Дыхательный центр. Продолговатый мозг

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

Экспираторный отдел - часть дыхательного центра, регулирующая процесс выдоха (его нейроны располагаются в вентральном ядре продолговатого мозга).

Инспираторный отдел — часть дыхательного центра, регулирующая процесс вдоха (локализуется преимущественно в дорсальном отделе продолговатого мозга).

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 1 показано расположение нейронов дыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксический центр.

Ппевмотаксический комплекс — часть дыхательного центра, расположенная в области варолиева моста и регулирующая вдох и выдох (во время вдоха вызывает возбуждение центра выдоха).

Рис. 1. Локализация дыхательных центров в нижней части ствола мозга (вид сзади):

ПН — пневмотаксический центр; ИНСП — инспираторный; ЗКСП — экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

В структурах моста тоже различают два дыхательных центра. Один из них — пневмотаксический — способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха); второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

Экспираторный и инспираторный центры находятся в реципрокных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают вдыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотаксический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 2).

Рис. 2. Схема нервных связей дыхательного центра:

1 — инспираторный центр; 2 — пневмотаксический центр; 3 — экспираторный центр; 4 — механорецепторы легкого

В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции — торможение инспираторного центра, что приводит к смене вдоха на выдох.

Таким образом, регуляция дыхания (рис. 3) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автомашин дыхательного центра

Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра свидетельствует опыт Гейманса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (рН крови, содержание углекислого газа и кислорода в крови и др).

Влияние углекислого газа на состояние дыхательного центра

Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки — к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки (гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода — к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

Зависимость деятельности дыхательного центра от газового состава крови

Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией , недостаток кислорода в организме и тканях - гипоксией, в крови - гипоксемиеи. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

Нормальное дыхание в состоянии покоя называется эипноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

Гипокапния и повышение уровня рН крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

Гиперкаинию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксичсские изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гииеркапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния — ослабление деятельности дыхательного центра и уменьшение вентиляции.

Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон

Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем — сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторовэтой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.

Рис. 3. Регуляция дыхания

К — кора; Гт — гипоталамус; Пвц — пневмотаксический центр; Апц — центр дыхания (экспираторный и инспираторный); Ксин — каротидный синус; Бн — блуждающий нерв; См — спинной мозг; С 3 -С 5 — шейные сегменты спинного мозга; Дфн — диафрагмальный нерв; ЭМ — экспираторные мышцы; ИМ — инспираторные мышцы; Мнр — межреберные нервы; Л — легкие; Дф — диафрагма; Th 1 — Th 6 — грудные сегменты спинного мозга

Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

Такие же изменения дыхания наступают при раздражении хемо- рецепторов названных рефлексогенных зон кровыо с повышенной концентрацией водородных ионов.

В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменьшается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой шели.

Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

Дыхательный центр и его связи

Дыхательным центром называют совокупность нейронных структур, расположенных в различных отделах центральной нервной системы, регулирующих ритмические координированные сокращения дыхательных мышц и приспосабливающих дыхание к изменяющимся условиям среды и потребностям организма. Среди этих структур выделяют жизненно важные отделы дыхательного центра, без функционирования которых дыхание прекращается. К ним относятся отделы, расположенные в продолговатом и спинном мозге. В спинном мозге к структурам дыхательного центра относят мотонейроны, формирующие их аксонами диафрагмальные нервы (в 3-5-м шейных сегментах), и мотонейроны, формирующие межреберные нервы (во 2-10-м грудных сегментах, при этом испираторные нейроны сосредоточены во 2-6-м, а экспираторные — в 8-10-м сегментах).

Особую роль в регуляции дыхания играет дыхательный центр, представленный отделами, локализованными в стволе мозга. Часть нейронных групп дыхательного центра расположена в правой и левой половинах продолговатого мозга в области дна IV желудочка. Выделяют дорзальную группу нейронов, активирующих мышцы вдоха, — инспираторный отдел и вентральную группу нейронов, контролирующих преимущественно выдох, — экспираторный отдел.

В каждом из этих отделов имеются различные по свойствам нейроны. Среди нейронов инспираторного отдела выделяют: 1) ранние инспираторные — их активность повышается за 0,1-0,2 с до начала сокращения инспираторных мышц и длится в течение вдоха; 2) полные инспираторные — активны во время вдоха; 3) поздние инспираторные — активность повышается в середине вдоха и заканчивается в начале выдоха; 4) нейроны промежуточного типа. Часть нейронов инспираторного отдела обладает способностью самопроизвольно ритмически возбуждаться. Описаны аналогичные по свойствам нейроны в экспираторном отделе дыхательного центра. Взаимодействие между этими нейронными пулами обеспечивает формирование частоты и глубины дыхания.

Важная роль в определении характера ритмической активности нейронов дыхательного центра и дыхания принадлежит сигналам, приходящим к центру по афферентным волокнам от рецепторов, а также от коры большого мозга, лимбической системы и гипоталамуса. Упрощенная схема нервных связей дыхательного центра представлена на рис. 4.

Нейроны инспираторного отдела получают информацию о напряжении газов в артериальной крови, рН крови от хеморецепторов сосудов и о рН ликвора от центральных хеморецепторов, расположенных на вентральной поверхности продолговатого мозга.

К дыхательному центру поступают также нервные импульсы от рецепторов, контролирующих растяжение легких и состояние дыхательных и других мышц, от терморецепторов, болевых и сенсорных рецепторов.

Сигналы, поступающие к нейронам дорзальной части дыхательного центра, модулируют их собственную ритмическуюактивность и оказывают влияние на формирование ими потоков эфферентных нервных импульсов, передающихся в спинной мозг и далее к диафрагме и наружным межреберным мышцам.

Рис. 4. Дыхательный центр и его связи: ИЦ — инспираторный центр; ПЦ — инсвмотакснчсскнй центр; ЭЦ — экспираторный центр; 1,2- импульсы от рецепторов растяжения дыхательных путей, легких и грудной клетки

Таким образом, дыхательный цикл запускается инспираторными нейронами, которые активируются благодаря автома- тии, а его продолжительность, частота и глубина дыхания зависят от влияния на нейронные структуры дыхательного центра сигналов рецепторов, чувствительных к уровню р0 2 , рС0 2 и рН, а также от других интеро- и экстерорецепторов.

Эфферентные нервные импульсы от инспираторных нейронов передаются по нисходящим волокнам в составе вентрального и передней части бокового канатика белого вещества спинного мозга к а-мотонейронам, формирующим диафрагмальные и межреберные нервы. Все волокна, следующие к мотонейронам, иннервирующим мышцы выдоха, являются перекрещенными, а из волокон, следующих к моторным нейронам, иннервирующим инспираторные мышцы, перекрещены 90%.

Моторные нейроны, активированные потоком нервных импульсов инспираторных нейронов дыхательного центра, посылают эфферентные импульсы к нервно-мышечным синапсам мышц вдоха, обеспечивающих увеличение объема грудной клетки. Вслед за грудной клеткой увеличивается объем легких и происходит вдох.

Во время вдоха активируются рецепторы растяжения дыхательных путей и легких. Поток нервных импульсов от этих рецепторов по афферентным волокнам блуждающего нерва поступает в продолговатый мозг и активирует экспираторные нейроны, запускающие выдох. Так замыкается один контур механизма регуляции дыхания.

Второй регуляторный контур также начинается от инспираторных нейронов и проводит импульсы к нейронам пневмотаксического отдела дыхательного центра, расположенного в мосту ствола мозга. Этот отдел координирует взаимодействие между инспираторными и экспираторными нейронами продолговатого мозга. Пневмотаксический отдел перерабатывает пришедшую от инспираторного центра информацию и посылает поток импульсов, возбуждающих нейроны экспираторного центра. Потоки импульсов, приходящих от нейронов пневмотаксического отдела и от рецепторов растяжения легких, конвергируют на экспираторных нейронах, возбуждают их, экспираторные нейроны тормозят (но принципу реципрокного торможения) активность инспираторных нейронов. Посылка нервных импульсов к мышцам вдоха прекращается и они расслабляются. Этого достаточно, чтобы произошел спокойный выдох. При усиленном выдохе от экспираторных нейронов посылаются эфферентные импульсы, вызывающие сокращение внутренних межреберных мышц и мышц брюшного пресса.

