієї й тієї ж точки на координатному промені. Наприклад, координатам 1/2, 2/4, 16/32, 55/110 на координатному промені відповідає одна точка, оскільки всі записані дроби рівні (вона розташована на відстані половини одиничного відрізка, відкладеного від початку відліку в позитивному напрямку).

На горизонтальному і спрямованому праворуч координатному промені точка, координатою якої є великий дріб, розташовується правіше точки, координатою якої є менший дріб. Аналогічно, точка з меншою координатою лежить лівіше від точки з більшою координатою.

Правильні та неправильні дроби, визначення, приклади

Серед звичайних дробів розрізняють правильні та неправильні дроби. Цей поділ у своїй основі має порівняння чисельника та знаменника.

Дамо визначення правильних і неправильних звичайних дробів.

Визначення.

Правильний дріб– це звичайний дріб, чисельник якого менший за знаменник, тобто, якщо m

Визначення.

Неправильний дріб– це звичайний дріб, у якому чисельник більший або дорівнює знаменнику, тобто якщо m≥n , то звичайний дріб є неправильним.

Наведемо кілька прикладів правильних дробів: 1/4 , 32 765/909 003 . Дійсно, у кожному із записаних звичайних дробів чисельник менший за знаменник (за потреби дивіться статтю порівняння натуральних чисел), тому вони правильні за визначенням.

А ось приклади неправильних дробів: 9/9, 23/4,. Справді, чисельник першою із записаних звичайних дробів дорівнює знаменнику, а інших дробах чисельник більше знаменника.

Також мають місце визначення правильних та неправильних дробів, що базуються на порівнянні дробів з одиницею.

Визначення.

правильноюякщо вона менше одиниці.

Визначення.

Звичайний дріб називається неправильною, Якщо вона або дорівнює одиниці, або більше 1 .

Так звичайний дріб 7/11 – правильний, оскільки 7/11<1 , а обыкновенные дроби 14/3 и 27/27 – неправильные, так как 14/3>1, а 27/27=1.

Давайте поміркуємо, чим звичайні дроби з чисельником, вищим або рівним знаменнику, заслужили таку назву - «неправильні».

Для прикладу візьмемо неправильний дріб 9/9. Цей дріб означає, що взято дев'ять часток предмета, що складається з дев'яти часток. Тобто з наявних дев'яти часток ми можемо скласти цілий предмет. Тобто, неправильний дріб 9/9 насправді дає цілий предмет, тобто, 9/9=1 . Взагалі, неправильні дроби з чисельником рівним знаменнику позначають один цілий предмет, і такий дріб може замінити натуральне число 1 .

Тепер розглянемо неправильні дроби 7/3 та 12/4. Досить очевидно, що з цих семи третіх часток ми можемо скласти два цілих предмети (один цілий предмет складають 3 частки, тоді для складання двох цілих предметів нам знадобиться 3+3=6 часток) і залишиться ще одна третя частка. Тобто неправильний дріб 7/3 по суті означає 2 предмети та ще 1/3 частку такого предмета. А з дванадцяти четвертих часток ми можемо скласти три цілих предмети (три предмети по чотири частки в кожному). Тобто, дріб 12/4 насправді означає 3 цілих предмета.

Розглянуті приклади приводять нас до наступного висновку: неправильні дроби, можуть бути замінені або натуральними числами, коли чисельник ділиться націло на знаменник (наприклад, 9/9=1 і 12/4=3 ), або сумою натурального числа та правильного дробу, коли чисельник не ділиться націло на знаменник (наприклад, 7/3=2+1/3). Можливо, саме цим і заслужили неправильні дроби таку назву - "неправильні".

Окремий інтерес викликає подання неправильного дробу у вигляді суми натурального числа та правильного дробу (7/3=2+1/3). Цей процес називається виділенням цілої частини з неправильного дробу, і заслуговує на окремий і більш уважний розгляд.

Також варто зауважити, що існує дуже тісний зв'язок між неправильними дробами та змішаними числами.

Позитивні та негативні дроби

Кожен звичайний дріб відповідає позитивному дробовому числу (дивіться статтю позитивні та негативні числа). Тобто, звичайні дроби є позитивними дробами. Наприклад, прості дроби 1/5 , 56/18 , 35/144 – позитивні дроби. Коли потрібно особливо виділити позитивність дробу, перед нею ставиться знак плюс, наприклад, +3/4 , +72/34 .

