Кто описал фазы мейоза ученый. Мейоз

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • Пахитена или пахинема - (самая длительная стадия) кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

Значение

  • У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.
  • Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.
  • Редукция числа хромосом приводит к образованию "чистых гамет", несущих только один аллель соответствующего локуса.
  • Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах. Независимое расхождение хромосом лежит в основе третьего закона Менделя .

Примечания

Литература

  • Бабынин Э. В. Молекулярный механизм гомологичной рекомбинации в мейозе: происхождение и биологическое значение . Цитология, 2007, 49, N 3, 182-193.
  • Александр Марков. На пути к разгадке тайны мейоза . По статье: Ю. Ф. Богданов. Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне. Журнал общей биологии, Том 69, 2008. № 2, Март-Апрель. Стр. 102-117
  • «Variation and evolution of meiosis» - Ю. Ф. Богданов, 2003
  • Биология:Пособия для поступающих в вузы: В 2 т. Т.1.-Б63 2-е изд., испр. и доп.-М.:РИА «Новая волна»: Издатель Умеренков,2011.-500с.

Wikimedia Foundation . 2010 .

Синонимы :

Второе деление мейоза по механизму является типичным митозом. Оно происходит быстро:

Профаза II у всех организмов короткая.

Если телофаза I и интерфаза II имели место, то ядрышки и ядерные мембраны разруша­ются, а хроматиды укорачиваются и утолщаются. Центриоли, если они имеются, перемещаются к про­тивоположным полюсам клетки. Во всех случаях, к концу профазы II появляются новые нити веретена деления. Они расположены под прямыми углами к веретену мейоза I.

Метафаза II. Как и в митозе, хромосомы выстраиваются по отдельности на эк­ваторе веретена.

Анафаза II. Аналогична митотической: центромеры делятся (разрушение когезинов) и нити веретена деления растаскивают хроматиды к противоположным полю­сам.

Телофаза II. Происходит так же, как телофаза митоза с той лишь разницей, что образуются четыре гаплоидные дочер­ние клетки. Хромосомы раскручиваются, удлиняются и становятся плохо различимыми. Нити веретена ис­чезают. Вокруг каждого ядра вновь образуется ядерная оболо6нчка, но ядро со­держит теперь половину числа хромосом исходной родительской клетки. При последую­щем цитокинезе из единственной роди­тельской клетки получается четыре дочерних клетки.

Предварительные итоги:

При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК, из одной диплоидной клетки образуются четыре гаплоидные.

В мейозе доминирует профаза I, которая может занимать 90% всего времени. В этот период каждая хромосома состоит из двух тесно сближенных сестринских хроматид.

Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе I, при плотной конъюгации каждой пары гомологичных хромосом, что приводит к образованию хиазм, сохраняющих единство бивалентов вплоть до анафазы I.

В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид.

Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку.

Сопоставление митоза и мейоза I (мейоз II практически идентичен митозу)

Стадия Митоз Мейоз I
Профаза Гомологичные хромосомы обособ­лены. Хиазмы не образуются. Кроссинговер не происходит Гомологичные хромосомы конъюгируют. Хиазмы образуются. Кроссинговер имеет место
Метафаза Хромосомы, из двух хроматид каждая, располагаются на экваторе веретена деления Биваленты, образованные парами гомологичных хромосом, располагаются на эква­торе веретена деления
Анафаза Центромеры делятся. Расходятся хроматиды. Расходящиеся хроматиды идентич­ны Центромеры не делятся. Расходятся целые хромосомы (из двух хроматид каждая) Расходящиеся хромосомы и их хроматиды могут быть неидентичными в результате кроссинговера
Телофаза Плоидность дочерних клеток равна плоидности родительских клеток. У диплоидов дочерние клетки содержат обе гомо­логичные хромосомы Плоидность дочерних клеток вдвое меньше плоидности родительских клеток. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом
Где и когда происходит В гаплоидных, диплоидных и поли­плоидных клетках При образовании соматических кле­ток При образовании спор у некоторых грибов и низших растений. При образовании гамет у высших растений Только в диплоидных и полиплоидных клетках На каком-либо этапе жизненного цикла организмов с половым размножением, например – при гаметогенезе у большинства животных и при спорогенезе у высших растений.