Описанная схема нервных связей отражает лишь наиболее общий принцип регуляции дыхательного цикла. В действительности же афферентные потоки сигналов от многочисленных рецепторов дыхательных путей, сосудов, мышц, кожи и т.д. поступают ко всем структурам дыхательного центра. На одни группы нейронов они оказывают возбуждающее действие, на другие — тормозное. Переработка и анализ этой информации в дыхательном центре ствола мозга находится под контролем и корригируется высшими отделами головного мозга. Например, гипоталамус играет ведущую роль в изменениях дыхания, связанных с реакциями на болевые раздражения, физическую нагрузку, а также обеспечивает вовлечение дыхательной системы в терморегуляторные реакции. Лимбические структуры оказывают влияние на дыхание при эмоциональных реакциях.

Кора большого мозга обеспечивает включение дыхательной системы в поведенческие реакции, речевую функцию, пенис. О наличии влияния коры большого мозга на отделы дыхательного центра в продолговатом и спинном мозге свидетельствует возможность произвольного изменения частоты, глубины и задержки дыхания человеком. Влияние коры мозга на бульбарный дыхательный центр достигается как через кортико-бульбарные пути, так и через подкорковые структуры (стрпопаллидариые, лимбические, ретикулярную формацию).

Рецепторы кислорода, углекислого газа и рН

Рецепторы кислорода активны уже при нормальном уровне рО 2 и непрерывно посылают потоки сигналов (тоническая импульсация), активирующих инспираторные нейроны.

Рецепторы кислорода сосредоточены в каротидных тельцах (область бифуркации общей сонной артерии). Они представлены гломусными клетками 1-го типа, которые окружены поддерживающими клетками и имеют синаптоподобные связи с окончаниями афферентных волокон языкоглоточного нерва.

Гломусные клетки 1-го типа реагируют на снижение рО 2 в артериальной крови усилением выделения медиатора допамина. Допамин вызывает генерацию нервных импульсов в окончаниях афферентных волокон язы ко глоточного нерва, которые проводятся к нейронам инспираторного отдела дыхательного центра и к нейронам прессорного отдела сосудодвигательного центра. Таким образом, снижение напряжения кислорода в артериальной крови приводит к увеличению частоты посылки афферентных нервных импульсов и повышению активности инспираторных нейронов. Последние увеличивают вентиляцию легких, главным образом за счет учащения дыхания.

Рецепторы, чувствительные к углекислому газу, имеются в каротидных тельцах, аортальных тельцах дуги аорты, а также непосредственно в продолговатом мозге — центральные хеморецепторы. Последние расположены на вентральной поверхности продолговатого мозга в области между выходом подъязычного и блуждающего нервов. Рецепторы углекислого газа воспринимают также изменения концентрации ионов Н + . Рецепторы артериальных сосудов реагируют на изменения рС0 2 и рН плазмы крови, при этом поступление к инспиратор- ным нейронам афферентных сигналов от них возрастает при увеличении рСО 2 , и (или) снижении рН плазмы артериальной крови. В ответ на поступление от них большего числа сигналов в дыхательный центр рефлекторно увеличивается вентиляция легких за счет углубления дыхания.

Центральные хеморецепторы реагируют на изменения рН и рСО 2 , ликвора и межклеточной жидкости продолговатого мозга. Считают, что центральные хеморецепторы преимущественно реагируют на изменение концентрации протонов водорода (рН) в интерстициальной жидкости. При этом изменение рН достигается вследствие легкого проникновения углекислого газа из крови и ликвора через структуры гематоэнцефалического барьера в мозг, где в результате его взаимодействия с Н 2 0 образуется углекислота, диссоциирующая с высвобождением прогонов водорода.

Сигналы от центральных хеморецепторов также проводятся к инспираторным нейронам дыхательного центра. Некоторой чувствительностью к сдвигу рН интерстициальной жидкости обладают сами нейроны дыхательного центра. Снижение рН и накопление углекислого газа в ликворе сопровождается активацией инспираторных нейронов и увеличением вентиляции легких.

Таким образом, регуляция рС0 0 и рН тесно связаны как на уровне эффекторных систем, влияющих на содержание водородных ионов и карбонатов в организме, так и на уровне центральных нервных механизмов.

При быстром развитии гиперкапнии увеличение вентиляции легких лишь приблизительно на 25% вызвано стимуляцией периферических хеморсцегггоров углекислого газа и рН. Остальные 75% связаны с активацией протонами водорода и углекислым газом центральных хеморецепторов продолговатого мозга. Это обусловлено высокой проницаемостью гематоэнцефалического барьера для углекислого газа. Поскольку ликвор и межклеточная жидкость мозга имеют гораздо меньшую емкость буферных систем, чем кровь, то аналогичное с кровью по величине возрастание рС0 2 создает в ликворе более кислую среду, чем в крови:

При длительной гиперкапнии рН ликвора возвращается к норме из-за постепенного увеличения проницаемости гематоэнцефалического барьера для анионов НС0 3 и накопления их в ликворе. Это приводит к снижению вентиляции, развившейся в ответ на гиперкапнию.

Чрезмерное увеличение активности рецепторов рСО 0 и рН способствуют возникновению субъективно тягостных, мучительных ощущений удушья, нехватки воздуха. В этом легко убедиться, если сделать длительную задержку дыхания. В то же время при недостатке кислорода и снижении р0 2 в артериальной крови, когда рСО 2 и рН крови поддерживаются нормальными, человек не испытывает неприятных ощущений. Следствием этого могут быть ряд опасностей, возникающих в быту или в условиях дыхания человека газовыми смесями из замкнутых систем. Наиболее часто они имеют место при отравлении угарным газом (смерть в гараже, другие бытовые отравления), когда человек из-за отсутствия явных ощущений удушья не предпринимает защитных действий.

Особенности функциональной организации. Продолговатый мозг (medulla oblongata) у человека имеет длину около 25 мм. Он является продолжением спинного мозга. Структурно по разнообразию и стро­ению ядер продолговатый мозг сложнее, чем спинной. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к пери­ферии.

В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком - это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.

Мост

Мост (pons cerebri, pons Varolii) располагается выше продолго­ватого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.

В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибуляр­ного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Рети­кулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.

Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и мор­фологические связи коры большого мозга с полушариями мозжечка.

Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улит­кового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва - в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ ве­стибулярных раздражений их силы и направленности.

Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.

Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую ба­рабанную перепонку, и мышцу, натягивающую небную зана­веску.

Проводящая функция моста. Обеспечивается продольно и по­перечно расположенными волокнами. Поперечно расположенные во­локна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между попе­речными волокнами расположены нейронные скопления - ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.


36. Мозжечок (лат. cerebellum - дословно «малый мозг») - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса. У человека располагается позади продолговатого мозга и варолиева моста, под затылочными долями полушарий головного мозга. Посредством трёх пар ножек мозжечок получает информацию из коры головного мозга, базальных ганглиев экстрапирамидной системы, ствола головного мозга и спинного мозга. У различных таксонов позвоночных взаимоотношения с другими отделами головного мозга могут варьировать.

Схема мозжечка и соседних с ним структур головного мозга:
А. Средний мозг
B. Варолиев мост
С. Продолговатый мозг
D. Спинной мозг
Е. Четвёртый желудочек
F. «древо жизни» мозжечка
G. Миндалина мозжечка
H. Передняя доля мозжечка
I. Задняя доля мозжечка

Особенностью мозжечка человека, является то, что он так же как и головной мозг, состоит из правого и левого полушария (лат. hemispheria cerebelli ) и соединяющей их непарной структуры - «червя» (лат. vermis cerebelli ). Мозжечок занимает почти всю заднюю черепную ямку. Поперечник мозжечка (9-10 см) значительно больше его переднезаднего размера (3-4 см) .

Масса мозжечка у взрослого колеблется от 120 до 160 г. К моменту рождения мозжечок менее развит по сравнению с полушариями головного мозга, но на первом году жизни он развивается быстрее других отделов мозга. Выраженное увеличение мозжечка отмечается между 5-м и 11-м месяцами жизни, когда ребёнок учится сидеть и ходить. Масса мозжечка новорожденного составляет около 20 г, в 3 месяца она удваивается, в 5 месяцев увеличивается в 3 раза, в конце 9-го месяца - в 4 раза. Затем мозжечок растёт медленнее, и к 6 годам его масса достигает нижней границы нормы взрослого человека - 120 г .

