Эритропоэз и образование гемоглобина. Важность процесса гемопоэза и схема гемопоэза в жизни человека

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Лекция № 1

Тема: Патология системы крови.

План:

1. Современная схема кроветворения.

2. Нарушение объема циркулирующей крови.

3. Нарушения красной крови:

а) анемии

I. Система крови включает 4 основных компонента:

1. Кроветворный орган- костный мозг, все форменные элементы крови в нормальных условиях образуются в костном мозге, который работает очень интенсивно- за сутки вырабатывает 300 млд. клеток крови.

2. Периферическая кровь- состоит из форменных элементов: эритроцитов, лейкоцитов, тромбоцитов и плазмы. В норме состав крови очень постоянен и колеблется в ограниченных пределах.

3. Кроворазрушающие органы: печень, селезенка, где происходит разрушение форменных элементов.

4. Аппарат, регулирующий этот комплекс:

· Нервная система,

· Гормональная система- гемопоэтины- это особые вещества, регулирующие пролиферацию и созревание клеток крови.

· Иммунная система.

В каждом из этих компонентов могут быть нарушения, которые приводят к болезням системы крови.

Кроветворение начинается уже в организме человеческого эмбриона. Первые кровяные клетки образуются из клеток мезенхимы одновременно с эндотелиальными клетками кровеносных сосудов. На 5-й недели жизни эмбриона кроветворным органом становится печень. В конце эмбрионального развития главная роль кроветворения переходит к костному мозгу. У детей кроветворение происходит во всех костях, поэтому костный мозг у них красный. С 4-5 лет, в трубчатых костях он постепенно атрофируется и замещается жировой тканью, и называется желтый костный мозг. У взрослых людей кроветворение происходит только в красном костном мозге губчатого вещества плоских костей- грудины, ребер, позвонков.

Современная схема кроветворения

1 класс- полипотентных клеток предшественников- это стволовая кроветворная клетка, которая является родоначальником всех клеток крови. Она быстро пролиферирует под действием гормонов и трансформируется в клетки II-го класса.

2 класс- частично- детерминированных полипотентных клеток предшественников:

а) миелопоэза

б) лимфопоэза. Они пролиферируют и дифференцируются в клетки III-го класса

3 класс- унипотентных клеток предшественников:

а)- клетка предшественница В-лимфоцитов;

б)- клетка предшественница Т-лимфоцитов;

в)- клетка, образующая колонию в культуре;



г) – эритропоэтинчувствительная клетка;

д)- тромбоцитопоэтинчувствительная клетка;

Клетки первых 3-х классов морфологически не отличаются друг от друга, их различают по биохимическим, гистохимическим и иммунохимическим особенностям.

Дальнейший рост и развитие клеток регулируются поэтинами, среди которых выделяют- эритро, -лейко, - и тромбоцит поэтинами. Под их действием усиливается миелопоэз, и клетки предшественницы начинают трансформировать в областные формы миелоцитарного, эритроцитарного и тромбоцитарного ростков крови. Или стимулируется лимфопоэз, и часть клеток выходит из костного мозга, через кровь поподает в тимус, где под влиянием гормонов они трансформируются в Т- лимфоциты и обеспечивает клеточный иммунитет. Другая часть остается в костном мозге и дифференцируется в В- лимфоциты, которые специализированно направлены на выработку антотел, в дальнейшем они превращаются в плазматические клетки.

Моноциты в крови находятся транзитом, затем переходят в макрофаги, которые поступают в различные ткани: печень, легкие, селезенку.

Класс- морфологически различимых клеток.

Класс- созревающих клеток.

Класс – зрелых клеток.

Лимфоциты, моноциты, лейкоциты, эритроциты, тромбоциты, имеющие специализированные функции.

Процесс созревания клеток крови в костном мозге называется- гемопоэз, в норме у человека- нормобластический тип кроветворения.

На разных этапах гемопоэза, в результате патогенных воздействий, могут возникнуть нарушения созревания клеток крови и развиваются болезни системы крови, которые проявляются:

1. Нарушением объема циркулирующей крови.

2. Изменением количественного и качественного состава красной крови.

3. Нарушением состава белой крови.

I. При заболеваниях объема циркулирующей крови может увеличиваться или снижаться, при этом соотношении форменных элементов и плазмы может сохраняться или изменяться (в номе ОЦК- 5 литров, 3-4 л- циркулирует, а 1-1.5 л в депо, селезенке, печени). Плазма- 55-60%; ФЭК- 40-45%.



Увеличения объема циркулирующей крови называется- гиперволемия.

1. пропорционального повышения числа эитроцитов и количество плазмы. Это бывает при переливании большого количества цельной крови.

2. увеличения количества эритроцитов, что бывает при длительной гипоксии, (у жителей высокогорья), и при опухолевом разрастании красного ростка костного мозга.

3. увеличения только объема плазмы, что бывает при введении большого количества физиологического раствора или кровозаменителей, а также при недостаточности выделительной функции почек, что приводит к зедержке жидкости в организме и разбавлению крови.

Длительная гиперволемия может привести к перегрузке сердца и стать причиной сердечной недостаточности.

Уменьшение объема циркулирующей крови называется-гиповолемия. Она может возникать в результате:

1.пропорционального снижения количества эритроцитов и плазмы,

что бывает после кровопотери.

2. уменьшения количества эритроцитов, это бывает после

Кровопотери, но в более поздние сроки.

3. уменьшения объема плазмы. Такое сгущение крови бывает при

обширных ожогах, при повышении температуры, при холере,

которая сопрвождается неукротимой рвотой и поносом.

Гиповолемия может привести к гипоксии, образованию тромбов в сосудах, и к сердечной недостаточности.

III. Нарушение красной крови проявляется изменением числа и свойств эритроцитов и периферической крови, а также изменением качественного их состава.

В норме эритроциты образуется в красном костном мозге из эритробластов, которые перед выходом в кровь теряет ядро, и в крови оно всегда безъядерные, одинаковой формы (двояковогнутой), величины (7-8 нм) и окраски.

Но при некоторых заболеваниях, изменяется качество эритроцитов и в крови могут появиться патологические формы эритроцитов:

Пойкилоцитоз- эритроциты неправильной формы.

Анизоцитоз- эритроциты разные по размеру (микро- и -макроцитоз).

Полихроматофилия- разная окраска эритроцитов.

Гиперхромия- усиление окраски эритроцитов, за счет увеличения содержание гемоглобина.

Гипохромия- ослабление окраски эритроцитов.

В эритроцитах иногда могут обнаруживаться включения: базофильные зерна- тельца Жоли- остатки ядра, базофильные кольца- кольцаКабо- остатки ядерной оболочки, и базофильная зернистость.

О грубом нарушении кроветворения, протекающего по эмбриональному типу, свидетельствует появлении крупных незрелых, содержащих ядра мегалобластов, которые встречаются только в эмбриональном периоде кроветворения. Затем они теряют ядро и превращаются в эритроциты, но более крупные, чем в норме и называются мегалоциты , а тип кроветворения- мегалобластический.

В норме количество эритроцитов- 4,5- 5,5 млн., но при некоторых заболеваниях количество эритроцитов может увеличиваться, что называется полицитомия, она может проявляться в форме:

эритроцитоза - как компенсаторно- приспособительная реакция на различные патогенные воздействия, особенно на гипоксию.

эритремии- это заболевание опухолевой природы, характеризующееся разрастаниемкрасного костногомозга.

Анемия - патологический процесс, характеризующийся уменьшением количества эритроцитов и содержание гемоглобина в единице объема крови.

Причины анемий:

Кровопотеря.

Недостаточная эритропоэтическая функция костного мозга, возникающая в результате дефицита веществ необходимых, для нормального кроветворения (железа, витамина В12; фолиевой кислоты).

Повышенное кроворазрушение (гемолиз) эритроцитов.

КЛАССИФИКАЦИЯ АНЕМИЙ

I. В зависимости от этиологии и патогенеза:

1. анемии, вследствие кровопотери (постгеморрагические).

2. анемии, вследствие нарушенного кроветворения

а) железодефицитная

б) В12 (фолиево)- дефицитная

3. анемии, вследствие повышенного кроворазрушения эритроцитов (гемолитические).

II. По течению:

2.хронические

III. По происхождению:

1.первичные - обусловленные наследственной патологией,

2.вторичные - вследствие какого- либо заболевания.

1.гиперхромные - ЦП выше 1.

2. гипохромные - ЦП ниже 1.

3.нормохромные - ЦП равен 1.

V. По степени регенерации костного мозга:

1. гиперрегенераторная

2. гипорегенераторная

3. арегенераторная.

Постгеморрагические анемии могут иметь острое и хроническое течение.

Острая постгеморрагическая анемия возникает при массивных кровотечениях при ранении крупного сосуда, разрыве маточной трубы при внематочной беременности, из сосудов желудка при язвенной болезни (желудочное кровотечение), при разъединении легочной артерии при туберкулезе легких.

Смерть в таких случаях наступает прежде, чем происходит обескровливание органов, и при вскрытии трупов анемизация органов малозаметна.

Хроническая постгеморрагическая анемия возникает в тех случаях, когда происходит медленная, но длительная потеря крови. Это бывает при небольших кровотечениях из распадающейся опухоли, кровоточащей язвы желудка, из полости матки, геморроидальных вен кишечника, гемофилии.