Якщо перед звичайним дробом поставити знак мінус, то цей запис відповідатиме негативному дробовому числу. У цьому випадку можна говорити про негативних дробах. Наведемо кілька прикладів негативних дробів: −6/10 , −65/13 , −1/18 .

Позитивний і негативний дроби m/n і −m/n є протилежними числами . Наприклад, дроби 5/7 та −5/7 – протилежні дроби.

Позитивні дроби, як і позитивні числа загалом, позначають додаток, дохід, зміна будь-якої величини у бік збільшення тощо. Негативні дроби відповідають витратам, боргу, зміні будь-якої величини у бік зменшення. Наприклад, негативний дріб −3/4 можна трактувати як борг, величина якого дорівнює 3/4 .

На горизонтальній і спрямованій праворуч негативні дроби розташовуються лівіше початку відліку. Точки координатної прямої, координатами яких є позитивний дріб m/n і негативний дріб m/n розташовані на однаковій відстані від початку координат, але по різні сторони від точки O .

Тут варто сказати про дроби виду 0/n . Ці дроби дорівнюють числу нуль, тобто, 0/n=0 .

Позитивні дроби, негативні дроби, і навіть дроби 0/n об'єднуються у раціональні числа .

Дії з дробами

Одна дія зі звичайними дробами – порівняння дробів – ми вже розглянули вище. Визначено ще чотири арифметичні дії з дробами– додавання, віднімання, множення та поділ дробів. Зупинимося кожному з них.

Загальна суть процесів з дробами аналогічна суті відповідних процесів з натуральними числами. Проведемо аналогію.

Розмноження дробівможна розглядати як дію, при якій знаходиться дріб від дробу. Для пояснення наведемо приклад. Нехай ми маємо 1/6 частину яблука і нам потрібно взяти 2/3 частини від неї. Потрібна нам частина є результатом множення дробів 1/6 та 2/3. Результатом множення двох звичайних дробів є звичайний дріб (який окремо дорівнює натуральному числу). Далі рекомендуємо до вивчення інформацію статті множення дробів – правила, приклади та рішення.

Список літератури.

  • Віленкін Н.Я., Жохов В.І., Чесноков А.С., Шварцбурд С.І. Математика: підручник для 5 кл. загальноосвітніх установ.
  • Віленкін Н.Я. та ін Математика. 6 клас: підручник для загальноосвітніх закладів.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Чисельником, а те, на яке ділять – знаменником.

Щоб записати дріб, напишіть спочатку його чисельник, потім проведіть під цим числом горизонтальну межу, а під лінією напишіть знаменник. Горизонтальна , що розділяє чисельник і знаменник, називається дробовою рисою. Іноді її зображують у вигляді похилої "/" або "∕". При цьому чисельник записується ліворуч від риси, а знаменник праворуч. Так, наприклад, дріб «дві треті» запишеться як 2/3. Для наочності чисельник зазвичай пишуть у верхній частині рядка, а знаменник – у нижній, тобто замість 2/3 можна зустріти: ⅔.

Щоб розрахувати добуток дробів, помножте спочатку чисельник одного дробина чисельник інший. Запишіть результат у чисельник нової дроби. Після цього перемножте знаменники. Підсумкове значення вкажіть у новій дроби. Наприклад, 1/3? 1/5 = 1/15 (1? 1 = 1; 3? 5 = 15).

Щоб поділити один дріб на інший, помножте спочатку чисельник першого на знаменник другого. Те саме зробіть і з другим дробом (ділителем). Або перед виконанням усіх дій спочатку «переверніть» дільник, якщо вам так зручніше: на місці чисельника має бути знаменник. Після цього помножте знаменник діленого на новий знаменник дільника та перемножте чисельники. Наприклад, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Джерела:

  • Основні завдання на дроби

Дробові числа дозволяють виражати у різному вигляді точне значення величини. З дробами можна виконувати самі математичні операції, як і з цілими числами: віднімання, додавання, множення і розподіл. Щоб навчитися вирішувати дроби, треба пам'ятати про деякі їх особливості. Вони залежать від виду дроби, наявності цілої частини загального знаменника. Деякі арифметичні дії після виконання вимагають скорочення дрібної частини результату.