Значение мейоза:

1. Половое размножение. Мейоз происходит у всех организмов, размножающихся по­ловым путем. Во время оплодотворения ядра двух гамет сливаются. Каждая гамета содержит гаплоидный (n) набор хромосом. В результате слияния гамет образуется зигота, содержащая диплоидный (2n) набор хромосом. В отсутст­вие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого по­следующего поколения, возникающего в результате полового размножения. У всех организмов с половым размножением это­го не происходит благодаря существова­нию особого клеточного деления, при котором диплоидное число хромосом (2n) сокращается до гаплоидного (n).

2. Генетическая изменчивость. Мейоз создает также возможность для возникновения в гаметах новых комбинаций генов, что ве­дет к генетическим изменениям в потом­стве, получаемым в результате слияния га­мет. В процессе мейоза это достигается двумя способами, а именно – независи­мым распределением хромосом при первом мейотическом де­лении и кроссинговером.


А) Независимое распределение хромосом.

Независимое распределение означает, что в анафазе I хромосомы, составляющие данный бивалент, распределяются независимо от хро­мосом других бивалентов. Этот процесс лучше всего объяснить на схеме, приведенной справа (черные и белые полоски соответствуют мате­ринским и отцовским хромосомам).

В метафазе I биваленты располагаются на экваторе веретена случайным образом. На схеме представлена про­стая ситуация, в которой участвуют только два бивалента, а поэтому возможно распо­ложение только двумя способами (при од­ном из них белые хромосомы ориентированы в одну сторону, а при другом – в разные стороны). Чем больше число бивалентов, тем больше число возможных комбинаций, а, следовательно, тем выше изменчивость. Число вариантов образующихся гаплоидных клеток – 2 x . Неза­висимое распределение лежит в основе одного из законов классической генетики – второго закона Менделя.

Б) Кроссинговер.

В результате образования хи­азм между хроматидами гомологичных хромосом в профазе I происходит кроссинговер, веду­щий к образованию новых комбинаций ге­нов в хромосомах гамет.

Это показано на схеме кроссинговера

Итак, коротко о главном:

Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра, содер­жащие наборы хромосом, идентичные наборам родительской клетки. Обычно сразу же после деления ядра происходит деление всей клетки с образованием двух дочерних клеток. Митоз с последующим делением клетки приводит к уве­личению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у эукариот. У одноклеточных эукариот митоз служит механизмом бесполого размножения, приводя­щего к увеличению численности популяции.

Мейоз представляет собой процесс деления клеточного ядра с образованием дочерних ядер, каждое из которых содержит вдвое меньше хро­мосом, чем исходное ядро. Мейоз называют так­же редукционным делением, так как при этом число хромосом в клетке уменьшается от дипло­идного (2n) до гаплоидного (n). Значение мейоза состоит в том, что у видов с половым размноже­нием он обеспечивает сохранение постоянного числа хромосом в ряду поколений. Мейоз про­исходит при образовании гамет у животных и спор у растений. В результате слияния гаплоид­ных гамет при оплодотворении восстанавливает­ся диплоидное число хромосом.


Прочие варианты клеточных делений.

Деление клеток прокариот.

Рассматривая механизмы митоза и мейоза как основные механизмы клеточных делений, не следует забывать, что они возможны лишь у представителей империи Эукариот, иначе громадная империя Прокариот останется вне сферы нашего внимания.

Отсутствие оформленного ядра и тубулярных органоидов (а значит – и веретена деления) делают очевидным тот факт, что механизмы прокариотического деления должны принципиально отличаться от эукариотических.

В клетках прокариот кольцевая молекула ДНК прикреплена к плазмалемме в области одной из мезосом (складок плазматической мембраны). Она прикреплена участ­ком, в котором начинается дву­направленная репликация (он называется ориджином репликации ДНК ). Сразу после начала репликации начинается активный рост плазмалеммы, причем встраивание но­вого мембранного материала идет в ограниченном пространст­ве плазматической мембраны – между точками прикрепления двух частично реплицированных молекул ДНК.

По мере роста мембраны, реплицированные молекулы ДНК постепенно отдаляются друг от друга, мезосома углубляется, а, напротив нее, закладывается еще одна мезосома. Ког­да реплицированные молекулы ДНК окончательно отдаляются друг от друга, мезосомы соединяются, и происходит разде­ление материнской клетки на две дочерние.