Жалобы больного: слабость, быстрая утомляемость, сонливость, головные боли, головокружение, обмороки. Внешним проявлением анемии является бледность кожных покровов и слизистых.

При хронической кровопотере возникает гипоксии тканей и органов, которая приводит к развитию жировой дистрофии миокарда, печени, почек, дистрофическим изменениям в клетках головного мозга. Появляются множественные точечные кровоизлияния в серозных и слизистых оболочках, во внутренних органах.

Анемии, вследствие нарушения кровообразования представлены дефицитными анемиями, возникающими при недостатке железа, витамина В12 фолиевой кислоты.

Железодефицитная анемия - развиваются при:

1.Недостаточном поступлении железа с пищей (у детей).

2. Недостаточности железа в связи с повышенным запросами организма у беременных и кормящих матерей.

3. При некоторых инфекциях.

4. После резекции желудка или кишечника.

Анемии, вследствие недостатка железа - всегда гипохромные.

Классификация лейкозов

В зависимости от степени увеличения в крови общего числа лейкоцитов различают:

Лейкемический лейкоз (десятки и сотни тыс. лейкоцитов в 1 мкл крови);

Сублейкемический (15-25 тыс. в 1 мк);

Лейкопенический (число лейкоцитов уменьшено, но лейкозные клетки обнаруживаются);

Алейкемический (количество лейкоцитов не изменено, лейкозные клетки в крови отсутствуют).

В зависимости от степени дифференцировки (зрелости) опухолевых клеток крови и характера течения лейкозы делятся на:

Хронические.

Для острого лейкоза характерна пролиферация недифференцированных или малодифференцированных, бластных клеток. Злокачественность течения и молодой возраст. При остром лейкозе в периферической крови определяется большое количество бластных клеток (более 50%) и характерен лейкемический провал – резкое повышение числа бластов и единичные зрелые клетки, при отсутствии переходных созревающих форм.

Выделяют следующие формы лейкозов:

1.миелобластный;

2.лимфобластный;

3.монобластный.

Для всех форм острого лейкоза характерно: замещение костного мозга молодыми бластными клетками, инфильтрация ими селезенки, печени, лимфоузлов, почек, головного мозга, высокая температура, увеличение селезенки, печени, лимфатических узлов; геморрагический синдром- множественные кровоизлияния в коже, слизистых оболочках, головном мозге; некротические процессы в зеве, глотке, миндалинах, желудке, быстрое нарастание изменений картины крови; снижение защитных сил организма, в результате чего присоединяется вторичная инфекция.

Больные умирают от кровоизлияния в головной мозг, желудочно – кишечных кровотечений или от присоединившейся инфекции – сепсиса.

Для хронического лейкоза характерна пролиферация дифференцированных зрелых клеток, относительная доброкачественность течения и пожилой возраст.

Хронические лейкозы делят в зависимости от того, какой росток крови поражен:

1.Лейкозы миелоцитарного происхождения

2.Лейкозы лимфоцитарного происхождения

3.Лейкозы моноцитарного происхождения

Для хронических лейкозов характерно постепенное нарастание проявлений болезни. В крови нарастает количество нейтрофильных лейкоцитов или лимфоцитов, увеличение селезенки, печени, лимфоузлов, лейкозная инфильтрация кожи, головного мозга, почек, сосудов.

Костный мозг – сочный, серо – красный или серо – желтый, гноевидный. Кровь – серо – красная, органы малокровны. Селезенка – резко увеличена до 6 -8 кг, на разрезе темно – красного цвета, иногда видны ишемические инфаркты. Фолликулы атрофичны, может быть склероз и гемосидероз пульпы. Печень увеличена до 5 – 6 кг, поверхность ее гладкая, ткань на разрезе серо – коричневая, гепатоциты в состоянии жирной дистрофии. Лимфоузлы – увеличены, мягкие, серо- красного цвета, сочные. Доброкачественное течение сменяется злокачественным. В крови появляются бластные формы клеток, число которых быстро нарастает, также быстро возрастает общее количество лейкоцитов (до нескольких миллионов) в крови наступает бластный криз, который часто приводит к смерти больного, но чаще больные умирают от инфекции и осложнений.

Наибольшее значение среди парапротеинемических лейкозов имеет миеломная болезнь. В основе заболевания лежит разрастание опухолевых миеломных клеток, как в костном мозге, так и вне его, которые секретируют белки – паропротеины, обнаруживаемые в крови и моче больных.

Миеломная болезнь протекает по типу алейкемического лейкоза в двух формах:

1.Солетарной плазмоцитомы

2.Генерализованной плазмоцитомы

При солетарной форме плазмоцитома образует опухолевый узел, который располагается в плоских костях (ребра, череп) и позвоночнике, что ведет к деструкции костной ткани. В участках разрастания миеломных клеток костное вещество становится мелкозернистым, затем разжижается и кость подвергается «пазушному рассасыванию». Такие участки имеют округлую форму с четкими краями. Кости черепа, ребра, позвонки на рентгеновских снимках выглядят как бы пробитыми во многих местах. В связи с разрушением костей развивается гиперкальциемия, и появляются известковые метастазы в мышцах и органах. Кости становятся ломкими, чем объясняется частые переломы.

При генерализованной форме, помимо костного мозга и костей разрастания миеломных клеток возникают в селезенке, печени, лифоузлах, почках и легких. Развивается амилоидоз, парапротеиноз миокарда, легких, парапротеинемический нефроз. В основе нефроза лежит засорение почек белком – парапротеином Бенс – Джонса, что приводит к склерозу мозгового, а затем коркового вещества и сморщиванию почек.

В связи с накоплением парапротеинов в крови развивается синдром повышенной вязкости крови и парапротеинемическая кома. Из -за резкого угнетения функции иммунной системы часто присоединяется вторичная инфекция (пневмония, пиелонефрит), от которой больной миеломной болезнью и умирает.

Нарушение автоматизма.

Автоматизм - способность органов и клеток к ритмичной деятельности под воздействием импульсов, зарождающихся самих этих клетках.

Система автоматизма сердца состоит из совокупности узлов:

Синусно-предсердный

Предсердно-желудочковый

Пучок Гиса

Сердечные миоциты - волокна Пуркинье.

В норме водителем ритма является синусно-предсердный узел, который генерирует импульсы с частотой 70-80 ударов в минуту, создавая синусовый ритм. При повышении его активности частота сердечных сокращений увеличивается до 120­

160 ударов в мин. и возникает синусовая тахикардия. Причины:

1. Физиологические:

Волнение, страх, радость

Действие кофеина, алкоголя.

2.Патологические:

Лихорадка

Неврозы сердца

Гиперфункция щитовидной железы

Ревмокардит

Туберкулез.

Проявляется сердцебиением и повышенной утомляемостью. Длительная тахикардия может вызвать переутомление сердечной мышцы и привести к

сердечной недостаточности.

При уменьшении активности синусо-предсердного узла частота сердечных сокращений урезается до 40 ударов в минуту и возникает синусовая брадикардия, которая может наблюдаться в норме у спортсменов и при повышении тонуса блуждающего нерва, а также:

При опухолях мозга

Менингитах

Инсульте

Повышении внутричерепного давления.

существенных нарушений кровообращения не вызывает.

Если в силу каких-либо причин активность синусно-предсердного узла подавляется, то водителем ритма становится предсердно-желудочковый узел, который генерирует импульсы с частотой 40-60 ударов в мин. и возникает атриовентрикулярный ритм, при подавлении его активности водителями ритма становятся сердечные проводящие миоциты, возникает идиовентрикулярный ритм с частотой 10-30 сокращений в минуту. Эти ритмы могут стать причиной сердечной недостаточности, т.К паузы между сокращениями продолжительны, нарушается коронарное кровообращение.

Нарушение возбудимости.

Возбудимость - это способность специализированной ткани отвечать на

раздражение.

Нарушение возбудимости проявляется:

Экстрасистола - внеочередное сокращение сердца, вызванное внеочереднымM импульсом.

Экстрасистолия - форма нарушения ритма сердца, характеризующаяся появлением экстрасистол. Субъективно ощущается, как перебои в работе сердца.

Причины:

Недостаточность коронарного кровообращения.

Воспалительные процессы в нервно-мышечной системе сердца.

Действие ядов, токсинов.

Заболевания желудка и печени, рефлекторно.

Пароксизмальная тахикардия - аритмия в виде внезапно начинающихся и внезапно заканчивающихся приступов тахикардии.

Причины:

Инфаркт миокарда

Стеноз митрального клапана

Заболевание желчного пузыря, рефлекторно.

Больные очень тяжело переносят начало и конец приступа, жалуются на сердцебиение, боли в сердце, головокружение и обмороки. Приступ может длиться минуты, часы и редко - ДНИ, и повторяются с различными промежутками.

Нарушения возбудимости опасны тем, что могут перейти в очень тяжелую форму аритмии - фибрилляцию желудочков.

Нарушение проводимости.

Проводимость - это способность проводящей системы проводить возбуждение по сердцу.

Проявляется:

Блокада сердца - нарушение проведения импульсов по проводящей системе сердца.

Инфаркт в области, проводящей системы.

Воспаление

Образование рубца, на месте инфаркта.