Сверху над мозжечком лежат затылочные доли полушарий головного мозга. Мозжечок отделён от большого мозга глубокой щелью, в которую вклинивается отросток твёрдой оболочки головного мозга - намёт мозжечка (лат. tentorium cerebelli ), натянутый над задней черепной ямкой. Впереди мозжечка располагается мост и продолговатый мозг.

Червь мозжечка более короткий, чем полушария, поэтому на соответствующих краях мозжечка образуются вырезки: на переднем крае - передняя, на заднем крае - задняя. Наиболее выступающие участки переднего и заднего краёв образуют соответствующие передний и задний углы, а наиболее выступающие латеральные участки - латеральные углы .

Горизонтальная щель (лат. fissura horizontalis ), идущая от средних мозжечковых ножек к задней вырезке мозжечка, разделяет каждое полушарие мозжечка на две поверхности: верхнюю, относительно ровную и косо спускающуюся к краям, и выпуклую нижнюю. Своей нижней поверхностью мозжечок прилегает к продолговатому мозгу, так что последний вдавлен в мозжечок, образуя впячивание - долинку мозжечка (лат. vallecula cerebelli ), на дне которой располагается червь .

На черве мозжечка различают верхнюю и нижнюю поверхности. Идущие продольно по бокам червя бороздки: на передней поверхности - более мелкие, на задней - более глубокие - отделяют его от полушарий мозжечка .

Мозжечок состоит из серого и белого вещества. Серое вещество полушарий и червя мозжечка, расположенное в поверхностном слое, образует кору мозжечка (лат. cortex cerebelli ), а скопление серого вещества в глубине мозжечка - ядра мозжечка (лат. nuclei cerebelli ). Белое вещество - мозговое тело мозжечка (лат. corpus medullare cerebelli ), залегает в толще мозжечка и при посредстве трёх пар мозжечковых ножек (верхних, средних и нижних) связывает серое вещество мозжечка со стволом головного мозга и спинным мозгом .

[Червь

Червь мозжечка управляет позой, тонусом, поддерживающими движениями и равновесием тела. Дисфункция червя у человека проявляется в виде статико-локомоторной атаксии (нарушение стояния и ходьбы)

Ядра

Ядра мозжечка представляют собой парные скопления серого вещества, залегающие в толще белого, ближе к середине, то есть червю мозжечка. Различают следующие ядра:

зубчатое (лат. nucleus dentatus) залегает в медиальнонижних участках белого вещества. Это ядро представляет собой волнообразно изгибающуюся пластинку серого вещества с небольшим перерывом в медиальном отделе, который получил название ворот зубчатого ядра (лат. hilum nuclei dentati). Зубчатое ядро похоже на ядро оливы. Это сходство не случайно, так как оба ядра связаны проводящими путями, оливомозжечковыми волокнами (лат. fibrae olivocerebellares), и каждая извилина одного ядра аналогична извилине другого.

пробковидное (лат. nucleus emboliformis) расположено медиально и параллельно зубчатому ядру.

шаровидное (лат. nucleus globosus) залегает несколько медиальнее пробковидного ядра и на разрезе может быть представлено в виде нескольких небольших шариков.

ядро шатра (лат. nucleus fastigii) локализуется в белом веществе червя, по обеим сторонам от его срединной плоскости, под долькой язычка и центральной долькой, в крыше IV желудочка.

Ножки

C соседними мозговыми структурами мозжечок соединяется посредством трёх пар ножек. Ножки мозжечка (лат. pedunculi cerebellares ) представляют собой системы проводящих путей, волокна которых следуют к мозжечку и от него:

1. Нижние мозжечковые ножки (лат. pedunculi cerebellares inferiores ) идут от продолговатого мозга к мозжечку.

2. Средние мозжечковые ножки (лат. pedunculi cerebellares medii ) - от варолиева моста к мозжечку.

3. Верхние мозжечковые ножки (лат. pedunculi cerebellares superiores ) - направляются к среднему мозгу

Структура коры мозжечка: Кора мозжечка обладает большой поверхностью - в расправленном состоянии ее площадь составляет 17x20 см.

Кора мозжечка человека представлена тремя слоями: гранулярным слоем (самый глубокий), слоем клеток Пуркинье и молекулярным слоем (поверхностный) (рис. 40.10).

Молекулярный слой на свежих срезах испещрен мелкими точками (отчего и произошло его название). В нем расположены три типа нейронов - корзинчатые клетки, звездчатые клетки и клетки Лугаро. Направление аксонов клеток Лугаро неизвестно, аксоны корзинчатых клеток оканчиваются на теле (соме), а звездчатых - на дендритах клеток Пуркинье.

Звездчатые и корзинчатые клетки молекулярного слоя - это тормозные интернейроны с окончаниями на клетках Пуркинье. Проекции корзинчатых нейронов к клеткам Пуркинье ориентированы под прямым углом к длинной оси листков мозжечка. Эти аксоны называются поперечными волокнами (рис. 40.11).

Средний слой образован клетками Пуркинье, число которых у человека составляет 15 млн. Это крупные нейроны, их дендриты широко ветвятся в молекулярном слое. Аксоны клеток Пуркинье спускаются к ядрам мозжечка, и небольшое их количество заканчивается на вестибулярных ядрах. Это единственные аксоны, которые выходят из мозжечка. Организацию коры мозжечка принято рассматривать относительно клеток Пуркинье, образующих из него выход.

Нижний слой коры мозжечка называется гранулярным, так как на срезах имеет зернистый вид. Этот слой составляют мелкие клетки-зерна (около 1 000-10 000 млн), аксоны которых идут в молекулярный слой. Там аксоны Т- образно делятся, посылая в каждом направлении вдоль поверхности коры ветвь (параллельное волокно) длиной 1 -2 мм. Эти ветви проходят через области ветвления дендритов остальных типов нейронов мозжечка и образуют на них синапсы. В зернистом слое расположены также более крупные клетки Гольджи, дендриты которых распространяются на относительно далекие расстояния в молекулярном слое, а аксоны идут к клеткам-зернам.

Гранулярный слой примыкает к белому веществу мозжечка и содержит большое количество интернейронов (в том числе клетки Гольджи и клетки- зерна) около половины всех нейронов мозга. Моховидные волокна образуют в коре мозжечка возбуждающие синаптические окончания на дендритах клеток-зерен (гранулярных клеток) . На каждой гранулярной клетке конвергируют многие подобные волокна. Синаптические окончания собираются в так называемые мозжечковые гломерулы (клубочки). Они получают тормозные проекции от клеток Гольджи.

Аксоны гранулярных клеток поднимаются через слой клеток Пуркинье к молекулярному слою, где каждый из них разделяется на два параллельные волокна. Последние проходят вдоль длинной оси листка и оканчиваются возбуждающими синапсами на дендритах клеток Пуркинье и Гольджи, а также на интернейронах молекулярного слоя - звездчатых клетках и корзинчатых клетках. Каждое параллельное волокно образует синаптические контакты примерно с 50 клетками Пуркинье, а каждая клетка Пуркинье получает связи примерно от 200000 параллельных волокон.

В кору мозжечка входят два типа двигательных волокон. Лазящие (лиановидные) волокна проходят через зернистый слой и заканчиваются в молекулярном слое на дендритах клеток Пуркинье. Отростки лиановидных волокон оплетают дендриты этих клеток подобно ветвям плюща. К каждой клетке Пуркинье подходит только одно волокно, тогда как каждое лиановидное волокно иннервирует 10 - 15 нейронов Пуркинье. Все остальные афферентные пути мозжечка представлены гораздо более многочисленными (около 50 млн) моховидными (мшистыми) волокнами, оканчивающимися на клетках - зернах. Каждое мшистое волокно отдает множество коллатералей, благодаря чему одно такое волокно иннервирует множество клеток коры мозжечка. Вместе с тем к каждой клетке коры подходят многочисленные параллельные волокна от клеток-зерен, и поэтому через эти нейроны на любой клетке коры мозжечка конвергируют сотни мшистых волокон.

37. схема филогенеза головного мозга по Е. К. Сепп

наI этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencephalon). Развитие заднего мозга происходит под влиянием рецепторов акустики и гравитации (рецепторы VIII пары черепных нервов), имеющих ведущее значение для ориентации в водной среде.

В дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг, являющийся переходным отделом от спинного мозга к головному и потому называемыйmyelencephalon (myelos - спинной мозг, епсeрhalon - головной ), и собственнозадний мозг - metencephalon , из которого развиваются мозжечок и мост.