Вам знадобиться

  • - Калькулятор

Інструкція

Уважно подивіться на числа. Якщо серед дробів є десяткові та неправильні, іноді зручніше спочатку виконати дії з десятковими, а потім перевести їх у неправильний вигляд. Можете перекласти дробиу такий вид спочатку, записавши значення після коми в чисельник і поставивши 10 знаменник. При необхідності скоротите дріб, розділивши числа вище та нижче на один дільник. Дроби, у яких виділяється ціла частина, приведіть до неправильного вигляду, помноживши її на знаменник і додавши до результату чисельник. Це значення стане новим чисельником дроби. Щоб виділити цілу частину спочатку неправильної дроби, Треба поділити чисельник на знаменник. Цілий результат записати від дроби. А залишок від поділу стане новим чисельником, знаменник дробиу своїй не змінюється. Для дробів із цілою частиною можливе виконання дій окремо спочатку для цілої, а потім для дробової частин. Наприклад, сума 1 2/3 і 2 ¾ може бути обчислена:
- Переведення дробів у неправильний вигляд:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Підсумовування окремо цілих та дробових частин доданків:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5 /12.

Перепишіть їх через роздільник: і продовжіть звичайний поділ.

Для отримання кінцевого результату отриманий дріб скоротите, розділивши чисельник і знаменник на одне ціле число, найбільше можливе даному випадку. При цьому вище та нижче риси мають бути цілі числа.

Зверніть увагу

Не виконуйте арифметичні дії з дробами, знаменники яких відрізняються. Підберіть таке число, щоб при множенні на нього чисельника та знаменника кожного дробу в результаті знаменники обох дробів дорівнювали.

Корисна порада

При записі дробових чисел ділене пишеться над межею. Ця величина позначається як чисельник дробу. Під рисою записується дільник, чи знаменник, дроби. Наприклад, півтора кілограма рису у вигляді дробу запишеться так: 1 ½ кг рису. Якщо знаменник дробу дорівнює 10, такий дріб називають десятковим. При цьому чисельник (ділене) пишеться праворуч від цілої частини через кому: 1,5 кг рису. Для зручності обчислень такий дріб завжди можна записати в неправильному вигляді: 1 2/10 кг картоплі. Для спрощення можна скоротити значення чисельника та знаменника, поділивши їх на одне ціле число. В даному прикладі можливий поділ на 2. В результаті вийде 1 1/5 кг картоплі. Переконайтеся, що числа, з якими ви збираєтесь виконувати арифметичні дії, представлені в одному вигляді.

Події з дробами. У цій статті розберемо приклади, докладно з поясненнями. Розглядатимемо прості дроби. Надалі розберемо й десяткові. Рекомендую подивитися весь та вивчати послідовно.

1. Сума дробів, різниця дробів.

Правило: при складанні дробів з рівними знаменниками, в результаті отримуємо дріб – знаменник якої залишається той же, а чисельник її дорівнюватиме сумі чисельників дробів.

Правило: при обчисленні різниці дробів з однаковими знаменниками отримуємо дріб – знаменник залишається той самий, а з чисельника першого дробу віднімається чисельник другого.

Формальний запис суми та різниці дробів з рівними знаменниками:


Приклади (1):


Зрозуміло, що коли дано прості дроби, то все просто, а якщо змішані? Нічого складного…

Варіант 1- Можна перевести їх у прості і далі обчислювати.

Варіант 2– можна окремо «працювати» з цілою та дробовою частиною.

Приклади (2):


Ще:

А якщо буде дана різниця двох змішаних дробів і чисельник першого дробу буде меншим від чисельника другого? Теж можна діяти двома способами.

Приклади (3):

*Перевели у звичайні дроби, обчислили різницю, перевели отриманий неправильний дріб у змішану.


*Розбили на цілі та дробові частини, отримали трійку, далі представили 3 як суму 2 і 1, причому одиницю представили як 11/11, далі знайшли різницю 11/11 і 7/11 і обчислили результат. Сенс викладених перетворень у тому, щоб узяти (виділити) одиницю і уявити її як дробу з потрібним нам знаменником, далі від цього дробу ми можемо відняти іншу.