Различают неполную и полную блокады.

Неполная блокада - это увеличение времени проведения возбуждения.

Полная блокада бывает:

а) поперечная, наступает при полном перерыве проводимости между предсердиями и желудочками в области пучка Гиса, при этом предсердия и желудочки сокращаются независимо друг от друга, ритм их сокращений не совпадает.

б) продольная, возникает при перерыве проводимости по одной из ножек пучка Гиса, при этом левый желудочек сокращается, независим ю от правого в своем ритме.

Смешанные аритмии

При Одновременном нарушении возбудимости и проводимости миокарда возникают смешанные аритмии.

Трепетание предсердий - это очень частые, но правильные ритмичные и координированные сокращения предсердий до 280-300 ударов в мин..

Мерцание предсердий - это нескоординированные беспорядочные сокращения отдельных участков предсердий до 300- 600 ударов в мин., которое переходит в фибрилляцию желудочков, очень опасную для жизни, Т.к. кровь из желудочков не поступает в аорту и легочной ствол, кровообращение прекращается и больной умирает от острой сердечной недостаточности.

Причины:

Пороки сердца

Кардиосклероз

Инфаркт миокарда

Тиреотоксикоз

Интоксикация.

Нарушение сократимости сердца встречается редко, в результате нарушения коронарного кровообращения.

II. Воспалительные процессы в сердце возникают в результате различных инфекций и интоксикации, и не является самостоятельным заболеванием, а осложняют другие болезни.

Воспалительный процесс может поражать одну оболочку сердца или всю его стенку, что называется панкардит.

Эндокардит - воспаление эндокарда, Т.е. внутренней оболочки сердца.

Инфекционные заболевания (сепсис, скарлатина, тиф, ангина, ревматизм);

Аллергические реакции (ревматизм, системная красная волчанка);

Интоксикация (уремия при ХПН);

Истощение.

Механизм развития эндокардита связан с инфекционным фактором, Т.К в результате непосредственного оседания микробов на внутреннюю оболочку сердца развивается воспаление, придается значение и реактивности организма. Воспаление эндокарда может возникнуть в любом его участке, поэтому различают: клапанный, хоральный, пристеночный.

Наибольшее клиническое значение имеет клапанный эндокардит, который чаще поражает митральный и аортальный клапаны, реже - клапаны правого сердца.

Как любое. воспаление эндокардит имеет стадии: альтерации, экссудации,

пролиферации. .

Начинается обычно эндокардит с повреждения эндотелия, покрывающего

эндокард.

Альтерации подвергается вся толща клапана с образованием язвы или полное разрушение клапана (язвенный эндокардит).

Деструктивные процессы сопровождаются образованием на поверх ости клапана тромботических масс (тромбоэндокардит) в виде бородавок или полипов (бородавчатый или полинозно-язвенный эндокардит).

Стадия экссудации представлена пропитыванием ткани клапана плазмой крови, клеточной инфильтрацией, что сопровождается набуханием и утолщением клапана.

Продуктивные изменения ведут к быстрому развитию склероза, деформации и срастанию створок клапана, что приводит к пор оку сердца.

Эндокардит резко осложняет течение основного заболевания, Т.К страдает функция сердца.

Осложнение - тромбоэмболия.

Исход - пороки сердца.

Миокардит - воспаление мышцы сердца.

Возникает обычно как осложнение различных заболеваний.

1. инфекции:

Вирусная (корь, полиомиелит, мононуклеоз, ОРЗ);

Бактериальная (дифтерия, скарлатина, туберкулез, сепсис);

Риккетсии (сыпной тиф).

2. аллергии (ревматизм).

Миокардит развивается в результате распространения инфекции гематогенным путем, Т.е. с током крови.

Различают:

Альтеративный;

Экссудативный;

Продуктивный миокардит, в зависимости от преобладания той или иной

фазы воспаления.

Проявляется поражением того или иного участка миокарда, или в тяжелых случаях всех отделов сердца, при этом сердце увеличено в размерах, дряблое,

полости растянуты, с тромботическими наложениями; мышца на разрезе пестрая. Течение миокардита может быть острое и хроническое.

Исход зависит от характера заболевания, которое он осложняет, и от степени повреждения сердечной мышцы.

В одних случаях может пройти без следа.

3кссудативный и продуктивный миокардиты могут привести к острой сердечной недостаточности.

Хронический миокардит приводит к диффузному кардиосклерозу и к хронической сердечной недостаточности.

Перикардит - воспаление наружной оболочки сердца, как висцерального, так и париетального ее листков.

Также является осложнением других заболеваний

1. инфекция (стрептококк, стафилококк, tbs, кишечная палочка);

2. аллергические реакции (введение сывороток, вакцин);

3. интоксикация (уремия при ОПН);

4. травмы, некроз.

Протекает в двух формах: .

1. Острый экссудативный перикардит:

Серозный

Фибринозный

Гнойный

Геморрагический

Смешанный.

2. Хронический слипчивый перикардит.

Серозный перикардит проявляется накоплением в полости перикарда серозного экссудата.

Исход благоприятный - экссудат рассасывается.

Фибринозный перикардит осложняет инфаркт миокарда, туберкулез, ревматизм. При этом в полости перикарда накапливается фибринозный экссудат, который окутывает сердце, перикард становится тусклым, шероховатым, на его поверхности появляются нити фибрина, напоминающие волосы, поэтому такое

сердце называют «волосатым». .

Исход: экссудат организуется, Т.е. прорастает соединительной тканью, и между листками перикарда образуются плотные спайки.

Гнойный перикардит является осложнением воспалительных процессов рядом лежащих органов - легких, плевры, средостения, лимфоузлов.

Протекает тяжело и может закончиться летально.

Геморрагический перикардит возникает при метастазах рака в сердце. Быстрое образование выпота может привести к тампонаде сердца. Хронический слипчивый перикардит проявляется экссудативно-продуктивным воспалением, развивается при туберкулезе, ревматизме.

При этом экссудат не рассасывается, а подвергается организации. Между листками перикарда образуются спайки, затем полость зарастает и склерозируется, сдавливая сердце. Часто в рубцовую ткань откладывается известь, и такое сердце называется «панцирное».

Исход: развивается застойный цирроз печени и хроническая сердечная недостаточность, смерть.

3. Пороки сердца - это стойкие отклонения в строении сердца, нарушающие его функцию.

Различают приобретенные и врожденные пороки.

Приобретенные пороки сердца характеризуются поражением клапанного аппарата и магистральных сосудов и возникают в результате заболеваний сердца после рождения.

Причины: ревматизм; атеросклероз; сифилис; бактериальный эндокардит; травма, бруцеллез;

Воспалительные процессы в клапанном аппарате сердца вызывают разрушение и деформацию створок или разрастание в них соединительной ткани, петрификацию и срастание створок друг с другом. Если в результате таких процессов клапаны перестают полностью закрывать отверстие, развивается недостаточность клапанов . Сращение створок клапанов ведет к сужению отверстий - стенозу . Чаще поражаются митральный и аортальный клапаны. При сочетании недостаточности клапанов и стеноза отверстия возникает

комбинированный порок сердца. ­

В результате поражения клапанов возникает нарушение гемодинамики.

При недостаточности митрального клапана во время систолы желудочка, часть крови возвращается в левое предсердие, а в аорту поступает крови меньше, таким образом, при диастоле левое сердце переполняется кровью, развивается компенсаторная гипертрофия стенки левого желудочка.

При стенозе отверстия митрального клапана, предсердно-желудочковое отверстие имеет вид узкой щели, напоминающей пуговичную петлю, при этом левый желудочек получает недостаточное количество крови, левое предсердие переполняется кровью, в результате возникает застой в крови в малом -круге кровообращения. Левое предсердие расширяется, стенка его утолщается,

эндокард склерозируется, становится белесоватым. Чтобы преодолеть повышенное кровяное давление в малом круге, сила сокращения стенки правого желудочка повышается, и мышца сердца гипертрофируется, полость желудочка расширяется.

Порок аортальных клапанов занимает, второе место по частоте. Заслонки полулунных клапанов срастаются между собой, утолщаются, в них откладывается известь, что приводит в одних случаях к преобладанию недостаточности клапанов, а в других - к стенозу аортального отверстия.

При недостаточности аортального клапан часть крови, поступающей в аорту во время систолы, возвращается обратно в желудочек во время диастолы. Поэтому диастолическое давление в артериях может падать дО О, что является характерным признаком аортальных пороков. Сердце при этом пороке подвергается значительной работе, что приводит к значительной гипертрофии левого желудочка (700-900г), такое сердце называется «бычьим». Эндокард левого желудочка утолщен и склерозирован.

Стеноз аортального клапана встречается редко и проявляется застоем крови в крупных венах. Если порок клапанов не ликвидируется хирургически, то развивается декомпенсация сердца, которая ведет к сердечно-сосудистой недостаточности.

Причины декомпенсации:

Обострение ревматического процесса;

Случайная инфекция;

Психическая травма.

Сердце становится дряблым, полости расширяются, в ушках его образуются тромбы. В мышечных волокнах - белковая и жировая дистрофия, в строме - очаги воспаления. В органах возникает венозный застой, появляется цианоз, отеки, водянка полостей. Сердечно - сосудистая недостаточность - частая причина смерти больных, страдающих пороком сердца.