В процессе приспособления организма к окружающей среде путем изменения обмена веществ в заднем мозге как наиболее развитом на этом этапе отделе центральной нервной системы возникают центры управления жизненно важными процессами растительной жизни, связанными, в частности, с жаберным аппаратом (дыхание, кровообращение, пищеварение и др.). Поэтому в продолговатом мозге возникают ядра жаберных нервов (группа X пары - вагуса). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозге человека, чем объясняется смерть, наступающая при повреждении продолговатого мозга. На II этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг, mesencephalon. На III этапе, в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, воспринимающий содержащиеся в воздухе химические вещества, сигнализирующие своим запахом о добыче, опасности и других жизненно важных явлениях окружающей природы.

39. Четвёртый желудочек головного мозга (лат. ventriculus quartus ) - один из желудочков головного мозга человека. Простирается от водопровода мозга (Сильвиева водопровода) до задвижки (лат. obex ), содержит спинномозговую жидкость. Из четвёртого желудочка спинномозговая жидкость попадает в субарахноидальное пространство посредством двух боковых отверстий Люшки и одного срединно расположенного отверстия Мажанди.

Дно четвёртого желудочка имеет форму ромба (другое название - «ромбовидная ямка»), образовано задними поверхностями моста ипродолговатого мозга. Над дном в виде шатра нависает крыша четвёртого желудочка.

40. Вентральнее от верхних и нижних холмиков крыши находится водопровод среднего мозга, окруженный центральным серым веществом

(про эволюцию смотреть билет 20, 21.)

41. Эпифи́з , или шишкови́дное тело - небольшой орган, выполняющий эндокринную функцию, считающийся составной частью фотоэндокринной системы; относится к промежуточному мозгу. Непарное образование серовато-красного цвета, расположенное в центре мозга между полушариями в месте межталамического сращения. Прикреплен к мозгу поводками (лат. habenulae ). Вырабатывает гормоны мелатонин, серотонин и адреногломерулотропин.

Анатомически принадлежит к надталамической области, или эпиталамусу. Эпифиз относится к диффузной эндокринной системе , однако часто его называют железой внутренней секреции (приписывая его принадлежность к гландулярной эндокринной системе). На основании морфологических признаков эпифиз причисляют к органам, находящимся за пределом гематоэнцефалического барьера.

До сих пор функциональная значимость эпифиза для человека недостаточно изучена. Секреторные клетки эпифиза выделяют в кровь гормон мелатонин, синтезируемый изсеротонина, который участвует в синхронизации циркадных ритмов (биоритмы «сон - бодрствование») и, возможно, влияет на все гипоталамо-гипофизарные гормоны, а также иммунную систему. Адреногломерулотропин (Farell 1959) стимулирует выработку альдостерона, биосинтез осуществляется путём восстановления серотонина.

К известным общим функциям эпифиза относят:

§ торможение выделения гормонов роста;

§ торможение полового развития и полового поведения;

§ торможение развития опухолей.

§ влияние на половое развитие и сексуальное поведение. У детей эпифиз имеет бо́льшие размеры, чем у взрослых; по достижении половой зрелости выработка мелатонина уменьшается.

42 .Ретикулярная формация - это формация, идущая от спинного мозга к таламусу в ростральном (к коре) направлении. Кроме участия в обработке сенсорной информации, ретикулярная формация оказывает активизирующее воздействие на кору головного мозга, контролируя таким образом деятельность спинного мозга. Впервые механизм воздействия ретикулярной формации на мышечный тонус был установлен Р.Гранитом (R.Granit): он показал, что ретикулярная формация способна изменять активность γ-мотонейронов, в результате чего их аксоны (γ-эфференты) вызывают сокращение мышечных веретён, и, как следствие, усиление афферентной импульсции от мышечных рецепторов. Эти импульсы, поступая в спинной мозг, вызывают возбуждение α-мотонейронов, что и является причиной тонуса мышц.

43. Промежу́точный мозг (Diencephalon) - отдел головного мозга.

В эмбриогенезе промежуточный мозг образуется на задней части первого мозгового пузыря. Спереди и сверху промежуточный мозг граничит с передним, а снизу и сзади - со средним мозгом.

Структуры промежуточного мозга окружают третий желудочек.

Структура:

Промежуточный мозг подразделяется на:

Таламический мозг (Thalamencephalon)

Подталамическую область или гипоталамус (hypothalamus)

Третий желудочек, который является полостью промежуточного мозга

Таламический мозг включает три части:

Зрительный бугор (Таламус)

Надталамическую область (Эпиталамус)

Заталамическую область (Метаталамус)

Гипоталамус подразделяется на четыре части:

Передняя гипоталамическая часть

Промежуточная гипоталамическая часть

Задняя гипоталамическая часть

Дорсо-латеральная гипоталамическая часть

Третий желудочек имеет пять стенок:

Латеральная стенка представлена зрительным бугром

Нижняя стенка представлена подталамической областью и частично ножками мозга

Задняя стенка представлена задней спайкой и шишковидным углублением

Верхняя стенка представлена сосудистой оболочкой III желудочка

Передняя стенка представлена столбами свода, передней спайкой и конечной пластинкой

Функции промежуточного мозга:

Движение, в том числе и мимика.

Обмен веществ.

Отвечает за чувство жажды, голода, насыщения.

44. Гипоталамус (лат. Hypothalamus ) или подбугорье - отдел головного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название.

Гипоталамус располагается спереди от ножек мозга и включает в себя ряд структур: расположенную спереди зрительную и обонятельную части. К последней относится собственно подбугорье, или гипоталамус, в котором расположены центры вегетативной части нервной системы. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты и медиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный.

Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй - эффекторную роль.

45. Строение Гипофиса:

Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней - аденогипофиза (составляет 70-80 % массы органа) и задней - нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.

Продолговатый мозг является непосредственным продолжением спинного мозга

  • отвечает за дыхание, кровообращение, пищеварение;
  • содержит рефлексы кашля, чихания, глотания, сосания, рвоты и т.д.

Мозжечок отвечает за координацию движений.


Средний мозг отвечает за ориентировочные реакции на свет и звук.


Промежуточный мозг регулирует обмен веществ в организме, согласовывает физиологические процессы, поддерживает гомеостаз (постоянство внутренней среды) двумя способами:

  • через гипофиз управляет всеми остальными железами внутренней секреции организма;
  • участвует в формировании чувств голода, холода, жажды и т.п., таким образом, влияет на поведение.

Большие полушария переднего мозга имеют борозды и извилины (как и мозжечок)

  • в передней части лобной доли находится зона логического мышления (она развита у человека лучше, чем у других животных);
  • в задней части лобной доли находится двигательная зона тела (отвечает за произвольные движения);
  • в нижней части лобной доли, на границе с теменной и височной, находится зона речи (она имеется только в мозге человека, у других животных ее нет);
  • в передней части теменной доли находится чувствительная зона тела (зона кожно-мышечной чувствительности) ;
  • в затылочной доле находится зона зрения ; это центральная часть зрительного анализатора, здесь происходит анализ и распознавание зрительных образов;
  • в височной доле находится зона слуха , это центральная часть слухового анализатора.

Установите соответствие между особенностями строения и функциями головного мозга человека и отделом, для которого они характерны: 1) продолговатый мозг, 2) передний мозг. Запишите цифры 1 и 2 в правильном порядке.
А) содержит дыхательный центр
Б) поверхность разделена на доли
В) воспринимает и обрабатывает информацию от органов чувств
Г) содержит (включает) сосудодвигательный центр
Д) содержит центры защитных реакций организма – кашля и чихания

Ответ


Выберите один, наиболее правильный вариант. В какой доле коры больших полушарий головного мозга расположены высшие центры кожного анализатора?
1) лобной
2) височной
3) затылочной
4) теменной

Ответ



1) промежуточный мозг
2) средний мозг
3) спинной мозг
4) мозжечок

Ответ


Выберите один, наиболее правильный вариант. У человека по сравнению с млекопитающими животными происходит сильное развитие следующей доли коры головного мозга
1) лобной
2) теменной
3) затылочной
4) височной

Ответ


Выберите один, наиболее правильный вариант. В какой доле коры больших полушарий головного мозга находится центр кожно-мышечного чувства у человека?
1) затылочной
2) височной
3) лобной
4) теменной

Ответ


Выберите один, наиболее правильный вариант. Регуляцию и согласование физиологических процессов, протекающих во внутренних органах, обеспечивает
1) промежуточный мозг
2) средний мозг
3) спинной мозг
4) мозжечок