Полового размножения у прокариотов нет, поэтому отсутствуют варианты деления с сокращением плоидности, и все разнообразие способов деления сводится к особенностям цитокинеза:

При равновеликом делении цитокинез равномерный, и образующиеся дочерние клетки имеют сходные размеры; это наиболее распространенный способ цитокинеза у прокариотов;

При почковании одна из клеток наследует бо льшую часть цитоплазмы материнской клетки, а вторая выглядит маленькой почкой на поверхности большой (пока не отделится). Такой цитокинез дал название целому семейству прокариотов – Почкующиеся бактерии , хотя к почкованию способны не только они.

Особые варианты деления эукариотических клеток.

Мейоз (от греч.мейозис – уменьшение) – это особый тип деления эукариотических клеток, при котором после однократного удвоения ДНК клеткаделится дважды , и из одной диплоидной клетки образуются 4 гаплоидные. Состоит из 2-х последовательных делений (обозначаютсяIиII); каждое из них, подобно митозу, включает 4 фазы (профазу, метафазу, анафазу, телофазу) и цитокинез.

Фазы мейоза:

Профаза I , она сложная, делится на 5 стадий:

1. Лептонема (от греч.leptos – тонкий,nema – нить) – хромосомы спирализуются и становятся видны как тонкие нити. Каждая гомологичная хромосома уже реплицирована на 99,9% и состоит из двух сестринских хроматид, связанных между собой в районе центромеры. Содержание генетического материала –2 n 2 xp 4 c . Хромосомы с помощью белковых скоплений (прикрепительных дисков ) закреплены обоими концами на внутренней мембране ядерной оболочки. Ядерная оболочка сохраняется, ядрышко видно.

2. Зигонема (от греч.zygon – парный) – гомологичные диплоидные хромосомы устремляются друг к другу и соединяются сначала в области центромеры, а затем – по всей длине (конъюгация ). Образуютсябиваленты (от лат.bi – двойной,valens – сильный), илитетрады хроматид. Число бивалентов соответствует гаплоидному набору хромосом, содержание генетического материала можно записать как1 n 4 xp 8 c . Каждая хромосома в одном биваленте происходит либо от отца, либо от матери.Половые хромосомы располагаются около внутренней ядерной мембраны. Эта область называетсяполовым пузырьком.

Между гомологичными хромосомами в каждом биваленте образуются специализированные синаптонемальные комплексы (от греч.synapsis – связь, соединение), которые представляют собой белковые структуры. При большом увеличении в комплексе видны две параллельные белковые нити толщиной 10 нм каждая, соединенные тонкими поперечными полосами размерами около 7 нм, по обе стороны от них лежат хромосомы в виде множества петель.

В центре комплекса проходит осевой элемент толщиной 20 – 40 нм. Синаптонемальный комплекс сравнивают сверевочной лестницей , стороны которой образованы гомологичными хромосомами. Более точное сравнение –застежка типа «молния» .

К концу зигонемы каждая пара гомологичных хромосом связана между собой с помощью синаптонемальных комплексов. Лишь половые хромосомы XиYконъюгируют не полностью, т. к. они неполностью гомологичны.

3. В пахинеме (от греч.pahys – толстый) биваленты укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения –хиазмы (от греч.chiazma – перекрест). В области каждой хиазмы формируется комплекс белков, участвующих врекомбинации (d~ 90 нм), и происходит обмен соответствующих участков гомологичных хромосом – от отцовской к материнской и наоборот. Этот процесс называюткросссинговером (от англ.с rossing - over – перекресток). В каждом биваленте человека, например, кроссинговер происходит в двух – трех участках.

4. В диплонеме (от греч.diploos – двойной) синаптонемальные комплексы распадаются, и гомологичные хромосомы каждого бивалентаотодвигаются друг от друга , но связь между ними сохраняется в зонах хиазм.