Врожденные пороки возникают в результате нарушения формирования сердца

и сосудов в первую половину внутриутробного развития плода.

Причины:

Вирусная инфекция матери, ионизирующее излучение, сифилис,

алкоголизм родителей, наследственные заболевания.

Чаще всего встречаются пороки:

1. Незаращение овального отверстия в межпредсердной перегородке.

2. Незаращение артериального протока.

3. Дефект межжелудочковой перегородки.

4. Тетрада Фалло - сложный комбинированный порок (40-50%)

Дефект межжелудочковой перегородки

Сужение легочной артерии

Смещение устья аорты вправо

Гипертрофия правого желудочка.

Эти порки ведут к тяжелым расстройствам кровообращения, происходит смешение артериальной и венозной крови, резкие перегрузки отделов сердца, ведущие к его гипертрофии и последующей декомпенсации

1. Атеросклероз - это (от гр.- athere - кащица; sclerosis - уплотнение)

хроническое заболевание, возникающее в результате нарушения жирового и белкового обмена, характеризующееся поражением артерий эластического и мышечно-эластического типа в виде очагового отложения в интиме липидов и белков, вокруг которых разрастается соединительная ткань и образуется атеросклеротическая бляшка.

Этиология.

В развитии атеросклероза большое значение имеют предрасполагающие факторы:

1. гиперхолистеринемия.

2. метаболический фактор - нарушение жирового и белкового обменов

3. гормональный фактор, обусловленный заболеванием эндокринных желез

(сахарный диабет, гипотиреоз, ожирение)

4. артериальная гипертония.

5. сосудистый фактор - состояние сосудистой стенки.

6. стрессовые и конфликтные ситуации, ведущие к психоэмоциональному

перенапряжению

7. наследственно - конституциональное предрасположение.

Сущность процесса состоит в том, в интиме артерий крупного и среднего калибра появляются кашицеобразный жиробелковый детрит и очаговое разрастание соединительной ткани, что приводит к формированию атеросклеротической бляшки, суживающей просвет сосуда. Это связано с психо- ­эмоциональным перенапряжением, которое вызывает нарушения деятельности нервной и эндокринной систем, что приводит к изменению обмена веществ, состава крови и свойств стенки сосудов.

Стадии атеросклероза.

1 Долипидная. - характеризуется нарушением метаболизма и повреждением интимы продуктами нарушенного метаболизма.,

2. Липопдоз - отмечается очаговая инфильтрация интимы липидами и белками, что ведет к образованию жировых пятен и полос. Вокруг них располагаются макрофаги.

3. Липосклероз - вокруг жиробелковых масс разрастается соединительная ткань, последующее ее созревание ведет к формированию фиброзной бляшки.

4. Атероматоз - центpальная часть бляшки распадается и образуется аморфная масса, состоящая из жиров, белков, кристаллов холестерина, остатков эластических и коллагеновых волокон. Интима сосуда над бляшкой склерозируется и гиалинизируится, образуя покрышку бляшки. Атероматозная бляшка выступает в просвет сосуда и суживает его. Вокруг бляшки формируются массивные разрастания соединительной ткани.

5. Изъязвление - в дальнейшем покрышка бляшки отрывается и образуется атероматозная язва. Детрит выпадает в просвет сосуда и может стать источником эмболии. Края язвы подрытые, неровные, дНО образовано мышечным слоем стенки сосуда. На поверхности язвы образуются тромбы, которые могут быть пристеночными или обтурирующими.

6. Атерокальциноз - завершающая стадия, связана с отложением извести в атероматозные массы. Бляшка становится плотной, хрупкой и еще больше суживает просвет сосуда.

Атеросклероз имеет волнообразное течение, которое состоит из фаз:

а) прогрессирование

б) стабилизации

в) регрессирования

При прогрессировании заболевания нарастает липоидоз интимы сосудов и увеличивается количество жировых пятен и полос, при стихании болезни вокруг бляшек усиливается разрастание соединительной ткани и отложение в них солей кальция. Поэтому бляшки многослойны, состоят из чередующихся прослоек соединительной ткани с участием нерассосавшихся липидов в глубоких и более свежего выпадения липидов в поверхностных слоях покрышки.

П. Гипертоническая болезнь.

Хроническое заболевание, проявляющееся длительным и стойким повышением артериального давления.

Описана, как самостоятельное заболевание неврогенной природы. Отечественный клиницист Г.Ф. Ланг назвал ее «болезнью неотреогированных эмоций», болезнь конфликтных ситуаций.

В возникновении гипертонической болезни большую роль играет психоэмоциональное пере напряжение, которое ведет к нарушениям высшей нервной деятельности типа невроза и расстройству регуляции сосудистого тонуса, а также наследственный фактор и избыток соли в пище.

В течении болезни выделяют 3 стадии:

1 СТ. транзиторная - характеризуется периодическими подъемами артериального давления, которые возникают в результате спазма артериол во время конфликта. При этом стенка сосуда испытывает гипоксию, вызывающую в ней дистрофические изменения. Спазм сменяется параличом артериол, кровь в них застаивается, и гипоксия стенок сохраняется, в результате чего повышается их проницаемость. Стенки артериол пропитываются плазмой крови. После нормализации артериального давления плазма крови из стенок артериол удаляется, но остаются белки крови в стенках. В результате повышения нагрузки на сердце при подъемах артериального давления развивается компенсаторная гипертрофия левого желудочк

Кроветворение - гемопоэз - это процесс развития кле-точных элементов, который приводит к образованию зрелых клеток периферической крови.

Процесс кроветворения можно изобразить в виде схемы, в которой клетки расположены в определенной последовательности, осно-ванной на степени их созревания. Согласно современным представлениям о кроветворении все клетки крови проис-ходят из одной, которая дает начало трем росткам кроветворения: лейкоцитарному, эритроцитарному и тромбоцитарному.

В схеме кроветворения клетки крови разделены на 6 классов. Первые четыре класса составляют клетки-предшественники, пятый класс - созревающие клетки и шестой - зрелые.

Класс I.- Класс полипотентных клеток — предшественников

Представлен стволовыми клетками, количе-ство которых в кроветворной ткани составляет доли процента. Эти клетки способны к неограниченному само поддержанию в течение длительного времени (больше, чем продолжительность жизни человека). Стволовые клетки полипотентные, т. е. из них развиваются все ростки кро-ветворения. Большая часть стволовых клеток находится в состоянии покоя и только около 10% из них делятся. При делении образуются два типа клеток - стволовые (само поддержание) и клетки, способные к дальнейшему разви-тию (дифференцировке). Последние составляют следу-ющий класс.

II.Класс частично детерминированных полипотентных клеток предшественников

Представлен ограниченно полипотентными клетками, т. е. клетками, которые способны дать начало либо лимфопоэзу (образованию клеток лимфоидного ря-да), либо миелопоэзу (образованию клеток миелоидного ряда). В отличие от стволовых клеток они способны лишь к частичному само поддержанию.

Класс III. Класс унипотентных клеток — предшественников

В процессе дальнейшей дифференцировки образуются клетки, называемые унипотентными предше-ственниками. Они дают начало одному строго определен-ному ряду клеток: лимфоцитам, моноцитам и гранулоцитам (лейкоцитам, имеющим в цитоплазме зернистость), эритроцитам и тромбоцитам.

В костном мозге обнаруживается две категории кле-ток-предшественников лимфоцитов, из которых образуют-ся. В — и Т-лимфоциты. В-лимфоциты созревают в костном мозге, а затем заносятся кровотоком в лимфоидные органы. Из предшественников В-лимфоцитов образуются плазмоциты. Часть лимфоцитов в эмбриональном периоде поступает через кровь в вилочковую железу (thymus) и обозначается как Т-лимфоциты. В дальнейшем они диф-ференцируются в лимфоциты.

Клетки этого класса также не способны к длительному само поддержанию, но способные к размножению и дифференцировке.

Все клетки трех классов морфологически не дифференцируемые клетки

Класс IV.Морфологически распознаваемых пролиферирующих клеток

Представлен.молодыми, способными к делению клетками, образующими отдельные ряды миело и лимфопоэза. Все элементы этого ряда имеют окончание «бласт»: плазмобласт, лимфобласт, монобласт, миелобласт, эритробласт, мегакариобласт. Из клеток этого клас-са в процессе деления образуются клетки следующего класса.

Класс V.Класс созревающих клеток

Представлен созревающими клетками, назва-ния которых имеют общее окончание «цит». Все элементы этого класса расположены в схеме по вертикали и определенной последовательности, обусловленной стадией их развития.

Названия клеток первой стадии начинаются пристав-кой «про» (перед): проплазмоцит, пролимфоцит, промоноцит, промиелоцит, пронормоцит, промегакариоцит. Эле-менты гранулоцитарного ряда проходят еще две стадии в процессе развития: миелоцит и метамиелоцит («мета» означает после). Метамиелоцит, находящийся на схеме ниже миелоцита, представляет переход от миелоцита к зрелым гранулоцитам. К клеткам этого класса относят также и палочкоядерные гранулоциты. Пронормоциты в процессе эритропоэза проходят стадии нормоцитов, кото-рые, в зависимости от степени насыщения гемоглобином цитоплазмы, имеют добавочные определения: нормоцит базофильный, нормоцит полихроматофильный и нормоцит оксифильный. Из них образуются ретикулоциты - незрелые эритроциты с остатками ядерной субстанции.