Ще приклад:


Висновок: є універсальний підхід - для того, щоб обчислити суму (різницю) змішаних дробів з рівними знаменниками їх можна перевести в неправильні, далі виконати необхідну дію. Після цього якщо в результаті отримуємо неправильний дріб переводимо його в змішаний.

Вище ми розглянули приклади з дробами, які мають рівні знаменники. А якщо знаменники відрізнятимуться? У цьому випадку дроби наводяться до одного знаменника та виконується зазначена дія. Для зміни (перетворення) дробу використовується основна властивість дробу.

Розглянемо прості приклади:


У цих прикладах ми відразу бачимо як можна перетворити один із дробів, щоб отримати рівні знаменники.

Якщо позначити способи приведення дробів до одного знаменника, цей назвемо СПОСІБ ПЕРШИЙ.

Тобто відразу при «оцінці» дробу потрібно прикинути чи спрацює такий підхід – перевіряємо чи ділиться більший знаменник на менший. І якщо ділиться, то виконуємо перетворення - домножуємо чисельник і знаменник так, щоб у обох дробів знаменники стали рівними.

Тепер подивіться на ці приклади:

До них зазначений підхід не застосовується. Існують ще способи приведення дробів до спільного знаменника, розглянемо їх.

Спосіб ДРУГИЙ.

Помножуємо чисельник і знаменник першого дробу на знаменник другого, а чисельник і знаменник другого дробу на знаменник першого:

*Фактично ми наводимо дроби до виду, коли знаменники стають рівними. Далі використовуємо правило складання бояр з рівними знаменниками.

Приклад:

*Цей спосіб можна назвати універсальним, і він працює завжди. Єдиний мінус у тому, що після обчислень може вийде дріб, який необхідно буде ще скоротити.

Розглянемо приклад:

Видно, що чисельник і знаменник ділиться на 5:

Спосіб третій.

Необхідно знайти найменше загальне кратне (НОК) знаменників. Це буде спільний знаменник. Що за число таке? Це найменше натуральне число, яке поділяється на кожне із чисел.

Подивіться, ось два числа: 3 і 4, є безліч чисел, які діляться на них – це 12, 24, 36, … Найменше з них 12. Або 6 та 15, на них діляться 30, 60, 90…. Найменше 30. Питання – а як визначити це найменше загальне кратне?

Є чіткий алгоритм, але це можна зробити і відразу без обчислень. Наприклад, за наведеними вище прикладами (3 і 4, 6 і 15) ніякого алгоритму не треба, ми взяли великі числа (4 і 15) збільшили їх у два рази і побачили, що вони діляться на друге число, але пари чисел можуть бути і іншими, наприклад 51 та 119.

Алгоритм. Для того, щоб визначити найменше загальне кратне кількох чисел, необхідно:

- Розкласти кожне з чисел на прості множники

— виписати розкладання ВЕЛИКОГО з них

— помножити його на множники інших чисел, що НЕ ДОСТАВЛЯЮТЬ

Розглянемо приклади:

50 та 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

у розкладанні більшого числа не вистачає однієї п'ятірки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 та 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

у розкладанні більшого числа не вистачає двійки та трійки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Найменше загальне кратне двох простих чисел і їх твору

Запитання! А чим корисне знаходження найменшого загального кратного, адже можна користуватися другим способом і отриманий дріб просто скоротити? Так, можна, але це не завжди зручно. Подивіться, який вийде знаменник для чисел 48 і 72, якщо їх просто перемножити 48 72 = 3456. Погодьтеся, що приємніше працювати з меншими числами.

Розглянемо приклади:

*51 = 3∙17 119 = 7∙17

у розкладанні більшого числа не вистачає трійки

=> НОК(51,119) = 3∙7∙17

А тепер застосуємо перший спосіб:

*Погляньте яка різниця в обчисленнях, у першому випадку їх мінімум, а в другому потрібно попрацювати окремо на листочку, та ще й дріб, який отримали скоротити необхідно. Знаходження НОК значно спрощує роботу.

Ще приклади:


*У другому прикладі і так видно, що найменше число, яке ділиться на 40 і 60, дорівнює 120.