5. Диакинез (от греч.diakinein – проходить через). В диакинезе завершается конденсация хромосом, они отделяются от ядерной оболочки, но гомологичные хромосомы продолжают еще оставаться связанными между собой концевыми участками, а сестринские хроматиды каждой хромосомы – центромерами. Биваленты приобретают причудливую формуколец, крестов, восьмерок и т. д. В это время разрушаются ядерная оболочка и ядрышки. Реплицированные центриоли направляются к полюсам, к центромерам хромосом прикрепляются нити веретена деления.

В целом профаза мейоза очень длительна. При развитии спермиев она может длиться несколько суток, а при развитии яйцеклеток – в течение многих лет.

Метафаза I напоминает аналогичную стадию митоза. Хромосомы устанавливаются в экваториальной плоскости, образуя метафазную пластинку. В отличие от митоза, микротрубочки веретена прикрепляются к центромере каждой хромосомы лишь с одной стороны (со стороны полюса), а центромеры гомологичных хромосом расположены по обеим сторонам экватора. Связь между хромосомами с помощью хиазм продолжает сохраняться.

В анафазе I хиазмы распадаются, гомологичные хромосомы отделяются друг от друга и расходятся к полюсам.Центромеры этих хромосом, однако, в отличие от анафазы митоза,не реплицируются , а значит, сестринские хроматиды не расходятся. Расхождение хромосом носитслучайный характер . Содержание генетической информации становится1 n 2 xp 4 c у каждого полюса клетки, а в целом в клетке –2(1 n 2 xp 4 c ) .

В телофазе I , как и при митозе, формируются ядерные оболочки и ядрышки, образуется и углубляетсяборозда деления. Затем происходитцитокинез . В отличие от митоза, деспирализации хромосом не происходит.

В результате мейоза Iобразуются 2 дочерние клетки, содержащие гаплоидный набор хромосом; при этом каждая хромосома имеет 2 генетически отличные (рекомбинантные) хроматиды:1 n 2 xp 4 c . Следовательно, в результате мейозаIпроисходитредукция (уменьшение вдвое) числа хромосом, откуда и название первого деления –редукционное .

После окончания мейоза Iнаступает короткий промежуток -интеркинез , в течение которого не происходит репликации ДНК и удвоения хроматид.

Профаза II недлительна, и конъюгации хромосом при этом не наступает.

В метафазе II хромосомы выстраиваются в плоскости экватора.

В анафазе II ДНК в области центромеры реплицируется, как это происходит и в анафазе митоза, хроматиды расходятся к полюсам.

Послетелофазы II ицитокинеза II образуются дочерние клетки с содержанием генетического материала в каждой –1 n 1 xp 2 c . В целом, второе деление называетсяэквационным (уравнительным).

Итак, в результате двух последовательных делений мейоза образуются 4 клетки, каждая из которых несет гаплоидный набор хромосом.

Профаза 2 (1n2c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.
Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами),происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

5. Отличие мейоза I от мейоза II

1.Первому делению предшествует ннтерфаза с редупликацией хромомом, при втором делении редпликации генетического материала нет, то есть отсутствует синтетическая стадия.

2.Профаза первого деления длительная.

3.В первом делении происходит конъюгация хромосом и
кроссинговер.

4.В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Мейоз: 1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

6. Отличия мейоза от митоза

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

7. Биологическое значение мейоза

Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

8. Способы размножения организмов

9. Отличие полового размножения от бесполого

10. Основные формы бесполого размножения: деление на два (митоз), множественное деление (шизогония), почкование, фрагментация, спорообразование, вегетативное размножение, полиэмбриония).

Бесполое размножение – процесс возникновения дочерних особей из одно или группы соматических клеток материнского организма. Этот способ размножения более древний. В его основе лежит митотическое деление клеток. Значение бесполого размножения заключается в быстром увеличении числа особей, почти не различающихся между собой. Различают следующие формы бесполого размножения:

1.Деление надвое – приводит к возникновению из одного родительского организма двух дочерних. Является преобладающей формой деления у прокариот и простейших. Различные одноклеточные животные делятся по-разному. Так, жгутиковые делятся продольно, а инфузории – поперечно. Такое деление встречается и у многоклеточных животных – кишечнополостных (продольное деление у медуз) и червей (поперечное деление у кольчатых червей).