Класс VI. Класс зрелых клеток

Представлен зрелыми клетками, неспособ-ными к дальнейшей дифференцировке с ограниченным жизненным циклом. К ним относятся: плазмоцит, лимфо-цит, моноцит, сегментоядерные гранулоциты (эозинофил, базофил, нейтрофил), эритроцит, тромбоцит.

Зрелые клетки поступают из костного мозга в перифе-рическую кровь.

Показателем, характеризующим состояние костномозгового кроветворения, является миелограмма – количественное соотношение клеток разной степени зрелости всех ростков кроветворения

Дата публикования: 2014-11-02; Прочитано: 5647 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

  • 1. Анемии
  • 2. Гемобластозы
  • 3. Тромбоцитопатии
  • Болезни крови развиваются вследствие нарушения регуляции кроветворения и кроверазрушения, что проявляется изменениями в периферической крови. Таким образом, по состоянию показателей периферической крови можно сказать о нарушении функционирования либо красного ростка, либо белого ростка. При изменении красного ростка наблюдается уменьшение или увеличение содержания гемоглобина и количества эритроцитов, нарушение формы эритроцитов, нарушение синтеза гемоглобина.

    Изменения белого ростка проявляются уменьшением или увеличением содержания лейкоцитов или тромбоцитов. Но анализ периферической крови не всегда является достоверным и реально отражающим патологический процесс.

    Наиболее полное представление о состоянии кроветворной системы дает исследование пунктата костного мозга (грудины) и трепанобиопсии (гребень подвздошной кости).

    Все болезни крови делятся на анемии, гемобластозы, тромбоцитопении и тромбоцитопатии.

    Анемии – это группа заболеваний, характеризующаяся уменьшением общего количества гемоглобина. В периферической крови могут появляться эритроциты различной величины (пойкилоцитоз), формы (анизоцитоз), разной степени окраски (гипохромия, гиперхромия), включения (базофильные зерна, или тельца Жолли, базофильные кольца, или кольца Кабо).

    А по костному пунктату судят о форме анемии по состоянию эритропоэза (гипер– или гипорегенерация) и по типу эритропоэза (эритробластический, нормобластический и мегалобластический).

    Причины формирования анемии различные: кровопотеря, усиление кроверазрушения, недостаточная эритропоэтическая функция.

    Классификация анемий

    По этиологии: постгеморрагические, гемолитические и вследствие нарушения кровообразования.

    По характеру течения: хронические и острые. В соответствии с состоянием костного мозга: регенераторная, гипорегенераторная, гипопластическая, апластическая и диспластическая.

    Анемии вследствие кровопотери могут быть хроническими и острыми.

    Патологическая анатомия острой постгеморрагической анемии имеет следующий вид. Клетки костного мозга плоских и эпифизов трубчатых костей усиленно пролиферируют, костный мозг становится сочным и ярким. Жировой (желтый) костный мозг трубчатых костей также становится красным, богатым клетками эритропоэтического и миелоидного ряда.

    Появляются очаги внекостномозгового (экстрамедуллярного) кроветворения в селезенке, лимфатических узлах, тимусе, периваскулярной ткани, клетчатке ворот почек, слизистых и серозных оболочках, коже. При хронической постгеморрагической анемии кожные покровы и внутренние органы бледные.

    Костный мозг плоских костей обычного вида. В костном мозге трубчатых костей наблюдаются выраженные в той или иной степени явления регенерации и превращение жирового костного мозга в красный. Имеет место хроническая гипоксия тканей и органов, что объясняет развитие жировой дистрофии миокарда, печени, почек, дистрофические изменения в клетках головного мозга.

    Появляются множественные точечные кровоизлияния в серозных и слизистых оболочках, во внутренних органах.

    Дефицитные анемии (вследствие нарушения кровообразования), возникают в результате недостатка железа (железодефицитная), витамина В12 и фолиевой кислоты (В12 – дефицитная анемия), гипо– и апластические анемии. Железодефицитная анемия гипохромная.

    В12 – дефицитная анемия мегалобластическая гиперхромная. Кожные покровы при этом бледные с лимонно-желтым оттенком, склеры желтые. На коже, слизистых и серозных оболочках образуются кровоизлияния. Отмечается гемосидероз внутренних органов, особенно селезенки, печени, почек.

    Слизистая желудка истончена, склерозирована, гладкая и лишена складок. Железы уменьшены, их эпителий атрофичен, сохранны лишь главные клетки. Лимфоидные фолликулы атрофичны. В слизистой кишечника также присутствуют атрофические процессы. Костный мозг плоских костей малиново-красный, сочный. В трубчатых костях костный мозг имеет вид малинового желе. В гиперплазированном костном мозге преобладают незрелые формы эритропоэза – эритробласты, которые находятся и в периферической крови.

    В спинном мозге визуализируется распад миелина и осевых цилиндров. Иногда в спинном мозге появляются очаги ишемии и размягчения.

    Гипо– и апластические анемии являются следствием глубокого изменения кроветворения, особенно молодых элементов гемопоэза.

    Происходит угнетение вплоть до подавления гемопоэза. Если происходит лишь угнетение, то в пунктате из грудины можно найти молодые клеточные формы эритро– и миелопоэтического ряда. При подавлении гемопоэза костный мозг опустошается и замещается жировым мозгом, таким образом развивается панмиелофтиз. Возникают множественные кровоизлияния в слизистых и серозных оболочках, явления общего гемосидероза, жировая дистрофия миокарда, печени, почек, язвенно-некротические процессы в желудочно-кишечном тракте.

    Гемолитические анемии возникают в результате преобладания процессов кроверазрушения над кровообразованием. Классифицируются на анемии с внутрисосудистым и внесосудистым гемолизом. Анемии с внесосудистым гемолизом делятся на эритроцитопатии, эритроцитоферментопатии и гемиоглобинопатии.

    Патологоанатомическая картина выглядит следующим образом. Возникают общий гемосидероз и надпеченочная желтуха, а также гемоглобинурийный нефроз. Костный мозг гиперплазирован, розово-красного цвета, сочный.

    В селезенке, лимфатических узлах, рыхлой соединительной ткани возникают очаги экстрамедулярного кроветворения.

    2. Гемобластозы

    Гемобластозы – опухоли системы крови – делятся на две большие группы: лейкозы (системные опухолевые заболевания кроветворной ткани) и лимфомы (регионарные опухолевые заболевания кроветворной или лимфатической ткани).

    Классификация опухолей кроветворной и лимфатической ткани

    Существует следующая классификация.

    Лейкозы (системные опухолевые заболевания кроветворной ткани):

    1) острые лейкозы – недифференцированный, миелобластный, лимфобластный, плазмобластный, монобластный, эритромиелобластный и мегакариобластный;

    2) хронические лейкозы:

    а) миелоцитарного происхождения – миелоидный, эритромиелоидный лейкоз, эритремия, истинная полицитемия;

    б) лимфоцитарного происхождения – лимфолейкоз, лимфоматоз кожи, парапротеинемические лейкозы, миеломная болезнь, первичная макроглобулинемия, болезнь тяжелых цепей;

    в) моноцитарного ряда – моноцитарный лейкоз и гистеоцитоз.

    Лимфомы (регионарные опухолевые заболевания кроветворной или лимфатической ткани):

    1) лимфосаркома – лимфоцитарная, пролимфоцитарная, лимфобластная, иммунобластная, лимфоплазмоцитарная, африканская;

    2) грибовидный микоз;

    3) болезнь Сезари;

    4) ретикулосаркома;

    5) лимфогрануломатоз (болезнь Ходжкина).

    Лейкоз (лейкемия) – это прогрессирующее разрастание лейкозных клеток.

    Сначала они разрастаются в органах кроветворения, а затем гематогенно забрасываются в другие органы и ткани, вызывая там лейкозные инфильтраты. Инфильтраты могут быть диффузными (увеличивают пораженный орган) и очаговыми (образуются опухолевые узлы, которые прорастают в капсулу органа и окружающие ткани). Считается, что лейкозы – это полиэтиологическое заболевание, т. е. его формированию благоприятствует ряд факторов.

    Выделяют три основных: вирусы, ионизирующее излучение и химические вещества. Роль вирусов в возникновении лейкозов доказана научными исследованиями. Так действуют ретровирусы, вирус Эпштейна-Барра. Ионизирующее излучение способно вызывать радиационные и лучевые лейкозы, причем частота их мутаций зависит от дозы ионизирующей радиации. Среди химических веществ наибольшее значение имеют дибензантрацен, бензопирен, метилхолантрен и др.

    Острый лейкоз проявляется появлением в костном мозге бластных клеток, а в периферической крови – лейкимический провал (резкое повышение числа бластов и единичные зрелые элементы при отсутствии переходных форм).

    Общим проявлением для острых лейкозов является наличие увеличенных печени и селезенки, костный мозг трубчатых и плоских костей красный, сочный, иногда с сероватым оттенком. Могут иметь место кровоизлияния различного характера в слизистые и серозные оболочки, органы и ткани, которые осложняются язвенно-некротическими процессами и сепсисом.