ПІДСУМОК! ЗАГАЛЬНИЙ АЛГОРИТМ ВИЧИСЛЕНЬ!

- Наводимо дроби до звичайних, якщо є ціла частина.

- Наводимо дроби до спільного знаменника (спочатку дивимося чи ділиться один знаменник на інший, якщо ділиться то множимо чисельник і знаменник цього іншого дробу; якщо не ділиться діє через інших зазначених вище способів).

- отримавши дроби з рівними знаменниками, виконуємо дії (додавання, віднімання).

- Якщо необхідно, то результат скорочуємо.

- Якщо необхідно, то виділяємо цілу частину.

2. Добуток дробів.

Правило просте. При множенні дробів множаться їх чисельники та знаменники:

Приклади:

Завдання. На базу привезли 13 тонн овочів. Картопля становить ¾ від усіх завезених овочів. Скільки кілограмів картоплі завезли на базу?

З твором закінчимо.

*Раніше обіцяв вам навести формальне пояснення основної властивості дробу через твір, будь ласка:

3. Розподіл дробів.

Розподіл дробів зводиться до їх множення. Тут важливо запам'ятати, що дріб є дільником (та, на яку ділять) перевертається і дія змінюється на множення:

Ця дія може бути записана у вигляді так званого чотириповерхового дробу, адже саме розподіл «:» теж можна записати як дріб:

Приклади:

На цьому все! Успіху вам!

З повагою Олександр Крутицьких.

Калькулятор онлайн.
Обчислення виразу з числовими дробами.
Множення, віднімання, розподіл, додавання та скорочення дробів з різними знаменниками.

За допомогою даного калькулятора онлайн ви можете помножити, відняти, поділити, скласти і скоротити числові дроби з різними знаменниками.

Програма працює з правильними, неправильними та змішаними числовими дробами.

Ця програма (калькулятор онлайн) вміє:
- виконувати додавання змішаних дробів з різними знаменниками
- виконувати віднімання змішаних дробів із різними знаменниками
- Виконувати поділ змішаних дробів з різними знаменниками
- виконувати множення змішаних дробів із різними знаменниками
- Приводити дроби до спільного знаменника
- перетворювати змішані дроби на неправильні
- скорочувати дроби

Також можна ввести не вираз із дробами, а один єдиний дріб.
У цьому випадку дріб буде скорочено і з результату виділено цілу частину.

Калькулятор онлайн для обчислення виразів із числовими дробами не просто дає відповідь задачі, він наводить докладне рішення з поясненнями, тобто. відображає процес знаходження рішення.

Дана програма може бути корисною учням старших класів загальноосвітніх шкіл при підготовці до контрольних робіт та іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри.

А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробити домашнє завдання з математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Якщо ви не знайомі з правилами введення виразів із числовими дробами, рекомендуємо з ними ознайомитись.

Правила введення виразів із числовими дробами

Як чисельник, знаменник і ціла частина дробу може виступати тільки ціле число.

Знаменник може бути негативним.

При введенні числового дробу чисельник відокремлюється від знаменника знаком розподілу: /
Введення: -2/3 + 7/5
Результат: \(-\frac(2)(3) + \frac(7)(5) \)

Ціла частина відокремлюється від дробу знаком амперсанд: &
Введення: -1&2/3 * 5&8/3
Результат: \(-1\frac(2)(3) \cdot 5\frac(8)(3) \)

Розподіл дробів вводиться знаком двокрапки:
Введення: -9&37/12: -3&5/14
Результат: \(-9\frac(37)(12) : \left(-3\frac(5)(14) \right) \)
Пам'ятайте, що на нуль ділити не можна!

При введенні виразів із числовими дробами можна використовувати дужки.
Введення: -2/3 * (6&1/2-5/9) : 2&1/4 + 1/3
Результат: \(-\frac(2)(3) \cdot \left(6 \frac(1)(2) - \frac(5)(9) \right) : 2\frac(1)(4) + \frac(1)(3) \)

Введіть вираз із числовими дробами.

Обчислити

Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.
Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.

У браузері вимкнено виконання JavaScript.
Щоб рішення з'явилося, потрібно включити JavaScript.
Ось інструкції, як включити JavaScript у вашому браузері.