Ответ


Выберите один, наиболее правильный вариант. В каком отделе головного мозга человека расположен дыхательный центр, на который влияет изменение концентрации углекислого газа в крови?
1) продолговатом
2) промежуточном
3) переднем
4) среднем

Ответ


Выберите один, наиболее правильный вариант. Продолговатый отдел головного мозга человека не регулирует
1) дыхательные движения
2) перистальтику кишечника
3) сердечные сокращения
4) равновесие тела

Ответ


Выберите один, наиболее правильный вариант. При разрушении клеток височной доли коры больших полушарий человек
1) получает искаженное представление о форме предметов
2) не различает силу и высоту звука
3) теряет координацию движений
4) не различает зрительные сигналы

Ответ


Выберите один, наиболее правильный вариант. Окончательный анализ высоты, силы и характера звука у человека происходит в
1) внутреннем ухе
2) слуховом нерве
3) барабанной перепонке
4) слуховой зоне коры мозга

Ответ


Выберите один, наиболее правильный вариант. Произвольные движения человека обеспечивают
1) мозжечок и промежуточный мозг
2) средний и спинной мозг
3) продолговатый мозг и мост
4) большие полушария переднего мозга

Ответ


Выберите один, наиболее правильный вариант. В каком отделе головного мозга располагаются центры речи человека
1) продолговатый мозг
2) промежуточный мозг
3) мозжечок
4) кора больших полушарий

Ответ


Установите соответствие между функцией отдела нервной системы человека и отделом, выполняющим данную функцию: 1) продолговатый мозг, 2) кора головного мозга. Запишите цифры 1 и 2 в правильном порядке.
А) регулирует деятельность сердечно-сосудистой системы
Б) отвечает за выработку условных рефлексов
В) содержит дыхательный центр
Г) анализирует зрительные и слуховые раздражения
Д) запускает реакцию кашля и чихания
Е) контролирует тонкие движения пальцев

Ответ


Выберите три верно обозначенные подписи к рисунку «Отделы головного мозга». Запишите цифры, под которыми они указаны.
1) промежуточный мозг
2) продолговатый мозг
3) средний мозг
4) мост
5) большое полушарие
6) мозжечок

Ответ


Установите соответствие между характеристикой и отделом головного мозга человека: 1) средний, 2) промежуточный, 3) продолговатый. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) содержит центры ориентировочных рефлексов
Б) содержит дыхательный центр
В) участвует в регуляции температуры тела
Г) расположен над мостом
Д) содержит центры защитных рефлексов (чихание, кашель)
Е) отвечает за чувство голода и насыщения

Ответ


Установите соответствие между характеристиками и отделами головного мозга: 1) промежуточный мозг, 2) продолговатый мозг, 3) мозжечок. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) располагается непосредственно над спинным мозгом
Б) обеспечивает точность и координацию движений
В) содержит центр дыхания
Г) имеет борозды и извилины
Д) включает в себя гипоталамо-гипофизарную систему
Е) располагаются центры голода, жажды, насыщения

Ответ



Установите соответствие между характеристиками и отделами головного мозга, обозначенными на рисунке цифрами 1 и 2. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) контролирует слюноотделение
Б) обеспечивает координацию движения
В) снаружи расположено серое вещество, внутри белое вещество
Г) располагается центр дыхания
Д) контролирует равновесие тела
Е) располагаются центры защитных рефлексов (рвоты)

Ответ


© Д.В.Поздняков, 2009-2019

Физиологическая роль легочного дыхания состоит в обеспечении оптимального газового состава артериальной крови. Для нормальной интенсивности процессов тканевого дыхания необходимо, чтобы кровь, поступающая в тканевые капилляры, всегда была насыщена кислородом и не содержала СО, в количествах, препятствующих отдаче его из тканей. Поскольку при прохождении крови через капилляры легких между плазмой и альвеолярным воздухом уста­навливается практически почти полное газовое равновесие, то оп­тимальное содержание газов в артериальной крови определяет соот­ветствующий состав альвеолярного воздуха. Оптимальное содержание газов в альвеолярном воздухе достигается путем изменения объема легочной вентиляции в зависимости от условий, существующих в данный момент в организме.

Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией, который направлен на достижение конечного приспособительного результата -обеспечение оптимального газового состава внутренней среды организма (крови, интерстициальной жидкости, ликвора) в постоянно меняющихся условиях его жизнедеятельности. Управление дыханием осуществля­ется по принципу обратной связи: при отклонении от оптимальных величин регулируемых параметров (рН, напряжение О, и СО,) из­менение вентиляции направлено на их нормализацию. Избыток, например, водородных ионов во внутренней среде организма {аци­доз) приводит к усилению вентиляции, а их недостаток {алкалоз) - к уменьшению интенсивности дыхания. В обоих случаях изменение вентиляции является средством достижения главной цели регуляции

дыхания - оптимизации газового состава внутренней среды (прежде всего, артериальной крови).

Регуляция внешнего дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани и сосудистых рефлексо­генных зонах. Центральный аппарат регуляции дыхания представля­ют нервные образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы. Основная функция управ­ления дыханием осуществляется дыхательными нейронами ствола го­ ловного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных мышц.

Дыхательный центр. Дыхательным центром называют совокуп­ность взаимно связанных нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность ды­хательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде.

Еще в начале XIX века было показано, что в продолговатом мозге на дне IV желудочка в каудальной его части (в области так называемого писчего пера) расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели ор­ганизма. Этот небольшой участок мозга в нижнем углу ромбовидной ямки, жизненно необходимый для поддержания ритмического дыха­ния, был назван "дыхательным центром". В дальнейшем было по­казано, что дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга, в области obex, вбли­зи stria acusticae, и состоит из двух отделов: инспираторного ("цент­ра вдоха") и экспираторного ("центра выдоха").

В ретикулярной формации продолговатого мозга обнаружены так называемые дыхательные нейроны, одни из которых разряжаются серией импульсов в фазу вдоха, другие - в фазу выдоха. В зави­симости от того, каким образом активность дыхательных нейронов коррелирует с фазами дыхательного цикла, их называют инспира-торными или экспираторными. В продолговатом мозге не найдено строго обособленных областей, которые содержали бы только ин-спиратерные или только экспираторные дыхательные нейроны. Тем не менее, инспираторные и экспираторные нейроны рассматривают как две функционально различные популяции, внутри которых ней­роны связаны между собой сетью аксонов и синапсов. Исследования активности одиночных нейронов ретикулярной формации продолго­ватого мозга привели к заключению, что область расположения дыхательного центра не может быть очерчена строго и однозначно. Так называемые дыхательные нейроны обнаружены почти на всем протяжении продолговатого мозга. Однако, в каждой половине про­долговатого мозга есть участки ретикулярной формации, где дыха­тельные нейроны сгруппированы с более высокой плотностью.

Дорсальная группа дыхательных нейронов продолговатого мозга находится вентролатеральнее ядра одиночного пучка и состо­ит, главным образом, из инспираторных нейронов. Часть этих кле-

ток дает нисходящие пути, идущие, в основном, в составе солитар-ного тракта и образующие у человека моносинаптические контакты с мотонейронами диафрагмального нерва в передних рогах 3-6 шейных сегментов спинного мозга. Нейроны диафрагмального ядра спинного мозга разряжаются или непрерывно (с учащением, в фазу вдоха) или залпами, подобно активности дыхательных нейронов продолговатого мозга. Движения диафрагмы, обеспечивающие от 70 до 90% дыхательного объема, связаны именно с нисходящими вли­яниями дорсальной группы инспираторных нейронов продолговатого мозга.

Вентральная группа дыхательных нейронов расположена в области обоюдного и ретроамбигуального ядер. Нейроны этой группы посылают нисходящие волокна к мотонейронам межребер­ных и брюшных мышц. Инспираторные мотонейроны спинного мозга концентрируются, главным образом, во 2- 6, а экспираторные - в 8- 10 грудных сегментах. В вентральной группе нейронов продолго­ватого мозга находятся также эфферентные преганглионарные ней­роны блуждающего нерва, обеспечивающие синхронные с фазами дыхания изменения просвета дыхательных путей. Максимум актив­ности нейронов блуждающего нерва, вызывающей повышение тонуса гладких мышц воздухоносных путей, наблюдается в конце выдоха, а минимум - в конце вдоха.