    Более точную форму лейкоза определяют по цитохимическим характеристикам и морфологии клеток.

    Хронические лейкозы – это такие формы лейкозов, при которых морфологическим субстратом опухолевых разрастаний являются более зрелые, чем бластные, клетки крови, достигшие определенного уровня дифференцировки. В основе хронического лимфолейкоза (ХЛЛ) лежат лимфоидная гиперплазия и метаплазия кроветворных органов (лимфатических узлов, селезенки, костного мозга), сопровождающиеся лимфоидной инфильтрацией других органов и тканей.

    Опухолевая природа ХЛЛ не вызывает сомнений, но это доброкачественная форма опухоли. Чаще больной – мужчина после 40 лет. В пунктате костного мозга обнаруживается гиперплазия лимфоидных элементов, увеличиваются незрелые формы и тельца Боткина-Гумпрехта.

    Различают основные клинико-гематологические варианты:

    1) классический (генерализованное увеличение лимфоузлов, селезенки, печени, изменения лейкемической крови);

    2) генерализованная гиперплазия периферических лимфатических узлов;

    3) вариант с избирательным увеличением одной из групп лимфоузлов;

    4) спленомегалический (преимущественно увеличивается селезенка);

    5) кожный вариант – в виде лимфом или эритродермии;

    6) костномозговой – проявляется только лимфоидной метаплазией костного мозга.

    Хронический миелолейкоз – системное заболевание крови, сопровождающееся миелоидной гиперплазией костного мозга за счет незрелых гранулоцитов, созревание которых заторможено, миелоидной метаплазией селезенки (темно-красного цвета с очагами ишемии, склероз и гемосидероз пульпы), печени (серо-коричневая с лейкозными инфильтрациями по ходу синусов, жировая дистрофия, гемосидероз), лимфатических узлов (серовато-красного цвета с лейкозной инфильтрацией) и других органов.

    Костный мозг плоских костей, эпифизов и диафизов трубчатых костей – серо-красный или серо-желтый гноевидный.

    Лимфомы – это регионарные опухолевые заболевания кроветворной и лимфатической ткани. Лимфосаркома – это злокачественная опухоль из клеток лимфоцитарного ряда. Лимфатические узлы плотные, на разрезе серо-розовые с участками некроза и кровоизлияний. Процесс метастазирует в различные органы и ткани. Грибовидный микоз – это относительно доброкачественная Т-клеточная лимфома кожи. В опухолевом инфильтрате находятся плазматические клетки, гистиоциты, эозинофилы, фибробласты.

    Узлы мягкой консистенции, выступают над поверхностью кожи, напоминают форму гриба, легко изъязвимы и имеют синюю окраску. При болезни Сезари в опухолевом инфильтрате кожи, костном мозге и крови находят атипичные мононуклеарные клетки с серповидными ядрами – клетки Сезари.

    Ретикулосаркома – это злокачественная опухоль из ретикулярных клеток и гистиоцитов.

    Лимфогрануломатоз – первичное опухолевое заболевание лимфатической системы. Процесс возникает уницентрично, распространение происходит с помощью метастазирования. В 1832 г.

    Схема кроветворения. Органы кроветворения

    А. И. Ходжкин исследовал и описал 7 пациентов с поражением лимфатических узлов и селезенки. Заболевание получило название «болезнь Ходжкина», что было предложено С. Уилксом в 1865 г. Этиология окончательно не ясна. Некоторые полагают, что лимфогрануломатоз связан с вирусом Эпштейна-Барра. Генез клеток (Рид-Березовского-Штернера), которые патогномоничны для лимфогрануломатоза, не ясен.

    Это многоядерные клетки, несущие на своей поверхности антигены, аналогичные лимфоидному ростку и моноцитоидному ростку. Патологическая анатомия: за субстрат лимфогрануломатоза принимается полиморфно-клеточная гранулома, которая состоит из лимфоцитов, ретикулярных клеток, нейтрофилов, эозинофилов, плазматических клеток и фиброзной ткани. Лимфогрануломатозная ткань изначально формируется в отдельные мелкие узелки, расположенные внутри лимфатического узла.

    В дальнейшем прогрессируя, она вытесняет нормальную ткань узла и изменяет его рисунок. Гистологическая особенность лимфогрануломы представлена гигантскими клетками Березовского-Штернберга. Это крупные клетки, диаметром 25 мкм и больше (до 80 мкм), которые содержат 2 и более круглых или овальных ядра, часто находятся рядом, что создает впечатление зеркального изображения. Внутриядерный хроматин нежный, равномерно расположенный, ядрышко четкое, крупное, в большинстве случаев эозинофильное.

    Клинико-морфологическая классификация приведена в таблице 1.

    Таблица 1

    Клинико-морфологическая классификация


    При прогрессировании заболевания из очагов поражения пропадают лимфоциты, что в результате отражается на смене гистологических вариантов, которые представляют собой фазы развития заболевания.

    Наиболее стабильным вариантом является нодулярный склероз.

    Тромбоцитопении – группа заболеваний, при которых отмечается снижение количества тромбоцитов вследствие их повышенного потребления или недостаточного образования. Патологическая анатомия.

    Основной характеристикой является геморрагический синдром с кровоизлияниями и кровотечениями. Кровоизлияния возникают чаще в коже в виде петехий и экхимозов, реже в слизистых оболочках и еще реже во внутренних органах. Кровотечения могут быть как желудочные, так и легочные. Может иметь место увеличение селезенки в результате гиперплазии ее лимфоидной ткани, увеличение количества мегакариоцитов в костном мозге.

    Тромбоцитопатии

    Тромбоцитопатии – группа заболеваний и синдромов, в основе которых лежит нарушение гемостаза. Делятся на приобретенные и врожденные тромбоцитопатии (синдром Чедиака-Хигаси, тромбастения Гланцмана).

    Патологическая анатомия: проявляются в виде геморрагического синдрома.

    Ростки дифференцировки костного мозга

    Костный мозг является основным кроветворным органом; общая масса его составляет 1,6-3,7 кг (в среднем 2,6 кг), половина ее приходится на активный красный мозг.

    Костный мозг локализован во внутренней полости трубчатых костей и представляет собой тканевое объединение ретикулярной стромы, плотно упакованных гемопоэтических и лимфоидных клеток, а также разветвленной сети капилляров.
    Кардинальная особенность костного мозга состоит в том, что он служит основным источником стволовых кроветворных элементов как для миелоидного (кроветворного), так и для лимфоидного ростков дифференцировки.

    Все клетки иммунной системы происходят из стволовых клеток костного мозга, которые дифференцируются в лимфоциты, гранулоциты, моноциты,эритроциты и мегакариоциты. В костном мозге происходит раннее, антигеннезависимое созревание и дифференцировка В-лимфоцитов.

    Уменьшение количества стволовых клеток и нарушение их дифференцировки приводят к иммунодефицитам.

    Белый росток крови

    Костный мозг оценивается как первичный орган иммунной системы, поскольку является источником В-клеток для вторичных лимфоидных образований периферии — в основном для селезенки и, в меньшей степени, длялимфатических узлов.

    Основное назначение костного мозга — продукция клеток крови (кроветворение) и лимфоцитов.

    Развитие клеточных элементов костного мозга начинается от плюрипотентной гемопоэтической стволовой клетки (ГСК), которая дает начало шести росткам дифференцировки:

    1) Мегакариоцитарному, заканчивающемуся образованием тромбоцитов.

    2) Эритроидному, приводящему к формированию безъядерных, переносящих кислородэритроцитов крови;

    3) Гранулоцитарному — с тремя дополнительными направлениями дифференцировки, заканчивающимися образованием трех самостоятельных клеточных типов: базофилов,эозинофилов и нейтрофилов.

    Эти клетки принимают непосредственное участие в процессахвоспаления и фагоцитоза и являются, таким образом, участниками неспецифической формы защиты.

    4) Моноцитарно-макрофагальному. На территории костного мозга дифференцировка в данном направлении завершается образованием моноцитов, мигрирующих в кровь; окончательные зрелые их формы в виде тканевых макрофагов локализуются в различных органах и тканях, где они получили специфические названия: гистиоциты соединительной ткани, звездчатые ретикулоциты печени, макрофаги селезенки, макрофаги лимфатических узлов, перитонеальные макрофаги, плевральные макрофаги, клетки микроглии нервной ткани.

    5) Т-клеточному.

    Данный росток дифференцировки на территории костного мозга проходит только самый начальный этап развития: формирование предшественника Т-клеток (пре-Т-клеток) от лимфоидной стволовой клетки; основные события по созреванию различных субпопуляций клоноспецифических Т-клеток разворачиваются в тимусе;

    6) В-клеточному. В отличие от Т-клеточного направления развития В-клеточная дифференцировка характеризуется практически полной завершенностью; в связи с этим не случайно костный мозг относят к центральному органу иммунитета.
    Кроме развивающихся B-клеток в постнатальном костном мозге присутствуют зрелыеплазматические и T-клетки.

    Следовательно, у человека костный мозг функционирует и как важный вторичный лимфоидный орган.
    Большинство антигенпрезентирующих клеток также образуется в костном мозге, хотя их гемопоэтический предшественник остается неизвестным.