Т.к. охочих вирішити завдання дуже багато, ваш запит поставлений у чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у формі зворотного зв'язку .
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Прості дроби. Поділ із залишком

Якщо потрібно розділити 497 на 4, то при розподілі ми побачимо, що 497 не ділиться на 4 націло, тобто. залишається залишок від поділу. У таких випадках кажуть, що виконано розподіл із залишком, і рішення записують у такому вигляді:
497: 4 = 124 (1 залишок).

Компоненти розподілу у лівій частині рівності називають так само, як при розподілі без залишку: 497 - ділене, 4 - дільник. Результат розподілу при розподілі із залишком називають неповним приватним. У нашому випадку це число 124. І, нарешті, останній компонент, якого немає у звичайному розподілі, - залишок. У тих випадках, коли залишку немає, кажуть, що одне число поділилося на інше без залишку, або націло. Вважають, що за такого поділу залишок дорівнює нулю. У нашому випадку залишок дорівнює 1.

Залишок завжди менший за дільник.

Перевірку під час поділу можна зробити множенням. Якщо, наприклад, є рівність 64: 32 = 2, перевірку можна зробити так: 64 = 32 * 2.

Часто у випадках, коли виконується поділ із залишком, зручно використовувати рівність
а = b * n + r
де а – ділене, b – дільник, n – неповне приватне, r – залишок.

Частку від поділу натуральних чисел можна записати у вигляді дробу.

Чисельник дробу - це подільне, а знаменник - дільник.

Оскільки чисельник дробу - це подільне, а знаменник - дільник, вважають, що риса дробу означає дію поділу. Іноді зручно записувати поділ у вигляді дробу, не використовуючи знак «:».

Приватне від розподілу натуральних чисел m і n можна записати у вигляді дробу \(\frac(m)(n) \), де чисельник m - ділене, а знаменник п - дільник:
\(m:n = \frac(m)(n) \)

Вірні такі правила:

Щоб отримати дріб \(\frac(m)(n) \), треба одиницю розділити на n рівних частин (часток) і взяти m таких частин.

Щоб отримати дріб \(\frac(m)(n) \), треба число m розділити на число n.

Щоб знайти частину від цілого, треба число, що відповідає цілому, розділити на знаменник і результат помножити на чисельник дробу, який виражає цю частину.

Щоб знайти ціле по його частині, треба число, відповідне до цієї частини, розділити на чисельник і результат помножити на знаменник дробу, який виражає цю частину.

Якщо і чисельник, і знаменник дробу помножити на те саме число (крім нуля), величина дробу не зміниться:
\(\large \frac(a)(b) = \frac(a \cdot n)(b \cdot n) \)

Якщо і чисельник, і знаменник дробу поділити на те саме число (крім нуля), величина дробу не зміниться:
\(\large \frac(a)(b) = \frac(a: m)(b: m) \)
Цю властивість називають основною властивістю дробу.

Два останні перетворення називають скороченням дробу.

Якщо дроби потрібно подати у вигляді дробів з тим самим знаменником, то таку дію називають приведенням дробів до спільного знаменника.

Правильні та неправильні дроби. Змішані числа

Ви вже знаєте, що дріб можна отримати, якщо поділити ціле на рівні частини та взяти кілька таких частин. Наприклад, дріб \(\frac(3)(4) \) означає три четверті частки одиниці. Багато завдань попереднього параграфа звичайні дроби використовувалися для позначення частини цілого. Здоровий глузд підказує, що частина завжди повинна бути меншою за ціле, але як тоді бути з такими дробами, як, наприклад, \(\frac(5)(5) \) або \(\frac(8)(5) \)? Зрозуміло, що це не частина одиниці. Напевно, тому такі дроби, у яких чисельник більший за знаменник або дорівнює йому, називають неправильними дробами. Інші дроби, тобто дроби, у яких чисельник менший за знаменник, називають правильними дробами.

Як ви знаєте, будь-який звичайний дріб, і правильний, і неправильний, можна розглядати як результат розподілу чисельника на знаменник. Тому в математиці, на відміну від звичайної мови, термін «неправильний дріб» означає не те, що ми щось зробили неправильно, а тільки те, що цей дроб чисельник більше знаменника або дорівнює йому.