В продолговатом мозге обнаружены дыхательные нейроны с раз­личным характером ритмической активности. Только у части инспи­раторных и экспираторных нейронов начало разряда и длительность серии импульсов строго совпадают с периодом соответствующей фазы дыхательного цикла, Однако, при всем разнообразии видов возбуж­дения разных дыхательных нейронов продолговатого мозга у каждо­го из них характер ритмической активности остается, как правило, постоянным. На этом основании различают: а) "полные" инспира­торные и экспираторные нейроны, ритмическое возбуждение кото­рых по времени точно совпадает с соответствующей фазой дыхания; б) "ранние" инспираторные и экспираторные нейроны, дающие ко­роткую серию импульсов до начала вдоха или выдоха; в) "поздние", проявляющие залповую активность уже после начала инспирации или экспирации: г) "инспираторно- экспираторные", начинающие возбуждаться в фазе вдоха и остающиеся активными в начале вы­доха; я) "экспираторно-инспираторные", активность которых начи­нается во время вдоха и захватывает начало выдоха; е) "непрерыв­ ные", работающие без пауз, но с увеличением частоты импульсов во время вдоха или выдоха (рис.8.9).

Нейроны каждой разновидности не разбросаны по отдельности и нередко находятся друг от друга на расстояние не более 100 мкм. Полагают, что различные виды дыхательных нейронов образуют сво­еобразные микрокомплексы, которые служат теми очагами, где форми­руется автоматизм дыхательного центра. Типичным ритмообразующим комплексом является система из четырех нейронов ("ранних" и "позд­них" инспираторных и экспираторных), объединенных возвратными связями и способных в совокупности генерировать залповую актив-

Рис.8.9. Активность различных групп дыхательный нейронов про­долговатого мозга в связи с фазами дыхательного цикла.

I - вдох, II - выдох. Нейроны: 1 - полные; 2 - ранние; 3 - поздние инспираторные; 4,5,6 - аналогичные экспиратор­ные; 7 - инспираторно-экспира-торные; 8 -экспираторно-инспи-раторные; 9,10 - нейроны, об­ладающие непрерывной активнос­тью с усилением в различные фазы цикла.

ность. Каждый цикл начи­нается с активности "ран­него" инспираторного ней­рона. Затем возбуждение переходит последовательно на "поздний" инспираторный нейрон, "ранний" и "позд­ний" экспираторные нейро -ны и снова на "ранний" ин­спираторный. Благодаря на­личию возвратных связей, нейрон каждой ритмообра-зующей группы, возбужда­ясь, оказывает тормозное воздействие на два предше­ствующих ему в цикле ней­рона. Так называемые "пол­ные" инспираторные и экс­пираторные нейроны обес­печивают передачу возбуж­дения по нисходящим путям спинного мозга к мотоней­ронам, иннервирующим ды­хательные мышцы.

После перерезки у экс­периментальных животных ствола мозга ниже варолие-ва моста дыхательные дви­жения сохраняются. Одна­ко,- изолированный от нис­ходящих влияний дыхатель­ный центр способен обес­печить лишь примитивное дыхание, при котором дли­тельный выдох периодичес­ки прерывается короткими вдохами. Для стабильности и координации дыхательно­го ритма, обуславливающей дыхание с плавным харак­тером перехода от вдоха к выдоху, необходимо, в пер­вую очередь, участие нерв­ных образований варолиева моста.

В передней части варо­лиева моста обнаружена область, названная пневмо- таксическим центром, раз-

рушение которой приводит к удлинению фаз вдоха и выдоха, а электрическая стимуляция различных ее зон - к досрочному пере­ключению фаз дыхания. При перерезке ствола мозга на границе между верхней и средней третью варолиева моста и одновременном пересечении обоих блуждающих нервов дыхание останавливается на фазе вдоха, лишь иногда прерываемой экспираторными движениями (так называемый апнейзис). На основании этого был сделан вывод, что дыхательный ритм возникает в результате периодического тор­можения тонической активности нейронов продолговатого мозга афферентной импульсацией, приходящей по блуждающему нерву и действующей через экспираторные нейроны, а после перерезки блуждающего нерва - вследствие ритмического торможения, посту­пающего из пневмотаксического центра варолиева моста.

В ростральных отделах варолиева моста, в медиальном парабра-хиальном ядре, в участках мозговой ткани вентральнее его, а также в структурах, относящихся к управлению дополнительными дыха­тельными мышцами, т.е. в том месте, которое идентифицируют как пневмотаксический центр, найдено наибольшее количество дыха­тельных нейронов моста. В отличие от нейронов продолговатого мозга, стабильно сохраняющих характер залповой активности, в варолиевом мосту один и тот же дыхательный нейрон может изме­нить характер своей деятельности. Дыхательные нейроны варолиева моста организованы в группы, состоящие из 10-12 нейронов раз­ного вида. Среди них много так называемых переходных (фазово- охватывающих) нейронов, проявляющих с максимумом частоты при смене фаз дыхательного цикла. Этим нейронам приписывают функ­цию связывания различных фаз дыхательного цикла, подготовки ус­ловий для прекращения фазы вдоха и перехода к выдоху. Пневмо­таксический центр варолиева моста связан с дыхательным центром продолговатого мозга восходящими и нисходящими проводящими путями. К медиальному парабронхиальному ядру и ядру Келликера-Фузе из продолговатого мозга поступают аксоны нейронов одиноч­ного пучка и ретроамбигуального ядра. Эти аксоны являются ос­новным входом в пневмотаксического центра. Отличительной чертой активности дыхательных нейронов варолиева моста является то, что при нарушении связи с продолговатым мозгом они теряют залповый характер импульсации и модуляцию частоты импульсов в ритме дыхания.

Считается, что пневмотаксический центр получает импульсы от инспираторной части дыхательного центра продолговатого мозга и посылает импульсы обратно к дыхательному центру в продолговатый мозг, где они возбуждают экспираторные и тормозят инспираторные нейроны. Дыхательные нейроны варолиева моста первыми получают сведения о необходимости приспособления дыхания к изменяющим­ся условиям и соответствующим образом меняют активность нейро­нов дыхательного центра, а переходные нейроны обеспечивают плав­ную смену вдоха на выдох. Таким образом, благодаря совместной работе с пневмотаксическим комплексом, дыхательный центр про­долговатого мозга может осуществлять ритмическую смену фаз ды-

Функции дыхания

хательного цикла с оптимальным соотношением длительности вдоха,выдоха и дыхательной паузы. Однако, для нормальной жизнеде­ятельности и поддержания адекватного потребностям организма дыхания необходимо участие не только варолиева моста, но и выше­лежащих отделов головного мозга.

Роль механорецепторов легких в регуляции дыхания. Источни­ком информации дыхательного центра о состоянии легких и внеле-гочных бронхов и трахеи являются чувствительные нервные оконча­ния, расположенные в гладких мышцах, в подслизистом слое и в эпителии воздухоносных путей. В зависимости от локализации, вида воспринимаемых раздражений и характера рефлекторных ответов на раздражение различают три типа рецепторов: 1) рецепторы растяже­ния легких; 2) ирритантные рецепторы; 3) J-рецепторы ("юкстака-пиллярные" рецепторы легких).

Рецепторы растяжения легких находятся, преимущественно, в гладких мышцах воздухоносных путей - в трахее и бронхах всех калибров. Таких рецепторов в каждом легком около 1000 и связаны они с дыхательным центром крупными миелинизированными аффе­рентными волокнами блуждающего нерва с высокой скоростью про­ведения возбуждения (около 40 м/с). Непосредственным раздражи­телем этого типа механорецепторов является внутреннее напряжение в тканях стенок воздухоносных путей, которое определяется пере­падом давления по обе стороны стенок и изменением их вязкоэлас-тических свойств в зависимости, например, от интенсивности брон-хомоторного тонуса. При умеренном растяжении легких во время вдоха частота импульсов от этих рецепторов линейно зависит от объема легких. Пороги раздражения отдельных механорецепторов существенно различаются. Часть из них имеет высокий порог и генерирует импульсы только при вдохах, когда объем легких увели­чивается сверх функциональной остаточной емкости. Другие (низко­пороговые) остаются активными и во время пассивного выдоха. Частота импульсов в афферентных волокнах от рецепторов растяже­ния особенно возрастает во время развития процесса вдоха. Если же достигнутый объем легких длительно удерживается на постоянном уровне, то активность рецепторов растяжения мало изменяется, следовательно, они обладают медленной адаптацией.