    Морфология костного мозга с возрастом

    По мере роста организма красный костный мозг в трубчатых костях постепенно превращается в жировой.

    Начинается этот процесс в возрасте 3-4 лет и заканчивается к 14-16 годам.

    Гранулоциты клетки, в цитоплазме которых обнаруживается зернистость, специфическая для определенного вида клеток. Различают нейтрофильную, эозинофильную и базофильную зернистость. Нейтрофилы происходят из полипотентной колониеобразующей единицы нейтрофилов и моноцитов/макрофагов (CFU‑GM), а базофилы иэозинофилы - из унипотентных колониеобразующих единиц базофилов (CFU‑B) и эозинофилов (CFU-Eo), соответственно.

    По мере дифференцировки размеры клеток уменьшаются, хроматин конденсируется, изменяется форма ядра, в цитоплазме накапливаются гранулы.

    Органы человека: костный мозг

    Время созревания гранулоцитов в костном мозге составляет 60-200 часов, при этом в процессе дифференцировки морфологически распознаваемые клетки гранулоцитарного ряда проходят 4 митоза.

    Родоначальницей всех зернистых лейкоцитов является миелобласт (клетка 4 класса). Его размеры от 12 до 22 мкм. Миелобласты отличаются нежной структурой ядра, как правило, содержащего от 2 до 5 ядрышек. Цитоплазма различной степени базофилии, окружает ядро небольшим пояском. Цитоплазма содержит азурофильную (неспецифическую) зернистость, не всегда отчетливо видимую.

    В результате митотического деления и одновременно дифференцировки миелобласты переходят в следующую стадию развития — промиелоциты (клетки 5 класса). Его размеры 10-24 мкм.

    Ядро занимает большую часть клетки, расположено эксцентрично. Форма ядра круглая или овальная. Цитоплазма базофильная, наряду с азурофильной грануляцией может появляться специальная — нейтрофильная, эозинофильная или базофильная.

    Из промиелоцитов развиваются миелоциты (клетки 5 класса). Миелоциты — клетки размером 10-18 мкм.

    Ядро круглое или овальное, ядрышки отсутствуют. Цитоплазма содержит ту или иную специфическую зернистость — нейтрофильную, эозинофильную, базофильную. Ядерно-цитоплазматическое отношение сдвинуто в пользу ядра. Миелоциты среди гранулоцитов являются последними клетками, способными к делению. Дальнейшую дифференцировку гранулоциты проходят без деления в составе непролиферирующего пула костного мозга.

    Следующей стадией созревания гранулоцитов являются метамиелоциты (клетки 5 класса) .

    Их размеры 10-15 мкм. Ядро имеет вид подковки или боба; структура ядра более грубая, чем у миелоцита. Цитоплазма нейтрофильного метамиелоцита окрашивается в розовый цвет, эозинофильного — бледно-голубой, базофильного — голубовато-фиолетовый.

    В цитоплазме различают специфическую зернистость. Ядерно-цитоплазматическое отношение 1:1.

    В костном мозге из метамиелоцитов образуются палочкоядерные лейкоциты (клетки 5 класса ). Их размеры составляют 9-12 мкм. Ядро имеет вид палочки средней толщины (часто изогнутой в виде буквы S), грубой структуры. В цитоплазме различима специфическая зернистость. Ядерно-цитоплазматическое отношение сдвинуто уже в сторону цитоплазмы.

    Последней стадией созревания являются сегментоядерные гранулоциты (клетки 6 класса ) :

    а)нейтрофилы – имеют размеры 11-12 мкм.

    Ядро состоит из нескольких сегментов (2-6). Цитоплазма содержит мелкую зернистость, окрашивающуюся нейтральными красками в фиолетовый цвет;

    б) эозинофилы имеют размер 12-13 мкм. Ядро эозинофила имеет чаще всего 2-3 крупных сегмента. Цитоплазма содержит крупную зернистость, окрашивающуюся эозином в розовый цвет;

    в) базофилы — имеют размер 9-10 мкм.

    Ядро широкое, неправильной лопастовидной формы. Цитоплазма содержит крупную зернистость, окрашивающуюся основными красками в фиолетовый цвет, черно-синие тона. Различают 2 вида базофилов: циркулирующие в периферической крови — базофильные гранулоциты и локализованные в тканях — тучные клетки или тканевые базофилы.

    1 слайд

    2 слайд

    Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»

    3 слайд

    4 слайд

    Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами. Размер индивидуального клона - 0,5-1 млн зрелых клеток Продолжительность жизни клона - не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.

    5 слайд

    Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.

    6 слайд

    Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) СКК обладают уникальным свойством - полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.

    7 слайд

    Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток. 90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.

    8 слайд

    Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется 10-14 дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.

    9 слайд

    Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге - около 0,01%, а вместе с клетками-предшественниками - 0,05%.

    10 слайд

    Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называют “колониеобразующими единицами” (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.

    11 слайд

    Дифференцировка клеток гемопоэза III отдел - По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки-предшественники, имеющие ограниченную потентность, так как коммитированы (commit - принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно-макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ - двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.

    12 слайд

    Дифференцировка клеток гемопоэза Клетки IV отдела - монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-М - для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Мгкц - предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.

    13 слайд

    СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название “homing-effect” (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.

    14 слайд

    Дифференцировка клеток гемопоэза V отдел морфологически распознаваемых клеток включает: дифференцирующиеся, созревающие зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности.

    15 слайд

    Регуляция гемопоэза Кроветворная ткань - динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло. Эритроциты циркулируют в крови - 110-130 суток, тромбоциты - около 10 суток, нейтрофилы - менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» - костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в 10-12 раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста

    16 слайд

    Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др.

    17 слайд

    Регуляция гемопоэза Обновление СКК происходит медленно и при готовности к дифференцировке (процесс коммитирования), они выходят из состояния покоя (Go - фаза клеточного цикла) и становятся коммитированными. Это означает, что процесс стал необратимым и такие клетки, управляемые цитокинами, пройдут все стадии развития вплоть до конечных зрелых элементов крови.

    20 слайд

    Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК: фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г - КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма.

    22 слайд

    Регуляция гемопоэза Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки - предшественники костного мозга (БОЕ-Э), увеличивают на 3-5 число митозов, что повышает образование эритроцитов в 10-30 раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть

    Синтез эритроцитов - один из наиболее мощных процессов образования клеток в организме. Каждую секунду в норме образуется примерно 2 млн эритроцитов, в день - 173 млрд, в год - 63 триллиона. Если перевести эти значения в массу, то ежедневно образуется около 140 г эритроцитов, каждый год - 51 кг, а масса эритроцитов, образованных в организме за 70 лет составляет порядка 3,5 тонн.

    У взрослого человека эритропоэз происходит в костном мозге плоских костей, тогда как у плода островки кроветворения находятся в печени и селезёнке (экстрамедуллярное кроветворение). При некоторых патологических состояниях (талассемия, лейкозы и др.) очаги экстрамедуллярного кроветворения могут быть обнаружены и у взрослого человека.

    Одним из важных элементов клеточного деления является витамин В₁₂ , необходимый для синтеза ДНК, являясь, по сути, катализатором этой реакции. В процессе синтеза ДНК витамин В₁₂ не расходуется, а циклично вступает в реакции как активное вещество; в результате такого цикла из уридин-монофосфата образуется тимидин-монофосфат. При снижении уровня витамина В₁₂ уридин плохо включается в состав молекулы ДНК, что и приводит к многочисленным нарушениям, в частности нарушению созревания клеток крови.

    Еще одним фактором, оказывающим влияние на делящиеся клетки, является фолиевая кислота . Она как кофермент, в частности, участвует в синтезе пуриновых и пиримидиновых нуклеотидов.

    Общая схема постэмбрионального гемопоэза

    Гемопоэз (кроветворение) - очень динамичная, четко сбалансированная, непрерывно обновляющаяся система. Единым родоначальником кроветворения является стволовая клетка. По современным представлениям, это целый класс клеток, закладывающихся в онтогенезе, главным свойством которых является способность давать все ростки кроветворения - эритроцитарный, мегакариоцитарный, гранулоцитарный (эозинофилы, базофилы, нейтрофилы), моноцитарно-макрофагальный, Т-лимфоцитарный, В-лимфоцитарный.

    В результате нескольких делений клетки теряют способность быть универсальными родоначальниками и превращаются в полипотентные клетки. Такой, например, является клетка-предшественница миелопоэза (эритроциты, мегакариоциты, гранулоциты). Еще через несколько делений вслед за универсальностью исчезает и полипотентность, клетки становятся унипотентными (ˮуниˮ - единственное), то есть способными к дифференцированию только в одном направлении.

    Наиболее делящимися в костном мозге являются клетки - предшественники миелопоэза (см. рисунок ⭡), по мере дифференцировки уменьшается количество оставшихся делений, и морфологически различаемые клетки красной крови постепенно перестают делиться.

    Дифференцировка клеток эритроидного ряда

    Собственно эритроидный ряд клеток (эритрон) начинается с унипотентных бурстобразующих клеток, являющихся потомками клеток-предшественниц миелопоэза. Бурстобразующие клетки в культуре тканей растут мелкими колониями, напоминающими взрыв (бурст). Для их созревания необходим специальный медиатор - бурстпромоторная активность. Это фактор влияния микроокружения на созревающие клетки, фактор межклеточного взаимодействия.