Якщо число складається з цілої частини та дробу, то такі дроби називаються змішаними.

Наприклад:
\(5:3 = 1\frac(2)(3) \) : 1 - ціла частина, а \(\frac(2)(3) \) - дробова частина.

Якщо чисельник дробу \(\frac(a)(b) \) ділиться на натуральне число n, то щоб розділити цей дріб на n, треба його чисельник розділити на це число:
\(\large \frac(a)(b) : n = \frac(a:n)(b) \)

Якщо чисельник дробу \(\frac(a)(b) \) не поділяється на натуральне число n, то щоб розділити цей дріб на n, треба його знаменник помножити на це число:
\(\large \frac(a)(b) : n = \frac(a)(bn) \)

Зауважимо, що друге правило справедливе у тому разі, коли чисельник ділиться на n. Тому ми можемо його застосовувати тоді, коли важко з першого погляду визначити, чи ділиться чисельник дробу на n чи ні.

Події з дробами. Додавання дробів.

З дрібними числами, як і з натуральними числами, можна виконувати арифметичні дії. Розглянемо спочатку додавання дробів. Легко скласти дроби з однаковими знаменниками. Знайдемо, наприклад, суму \(\frac(2)(7) \) і \(\frac(3)(7) \). Легко зрозуміти, що \(\frac(2)(7) + \frac(2)(7) = \frac(5)(7) \)

Щоб скласти дроби з однаковими знаменниками, потрібно скласти їх чисельники, а знаменник залишити тим самим.

Використовуючи букви, правило додавання дробів з однаковими знаменниками можна записати так:
\(\large \frac(a)(c) + \frac(b)(c) = \frac(a+b)(c) \)

Якщо потрібно скласти дроби з різними знаменниками, їх попередньо слід привести до спільного знаменника. Наприклад:
\(\large \frac(2)(3)+\frac(4)(5) = \frac(2\cdot 5)(3\cdot 5)+\frac(4\cdot 3)(5\cdot 3 ) = \frac(10)(15)+\frac(12)(15) = \frac(10+12)(15) = \frac(22)(15) \)

Для дробів, як і для натуральних чисел, справедливі переміщувальне та поєднане властивості додавання.

Додавання змішаних дробів

Такі записи, як \(2\frac(2)(3) \), називають змішаними дробами. При цьому число 2 називають цілою частиноюзмішаного дробу, а число \(\frac(2)(3) \) - її дрібною частиною. Запис \(2\frac(2)(3) \) читають так: «дві та дві третини».

При розподілі числа 8 на число 3 можна отримати дві відповіді: \(\frac(8)(3) \) і \(2\frac(2)(3) \). Вони виражають те саме дробове число, тобто \(\frac(8)(3) = 2 \frac(2)(3) \)

Таким чином, неправильний дріб \(\frac(8)(3) \) представлений у вигляді змішаного дробу \(2\frac(2)(3) \). У таких випадках кажуть, що з неправильного дробу виділили цілу частину.

Віднімання дробів (дрібних чисел)

Віднімання дробових чисел, як і натуральних, визначається на основі дії додавання: відняти з одного числа інше - це означає знайти таке число, яке при додаванні з другим дає перше. Наприклад:
\(\frac(8)(9)-\frac(1)(9) = \frac(7)(9) \) оскільки \(\frac(7)(9)+\frac(1)(9) ) = \frac(8)(9) \)

Правило віднімання дробів з однаковими знаменниками схоже на правило додавання таких дробів:
щоб знайти різницю дробів з однаковими знаменниками, треба від чисельника першого дробу відняти чисельник другого, а знаменник залишити колишнім.

За допомогою літер це правило записується так:
\(\large \frac(a)(c)-\frac(b)(c) = \frac(a-b)(c) \)

Розмноження дробів

Щоб помножити дріб на дріб, потрібно перемножити їх чисельники та знаменники та перший твір записати чисельником, а другий – знаменником.

За допомогою букв правило множення дробів можна записати так:
\(\large \frac(a)(b) \cdot \frac(c)(d) = \frac(a \cdot c)(b \cdot d) \)

Користуючись сформульованим правилом, можна множити дріб на натуральне число, на змішаний дріб, а також перемножувати змішані дроби. Для цього потрібно натуральне число записати у вигляді дробу зі знаменником 1, змішаний дріб - у вигляді неправильного дробу.