3.Почкование – на теле материнского организма возникает скопление клеток, которое растет и постепенно приобретает сходство с материнской особью. Затем дочерняя особь отделяется и начинает вести самостоятельное существование. Такое размножение распространено среди низших многоклеточных (губки, кишечнополостные, мшанки, некоторые черви и оболочники). Иногда дочерние особи не отделяются полностью от родительской, что приводит к образованию колоний.

4.Фрагментация – происходит распад тела многоклеточного организма на части, которые в дальнейшем превращаются в самостоятельные особи (плоские черви, иглокожие).

5.Спорами – дочерний организм развивается из специализированной клетки-споры.

Различают две основные формы бесполого размножения растений: вегетативное размножение и спорообразование. Вегетативное размножение одноклеточных растений осуществляется простым делением одной клетки на две. У грибов формы его более разнообразны – спорообразование (плесневые грибы, шляпочные) и почкование (дрожжи). У покрытосеменных растений вегетативное размножение происходит за счет вегетативных (неполовых) органов – корня, стебля, листа.

У некоторых видов животных наблюдается полиэмбриония – бесполое размножение зародыша, образовавшегося путем полового размножения. Например, у броненосцев на стадии бластулы происходит разделение клеточного материала первоначально одного зародыша между 4–8 зародышами, из которых в последствии развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.

11. Основные формы полового размножения у одноклеточных организмов (конъюгация, копуляция) и у многоклеточных организмов (без оплодотворения (партеногенез) и с оплодотворением).

Половое размножение – наблюдается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства.

В основе полового размножения лежит половой процесс, суть которого сводится к объединению в наследственном материале для развития потомка генетической информации от двух разных источников – родителей.

Одной из форм полового процесса является конъюгация. При этом происходит временное соединение двух особей с целью обмена (рекомбинации) наследственным материалом, например, у инфузорий. В результате появляются особи генетически отличные от родительских организмов, которые в дальнейшем осуществляют бесполое размножение. Число инфузорий после конъюгации не изменяется, поэтому говорить в прямом смысле о размножении в этом случае нельзя.

У простейших половой процесс может осуществляться и в форме копуляции – слияния двух особей в одну, объединение и рекомбинация наследственного материала. Далее такая особь размножается делением.

Для участия в половом размножении в родительских организмах вы-рабатываются гаметы – клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы – клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, которые не отличаются по строению – явление изогамии. У большинства же видов половые клетки по структурным и функциональным признакам делятся на материнские (яйцеклетки) и отцовские (сперматозоиды).

Иногда развитие дочернего организма происходит из неоплодотворенной яйцеклетки. Это явление называют девственным развитием или партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки – явление гиногенеза. Реже наблюдается андрогенез – развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.

12. Биологическое значение полового размножения

На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. При половом размножении возникающие новые особи обычно отличаются от родительских и друг от друга комбинацией аллелей генов. Новые сочетания хромосом и генов проявляются у потомков новым сочетанием признаков. В результате возникает большое разнообразие особей в пределах одного вида. Таким образом, биологическое значение полового размножения заключается не только в самовоспроизведении, но и в обеспечении исторического развития видов, то есть жизни как таковой. Это позволяет считать половое размножение биологически более прогрессивным, чем бесполое.

13. Сперматогенез

Процесс образования мужских половых клеток – сперматогенез. В результате образуются сперматозоиды.

В сперматогенезе различают 4 периода: размножение, рост, созревание (мейоз) и формирование (рис. 3).

В период размножения исходные недифференцированные половые клетки сперматогонии , или гонии делятся путем обычного митоза. Проделав несколько таких делений, они вступают в период роста. На этой стадии их называют сперматоцитами I порядка (или цитами I ). Они усиленно ассимилируют питательные вещества, укрупняются, претерпевают глубокую физико-химическую перестройку, в результате которой подготавливаются к третьему периоду – созреванию, или мейозу .

В мейозе сперматоциты I проходят два процесса клеточного деления. В первом делении (редукционном) происходит уменьшение числа хромосом (редукция). В результате из одного цита I возникает две равновеликие клетки – сперматоциты II порядка, или циты II. Затем наступает второе деление созревания. Оно протекает как обычный соматический митоз, но при гаплоидном числе хромосом. Такое деление называется эквационным («эквацио» – равенство), так как образуются две тождественные, т.е. полностью равноценные клетки, которые называются сперматидами.