    Выделяют две популяции бурстобразующих клеток: первая регулируется исключительно бурстпромоторной активностью, вторая - становится чувствительной к воздействию эритропоэтина. Во второй популяции начинается синтез гемоглобина , продолжающийся в эритропоэтин-чувствительных клетках и в последующих созревающих клетках.

    На этапе бурстобразующих клеток происходит принципиальное изменение клеточной активности - от деления к синтезу гемоглобина. В последующих клетках деление приостанавливается (последняя клетка в этом ряду, способная к делению, - полихроматофильный эритробласт), ядро уменьшается в абсолютном размере и по отношению к объему цитоплазмы, в которой идет синтез веществ. На последнем этапе ядро из клетки удаляется, затем исчезают остатки РНК; их можно еще обнаружить при специальной окраске в молодых эритроцитах - ретикулоцитах, но нельзя найти в зрелых эритроцитах.

    Cхема основных этапов дифференцировки клеток эритроидного ряда выглядит следующим образом:
    плюрипотентная стволовая клетка ⭢ бурстобразующая единица эритроидного ряда (БОЕ-Э) ⭢ колониеобразующая единица эритроидного ряда (КОЕ-Э) ⭢ эритробласт ⭢ пронормоцит ⭢ базофильный нормоцит ⭢ полихроматический нормоцит ⭢ ортохроматический (оксифильный) нормоцит ⭢ ретикулоцит ⭢ эритроцит .

    Регуляция эритропоэза

    Процессы регуляции кроветворения до сих пор изучены недостаточно. Необходимость непрерывно поддерживать гемопоэз, адекватно удовлетворять потребности организма в различных специализированных клетках, обеспечивать постоянство и равновесие внутренней среды (гомеостаз) - всё это предполагает существование сложных регуляторных механизмов, действующих по принципу обратной связи.

    Наиболее известным гуморальным фактором регуляции эритропоэза, является гормон эритропоэтин . Это стресс-фактор, синтезирующийся в различных клетках и в различных органах. Большее количество его образуется в почках, однако даже при их отсутствии эритропоэтин вырабатывается эндотелием сосудов, печенью. Уровень эритропоэтина стабилен и изменяется в сторону повышения при резкой и обильной кровопотере, остром гемолизе , при подъеме в горы, при острой ишемии почек. Парадоксально, что при хронических анемиях уровень эритропоэтина обычно нормален, за исключением апластической анемии, где его уровень стабильно чрезвычайно высок.

    Наряду с эритропоэтином, в крови присутствуют также ингибиторы эритропоэза. Это большое число разнообразных веществ, часть из которых может быть отнесена к среднемолекулярным токсинам, накапливающимся вследствие патологических процессов, связанных с повышенным их образованием либо нарушением их выведения.

    На ранних этапах дифференцировки регуляция в эритроне осуществляется в основном за счёт факторов клеточного микроокружения, а позже - при балансе активности эритропоэтина и ингибиторов эритропоэза. В острых ситуациях, когда необходимо быстро создать большое число новых эритроцитов, включается стрессовый эритропоэтиновый механизм - резкое преобладание активности эритропоэтина над активностью ингибиторов эритропоэза. В патологических ситуациях, напротив, ингибиторная активность может преобладать над эритропоэтиновой, что приводит к торможению эритропоэза.

    Синтез гемоглобина

    В состав гемоглобина входит железо. Недостаточное количество этого элемента в организме может привести к развитию анемии (см. Железодефицитная анемия). Имеется зависимость между возможностью синтезировать определённое количество гемоглобина (что обусловлено запасами железа) и эритропоэза - по всей вероятности, существует пороговое значение концентрации гемоглобина, без которой эритропоэз прекращается.

    Синтез гемоглобина начинается в эритроидных предшественниках на этапе образования эритропоэтин-чувствительной клетки. У плода, а затем и в раннем послеродовом периоде у ребёнка образуется гемоглобин F, а далее, в основном, - гемоглобин А. При напряжении эритропоэза (гемолиз, кровотечение) в крови взрослого человека может появляться некоторое количество гемоглобина F.

    Гемоглобин состоит из двух вариантов глобиновых цепей а и р, окружающих гем, содержащий железо. В зависимости от изменения последовательностей аминокислотных остатков в цепях глобина изменяются химикофизические свойства гемоглобина, в определённых условиях он может кристаллизоваться, становиться нерастворимым (например гемоглобин S при серповидно-клеточной анемии).

    Свойства эритроцитов

    Эритроциты обладают несколькими свойствами. Наиболее известным является транспорт кислорода (O₂) и углекислого газа (CO₂). Он осуществляется гемоглобином, который связывается поочередно с одним и другим газом в зависимости от напряжения соответствующего газа в окружающей среде: в лёгких - кислорода, в тканях - углекислого газа. Химизм реакции заключается в вытеснении и замещении одного газа другим из связи с гемоглобином. Кроме того, эритроциты являются переносчиками оксида азота (NO), ответственного за сосудистый тонус, а также участвующего в передаче клеточных сигналов и многих других физиологических процессах.

    Эритроциты обладают свойством изменять свою форму, проходя через капилляры малого диаметра. Клетки распластываются, закручиваются в спираль. Пластичность эритроцитов зависит от различных факторов, в том числе от строения мембраны эритроцита, от вида содержащегося в нём гемоглобина, от цитоскелета. Кроме того, эритроцитарная мембрана окружена своего рода ˮоблакомˮ из различных белков, которые могут менять деформируемость. К ним относятся иммунные комплексы, фибриноген. Эти вещества меняют заряд мембраны эритроцита, прикрепляются к рецепторам, ускоряют оседание эритроцитов в стеклянном капилляре.

    В случае тромбообразования эритроциты являются центрами образования фибриновых тяжей, это может не только изменять деформируемость, вызывать их агрегацию, слипание в монетные столбики, но и разрывать эритроциты на фрагменты, отрывать от них куски мембран.

    Реакция оседания эритроцитов (РОЭ) отражает наличие на их поверхности заряда, отталкивающего эритроциты друг от друга. Появление при воспалительных реакциях, при активации свертывания и т.д. вокруг эритроцита диэлектрического облака приводит к уменьшению сил отталкивания, в результате чего эритроциты начинают быстрее оседать в вертикально поставленном капилляре. Если капилляр наклонить на 45°, то силы отталкивания действуют только на протяжении прохождения эритроцитами поперечника просвета капилляра. Когда клетки достигают стенки, они скатываются по ней, не встречая сопротивления. В результате в наклонённом капилляре показатель оседания эритроцитов увеличивается десятикратно.

    Источники:
    1. Анемический синдром в клинической практике / П.А. Воробьёв, - М., 2001;
    2. Гематология: Новейший справочник / Под ред. К.М. Абдулкадырова. - М., 2004.

    Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

    Различают два вида кроветворения:

    миелоидное кроветворение:

    • эритропоэз;
    • гранулоцитопоэз;
    • тромбоцитопоэз;
    • моноцитопоэз.

    лимфоидное кроветворение:

    • Т-лимфоцитопоэз;
    • В-лимфоцитопоэз.

    Кроме того, гемопоэз подразделяется на два периода:

    • эмбриональный;
    • постэмбриональный.

    Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови . Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

    Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

    • желточный;
    • гепато-тимусо-лиенальный;
    • медулло-тимусо-лимфоидный.

    Наиболее важными моментами желточного этапа являются:

    • образование стволовых клеток крови;
    • образование первичных кровеносных сосудов.

    Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

    Гепато-тимусо лиенальный

    этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25-30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка . Селезенка закладывается на 4-й неделе, с 7-8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

    Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

    Медулло-тимусо-лимфоидный этап кроветворения

    Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться - экстрамедуллярное кроветворение.

    Постэмбриональный период кроветворения - осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

    Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

    Теории кроветворения

    • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественникастволовой клетки;
    • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
    • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

    В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

    В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

    Всего в схеме кроветворения различают 6 классов клеток:

    • 1 класс - стволовые клетки;
    • 2 класс - полустволовые клетки;
    • 3 класс - унипотентные клетки;
    • 4 класс - бластные клетки;
    • 5 класс - созревающие клетки;
    • 6 класс - зрелые форменные элементы.

    1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции.

    По морфологии соответствует малому лимфоциту, является полипотентной , то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы - КОЕ.

    2 класс - полустволовые

    ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

    3 класс - унипотентные поэтин-чувствительные клетки

    Предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов , специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

    Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

    4 класс - бластные

    (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

    5 класс - класс созревающих клеток

    Характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

    6 класс - зрелые форменные элементы крови

    Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги . Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

    В Т- и в В-лимфоцитопоэзе выделяют три этапа:

    • костномозговой этап;
    • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
    • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

    Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

    • 1 класс - стволовые клетки;
    • 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
    • 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

    Второй этап - этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина , выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс.

    Третий этап - этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.

    Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:

    • 1 класс - стволовые клетки;
    • 2 класс - полустволовые клетки-предшественницы лимфопоэза;
    • 3 класс - унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.

    Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе - фабрициевой сумке.

    Третий этап - антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.



    ← Вернуться

    ×
    Вступай в сообщество «shango.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «shango.ru»