Результат множення треба спрощувати (якщо це можливо), скорочуючи дріб та виділяючи цілу частину неправильного дробу.

Для дробів, як і для натуральних чисел, справедливі переміщувальна та поєднана властивості множення, а також розподільна властивість множення щодо додавання.

Розподіл дробів

Візьмемо дріб \(\frac(2)(3) \) і «перевернемо» її, помінявши місцями чисельник і знаменник. Отримаємо дріб \(\frac(3)(2) \). Цей дріб називають зворотнійдробу \(\frac(2)(3) \).

Якщо ми тепер «перевернемо» дріб \(\frac(3)(2) \), то отримаємо вихідний дріб \(\frac(2)(3) \). Тому такі дроби, як \(\frac(2)(3) \) і \(\frac(3)(2) \) називають взаємно зворотними.

Взаємно зворотними є, наприклад, дроби \(\frac(6)(5) \) і \(\frac(5)(6) \), \(\frac(7)(18) \) і \(\frac (18) (7) \).

За допомогою букв взаємно зворотні дроби можна записати так: \(\frac(a)(b) \) і \(\frac(b)(a) \)

Зрозуміло, що добуток взаємно зворотних дробів дорівнює 1. Наприклад: \(\frac(2)(3) \cdot \frac(3)(2) =1 \)

Використовуючи взаємно зворотні дроби, можна поділ дробів звести до множення.

Правило поділу дробу на дріб:
щоб розділити один дріб на інший, потрібно ділене помножити на дріб, зворотний дільник.

Калькулятор дробівпризначений для швидкого розрахунку операцій із дробами, допоможе легко дроби скласти, помножити, поділити чи відняти.

Сучасні школярі починають вивчення дробів вже у 5 класі, з кожним роком вправи з ними ускладнюються. Математичні терміни та величини, які ми дізнаємося в школі, рідко можуть стати в нагоді нам у дорослому житті. Проте дроби, на відміну логарифмів і ступенів, зустрічаються у повсякденності досить часто (вимір відстані, зважування товару тощо.). Наш калькулятор призначений для швидкого проведення операцій із дробами.

Спочатку визначимо, що таке дроби і які вони бувають. Дробами називають відношення одного числа до іншого, це число, що складається з цілої кількості часток одиниці.

Різновиди дробів:

  • Звичайні
  • Десяткові
  • Змішані

приклад звичайних дробів:

Верхнє значення є чисельником, нижчим знаменником. Рисунок показує нам, що верхнє число ділиться на нижнє. Замість такого формату написання, коли рисочка знаходиться горизонтально, можна писати по-іншому. Можна ставити похилу лінію, наприклад:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десяткові дробиє найпопулярнішим різновидом дробів. Вони складаються з цілої частини та дробової, відокремлені комою.

Приклад десяткових дробів:

0,2, або 6,71 або 0,125

Складаються з цілого числа та дробової частини. Щоб дізнатися про значення цього дробу, потрібно скласти ціле число і дріб.

Приклад змішаних дробів:

Калькулятор дробів на нашому сайті здатний швидко в онлайн-режимі виконати будь-які математичні операції з дробами:

  • Додавання
  • Віднімання
  • Розмноження
  • Поділ

Для здійснення розрахунку потрібно ввести цифри у поля та вибрати дію. У дробів необхідно заповнити чисельник і знаменник, ціле число може писатися (якщо дріб звичайна). Не забудьте натиснути кнопку «рівно».

Зручно, що калькулятор одразу надає процес розв'язання прикладу з дробами, а не лише готову відповідь. Саме завдяки розгорнутому рішенню ви можете використовувати даний матеріал при вирішенні шкільних завдань та для кращого освоєння пройденого матеріалу.

Вам потрібно здійснити розрахунок прикладу:

Після введення показників у поля форми отримуємо:


Щоб зробити самостійний розрахунок, введіть дані у форму.

Калькулятор дробів

Введіть два дроби:
+ - * :

Супутні розділи.



Повернутись

×
Вступай до спільноти «shango.ru»!
ВКонтакті:
Я вже підписаний на співтовариство shango.ru