В четвертом периоде – формирования – округлая сперматида приобретает форму зрелой мужской половой клетки: у нее вырастает жгутик, уплотняется ядро, образуется оболочка. В результате всего процесса сперматогенеза из каждой исходной недифференцированной сперматогонии получается 4 зрелых половых клетки, содержащих по гаплоидному набору хромосом.

На рис. 4 представлена схема процессов сперматогенеза и спермиогенеза у человека. Сперматогенез происходит в извитых семенных канальцах семенников.Развитие сперматозоидов начинается в период пренатального развития при закладке генеративных тканей, затем возобновляется в период наступления половозрелости и продолжается до старости.

Мужские половые клетки не развиваются одиночно, они растут в клонах и объединены между собой цитоплазматическими мостиками. Цитоплазматические мостики имеются между сперматогониями, сперматоцитами и сперматидами. В конце фазы формирования сперматозоиды освобождаются от цитоплазматических мостиков. У человека максимум дневной продуктивности сперматозоидов 108, продолжительность существования сперматозоида во влагалище до 2,5 ч, а в шейке матки до 48 ч.

14. Овогенез. Понятие о менструальном цикле

Процесс развития женских половых клеток называется овогенезом (оогенезом).

В овогенезе различают 3 периода: размножение, рост и созревание.

Недифференцированные женские половые клетки – овогонии – размножаются так же, как и сперматогонии, путем обычного митоза.

После деления они становятся овоцитами I порядка и переходят в период роста. Рост овоцитов длится очень долго – недели, месяцы и даже годы.

Затем овоцит I порядка вступает в период созревания, или мейоз. Здесь тоже совершаются редукционное и эквационное деления. Процессы деления в ядре протекают так же, как при мейозе сперматоцитов, но судьба цитоплазмы совершенно иная. При редукционном делении одно ядро увлекает с собой бульшую часть цитоплазмы , а на долю другого остается лишь незначительная ее часть. Поэтому образуется только одна полноценная клетка – овоцит II порядка, и вторая крошечная – направительное, или редукционное, тельце, которое может делиться на два редукционных тельца.

При втором, эквационном делении несимметричное распределение цитоплазмы повторяется и опять образуется одна крупная клетка – овотида и третье полярное тельце. Овотида по составу ядра и функционально является вполне зрелой половой клеткой.

Период формирования, в отличие от сперматогенеза, в овогенезе отсутствует.

Таким образом, в овогенезе из одной овогонии возникает только одна зрелая яйцеклетка. Полярные тельца остаются недоразвитыми и вскоре погибают и фагоцитируются другими клетками. Зрелые женские гаметы называют яйцеклетками или яйцами, а отложенные в воду – икрой.

Развитие женских половых клеток происходит в яичниках. Период размно-жения наступает у оогоний еще у зародыша и прекращается к моменту рождения девочки.

Период роста при оогенезе более продолжительный, т.к. кроме подготовки к мейозу осуществляется накопление запаса питательных веществ, которые будут необходимы в дальнейшем для первых дроблений зиготы. В фазе малого роста происходит образование большого количества разных типов РНК.

В период большого роста фолликулярные клетки яичника образуют несколько слоев вокруг ооцита I порядка, что способствует переносу питательных веществ, синтезированных в других местах, в цитоплазму ооцита.

У человека период роста ооцитов может составлять 12–50 лет. После завершения периода роста ооцит I порядка вступает в период созревания.

В результате при оогенезе получается 4 клетки, из которых только одна станет в дальнейшем яйцеклеткой, а остальные 3 (полярные тельца) редуцируются. Биологическая значимость этого этапа оогенеза – сохранить все накопленные вещества цитоплазмы около одного гаплоидного ядра для обеспечения нормального питания и развития оплодотворенной яйцеклетки.

При оогенезе у женщин на стадии второй метафазы образуется блок, который снимается во время оплодотворения, и фаза созревания заканчивается только после проникновения сперматозоида в яйцеклетку.

Процесс оогенеза у женщин – это циклический процесс, повторяющийся примерно через каждые 28 дней (начиная с периода роста и заканчивая период только после оплодотворения). Этот цикл называется менструальным.

Отличительные особенности сперматогенеза и овогенеза у человека представлены в таблице 3.

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»