Раздувание легких вызывает рефлекторное торможение вдоха и переход к выдоху, а резкое уменьшение объема легких (путем, на­пример, искусственного отсасывания воздуха через интубированный бронх одного легкого) приводит к активации вдоха. При перерезке блуждающих нервов эти реакции исчезают, и дыхание становится резко замедленным и глубоким. Указанные реакции, названные реф­лексами Геринга- Брейера, легли в основу представления о рефлек­ торной саморегуляции дыхания. Суть ее заключается в том, что длительность фаз дыхательного цикла и частота дыхания определя­ются импульсацией, поступающей к дыхательному центру от меха­норецепторов легких по афферентным волокнам блуждающего нерва. Рецепторы растяжения обеспечивают обратную связь между легкими

и дыхательным центром, сигнализируя об объеме легких и скорости его изменения. При достижении легкими определенного критичес­кого объема под воздействием импульсации от механорецепторов легких возбуждаются экспираторные нейроны дыхательного центра, активность инспираторных нейронов тормозится, поэтому вдох сме­няется выдохом. Считается, что рефлексы с рецепторов растяжения легких играют основную роль в регуляции легочной вентиляции, именно от них зависит глубина и частота дыхания. Однако, пока­зано, что у взрослого человека рефлексы Геринга- Брейера включа­ются, когда дыхательный объем превосходит 1 л (как, например, при физической нагрузке). Не исключено, что эти рефлексы могут иметь большое значение у новорожденных.

На всем протяжении трахеи и бронхов в эпителии и субэпите­лиальном слое расположены так называемые ирритантные рецепто­ ры (другие названия: быстро адаптирующиеся механорецепторы воз­духоносных путей, рецепторы слизистой оболочки трахеи и брон­хов). Они реагируют на резкие изменения объема легких, а также при действии на слизистую трахеи и бронхов механических или химических раздражителей: пылевых частиц, накапливающейся в воз­духоносных путях слизи, паров едких веществ (аммиака, эфира, та­бачного дыма). Чрезмерное спадение (пневмоторакс, коллапс, ате­лектаз) или растяжение легких приводит к изменению напряжения стенок внутрилегочных дыхательных путей и возбуждению ирри-тантных рецепторов. В отличие от легочных рецепторов растяжения ирритантные рецепторы обладают быстрой адаптацией. При попа­дании мельчайших инородных тел (пыль, частицы дыма) активация ирритантных рецепторов вызывает у человека кашлевой рефлекс, а также неприятные ощущения в груди типа першения и жжения. Возбуждения ирритантных рецепторов бронхов вызывает учащение дыхания, прежде всего, за счет укорочения выдохов, дыхание ста­новится частым и поверхностным. Активация этих рецепторов вы­зывает также рефлекторную бронхоконстрикцию.

В интерстиции альвеол и дыхательных бронхов, вблизи от капил­ляров, располагаются J -рецепторы ("юкстакапиллярные" рецепторы легких). Раздражителем для этих рецепторов является повышение давления в малом круге кровообращения, а также увеличение объе­ма интерстициальной жидкости в легких. Сильное и устойчивое во времени возбуждение J-рецепторов происходит при застое крови в малом круге кровообращения, отеке легких, эмболии мелких сосудов легких и других повреждениях легочной ткани, возникающих, на­пример, при пневмониях. J-рецепторы чувствительны к ряду био­логически активных веществ (никотину, простагландинам, гистами-ну), проникающих в интерстиции легких либо из воздухоносных путей, либо с кровью малого круга. Импульсы от этих рецепторов направляются к дыхательному центру по медленным немиелинизи-рованным волокнам блуждающего нерва, вызывая проявление час­того поверхностного дыхания. При развитии левожелудочковой не­достаточности кровообращения и интерстициальном отеке легких возбуждения J-рецепторов у человека вызывает ощущение одышки,

т.е. ощущение затрудненного дыхания. В ответ на раздражение этих рецепторов, кроме учащенного дыхания (тахипное), происходит так­же рефлекторная бронхоконстрикция. Возбуждение J-рецепторов, вызванное увеличением кровенаполнения легких при чрезмерно тя­желой мышечной работе, может приводит к рефлекторному тормо­жению активности скелетных мышц.

В координации дыхательных движений участвуют рефлексы с про-приорецепторов дыхательных мышц. Межреберные мышцы и мышцы живота имеют специализированные рецепторы растяжения (мышеч­ ные веретена и сухожильные рецепторы Гольджи). В диафрагме такие рецепторы содержатся в небольшом количестве. Проприоре-цепторы дыхательной мускулатуры возбуждаются при увеличении длины и степени напряжения мышечных волокон. Импульсация от этих рецепторов распространяется преимущественно к спинальным центрам дыхательных мышц, а также к центрам головного мозга, контролирующим состояние скелетной мускулатуры. Межреберные и брюшные мышцы обладают рефлексами растяжения, которые нахо­дятся под контролем супрабульбарных структур головного мозга. Значение сегментарных проприорецептивных рефлексов дыхательных мышц заключается в автоматической регуляции силы сокращений в зависимости от исходной длины мышц и сопротивления, которое они встречают при сокращении. Благодаря этим особенностям межреберной мускулатуры, достигается соответствие механичес­ких параметров дыхания сопротивлению дыхательной системы, которое возрастает, например, при уменьшении растяжимости легких, сужении бронхов и голосовой щели, набухании слизи­стой оболочки носа. Во всех случаях сегментарные рефлексы на растяжение усиливают сокращение межреберных мышц и мышц передней брюшной стенки. У человека импульсация с пропри-орецепторов дыхательных мышц участвует в формировании ощущения, возникающих при нарушении дыхания.

Роль хеморецепторов в регуляции дыхания. Основное назначение регуляции внешнего дыхания заключается в поддержании оптималь­ ного газового состава артериальной крови - напряжения О 2 , на­пряжения СО 2 и, тем самым, в значительной мере - концентрации водородных ионов. У человека относительное постоянство напряже­ния О 2 и СО 2 артериальной крови сохраняется даже при физической работе, когда потребление О 2 и образование СО 2 возрастает в не­сколько раз. Это возможно потому, что при работе вентиляция легких увеличивается пропорционально интенсивности метаболичес­ких процессов. Избыток СО 2 и недостаток О 2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О 2 и СО 2 в альвеолах и в артериальной крови почти не изменяется.

Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО 2 . При вдыхании газовой смеси, содержащей 5-7% СО 2 , увеличение парциального давления СО 2 в альвеолярном воздухе задерживает выведение СО 2 из

венозной крови. Связанное с этим повышение напряжения СО 2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыха­ния, концентрация СО 2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО 2 в альвеолах на 0.2% вы­зывает увеличение вентиляции легких на 100%. Роль СО 2 как глав­ного регулятора дыхания, выявляется и в том, что недостаток со­держания СО 2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному пре­кращению дыхательных движения (апное). Это происходит, напри­мер, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО 2 в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается.

Указанные изменения газового состава внутренней среды орга­низма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствителъные рецепторы, расположенные непосредственно в структурах продолговатого мозга ("центральные хеморецепторы") и в сосудистых рефлексогенных зонах ("перифери­ ческие хеморецепторы").

Центральными (медуллярными) хеморецепторами, постоянно участву­ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО 2 и кислотно-щелочному состоянию омывающей их межклеточной мозговой жид­кости. Хемочувствительные зоны имеются на переднебоковой поверх­ности продолговатого мозга около выходов подъязычного и блужда­ющего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация кото­рых зависит от напряжения СО 2 в артериальной крови. Спинномоз­говая жидкость отделена от крови гемато-энцефалическим барьером, относительно непроницаемым для ионов Н + и НСО 3 , но свободно пропускающим молекулярный СО 2 . При повышении напряжения СО 2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н + , которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО 2 и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейро­нов дыхательного центра продолговатого мозга. В результате этого, дыхание становится более глубоким и вентиляция легких растет, глав­ным образом, за счет увеличения объема каждого вдоха. Напротив, снижение напряжения СО 2 и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО 2 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания.

Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и месте деления (бифуркация) общей сонной артерии (каротидный си­ нус), т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Однако, хеморецепторы представля­ют собой самостоятельные образования, заключенные в особых тель­цах - клубочках или гломусах, которые находятся вне сосуда. Аффе­рентные волокна от хеморецепторов идут: от дуги аорты - в со­ставе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называ­емом нерве Геринга. Первичные афференты синусного и аортально­го нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга.

Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных {нормоксических) условиях эти рецепторы находятся в состоянии постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Умень­шение напряжения кислорода в артериальной крови ниже нормаль­ного уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов. Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посыла­емых хеморецепторами каротидного тельца.

Повышению напряжения СО 2 артериальной крови и соответству­ющему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Особенность роли, которую играют артериаль­ные хеморецепторы в контроле за напряжением углекислоты, состо­ит в том, что они ответственны за начальную, быструю, фазу вен­тиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится на­пряжение СО 2 области хемочувствительных мозговых структур.

Гиперкапническая стимуляция артериальных хеморецепторов, по­добно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО 2 20-30 мм рт.ст и, сле­довательно, имеет место уже в условиях нормального напряжения СО 2 в артериальной крови (около 40 мм рт.ст.).

Важным моментом для регуляции дыхания является взаимодей­ ствие гуморальных стимулов дыхания. Оно проявляется, например, в том, что на фоне повышенного артериального напряжения СО 2 или увеличенной концентрации водородных ионов вентиляторная ре­акция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение пар­циального давления углекислого газа в альвеолярном воздухе вызы­вают нарастание легочной вентиляции, превышающее арифметичес­кую сумму ответов, которые вызывают эти факторы, действуя по­рознь. Физиологическое значение этого явления заключается в том,

что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъ­емом газообмена и требует адекватного ему усиления работы дыха­тельного аппарата.

Установлено, что гипоксемия снижает порог и увеличивает ин­тенсивность вентиляторной реакции на СО 2 . Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО 2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О 2 во вдыхаемом воздухе (например, при дыхании газовы­ми смесями с низким содержанием О 2 , при пониженном атмосфер­ном давлении в барокамере или в горах) возникает гипервентиля­ция, направленная на предупреждение значительного снижения пар­циального давления О 2 в альвеолах и напряжения его в артеальной крови. При этом из-за гипервентиляции наступает снижение пар­циального давления СО 2 в альвеолярном воздухе и развивается ги-покапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО 2 во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О 2 и СО 2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, напряжение О 2 все же снижается, и возникает умеренная гипоксемия.

В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморе­цепторов имеет жизненно важное значение для организма, напри­мер, в условиях дефицита О 2 . При гипоксии из-за снижения окис­лительного метаболизма в мозге чувствительность медуллярных хе­морецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих усло­виях получает интенсивную стимуляцию от артериальных хеморе­цепторов, для которых гипоксемия является адекватным раздражи­телем. Таким образом, артериальные хеморецепторы служат "ава­рийным" механизмом реакции дыхания на изменение газового со­става крови, и, прежде всего, на дефицит кислородного снабжения мозга.

Взаимосвязь регуляции внешнего дыхания и других функций организма. Обмен газов в легких и тканях и приспособление его к запросам тканевого дыхания при различных состояниях организма обеспечивается путем изменения не только легочной вентиляции, но и кровотока как в самих легких, так и других органах. Поэтому механизмы нейрогуморальной регуляции дыхания и кровообращения осуществляются в тесном взаимодействии. Рефлекторные влияния, исходящие из рецептивных полей сердечно-сосудистой системы (на­пример, гинокаротидной зоны), изменяют деятельность как дыха-

372

тельного, так и сосудодвигательного центров. Нейроны дыхательного центра подвержены рефлекторным воздействиям со стороны бароре-цепторных зон сосудов - дуги аорты, каротидного синуса. Сосудо-двигательные рефлексы неразрывно связаны и с изменением функ­ции дыхания. Повышение сосудистого тонуса и усиление сердечной деятельности, соответственно, сопровождаются усилением дыхатель­ной функции. Например, при физической или эмоциональной на­грузке у человека обычно имеет место согласованное повышение минутного объема крови в большом и малом круге, артериального давления и легочной вентиляции. Однако, резкое повышение арте­риального давления вызывает возбуждение синокаротидных и аор­тальных барорецепторов, которое приводит к рефлекторному тормо­жению дыхания. Понижение артериального давления, например, при кровопотере, приводит к увеличению легочной вентиляции, что вызвано, с одной стороны, снижением активности сосудистых баро­рецепторов, с другой - возбуждением артериальных хеморецепторов в результате местной гипоксии, вызванной уменьшением в них кровотока. Учашение дыхания возникает пи повышении давления крови в малом круге кровообращения и при растяжении левого предсердия.

На работу дыхательного центра оказывает влияние афферентация от периферических и центральных терморецепторов, особенно при резких и внезапных температурных воздействиях на рецепторы кожи. Погружение человека в холодную воду, например, тормозит выдох, в результате чего возникает затяжной вдох. У животных, у которых отсутствуют потовые железы (например, у собаки), с повышением температуры внешней среды и ухудшением теплоотдачи увеличива­ется вентиляция легких за счет учашения дыхания (температурное полипное) и усиливается испарение воды через систему дыхания.

Рефлекторные влияния на дыхательный центр весьма обширны, и практически все рецепторные зоны при их раздражении изменяют дыхание. Эта особенность рефлекторной регуляции дыхания отража­ет общий принцип нейронной организации ретикулярной формации ствола мозга, в состав которой входит и дыхательный центр. Ней­роны ретикулярной формации, в том числе и дыхательные нейроны, имеют обильные коллатерали почти от всех афферентных систем организма, что и обеспечивает, в частности, разносторонние реф­лекторные влияния на дыхательный центр. На деятельности нейро­нов дыхательного центра отражается большое количество различных неспецифических рефлекторных влияний. Так, болевые раздражения сопровождаются немедленным изменением дыхательной ритмики. Функция дыхания теснейшим образом связана с эмоциональными процессами: почти все эмоциональные проявления человека сопро­вождаются изменением функции дыхания; смех, плач - это изме­ненные дыхательные движения.

В дыхательный центр продолговатого мозга непосредственно по­ступает импульсация от рецепторов легких и рецепторов крупных сосудов, т.е. рецептивных зон, раздражение которых имеет особенно существенное значение для регуляции внешнего дыхания. Однако,

для адекватного приспособления функции дыхания к меняющимся условиям существования организма система регуляции должна обла­дать полной информацией о том, что происходит в организме и в окружающей среде. Поэтому для регуляции дыхания имеют значение все афферентные сигналы от разнообразных рецептивных полей ор­ганизма. Однако, вся эта сигнализация поступает не непосредствен­но в дыхательный центр продолговатого мозга, а в различные уров­ни головного мозга (рис.8.10), и от них непосредственно может передаваться как на дыхательную, так и на другие функциональные системы. Различные центры головного мозга образуют с дыхатель­ным центром функционально подвижные ассоциации, обеспечива­ющие полноценное регулирование дыхательной функции.

Рис.8.10. Схема организации центрального аппарата регуляции дыхания.

Стрелками обозначены пути передачи регулирующих влияний к дыхательному центру продолговатого мозга.

Как видно на рис. 8.10, в центральный механизм, регулирующий дыхание, включены разные уровни ЦНС. Значение для регуляции дыхания структур стволовой части мозга, в том числе варолиевого моста, среднего мозга, заключается в том, что эти отделы ЦНС получают и переключают на дыхательный центр проприоцептивную и интероцептивную сигнализацию, а промежуточный мозг - сигнали­ зацию об обмене веществ. Кора больших полушарий, как централь­ная станция анализаторных систем, вбирает и обрабатывает сигналы от всех органов и систем, делая возможным адекватное приспособ­ление различных функциональных систем, в том числе и дыхания, к тончайшим изменениям жизнедеятельности организма.

Своеобразие функции внешнего дыхания заключается в том, что она в одной и той же мере и автоматическая, и произвольно уп­ равляемая. Человек прекрасно дышит во сне и под наркозом; у животных дыхание сохраняет практически нормальный характер даже после удаления всего переднего мозга. В то же время любой чело­век может произвольно, хотя и ненадолго, остановить дыхание или изменить его глубину и частоту. Произвольное управление дыханием основано на наличии в коре больших полушарий представительства дыхательных мышц и наличии корковомедуллярных нисходящих ак­тивирующих и тормозных влияний на эфферентную часть дыхатель­ного центра. Возможность произвольного управления дыханием ог­раничена определенными пределами изменений напряжения кисло­рода и углекислоты, а также рН крови. При чрезмерной произво­льной задержке дыхания или резком отклонении фактического ми­нутного объема вентиляции от физиологически обоснованного воз­никает стимул, который возвращает дыхание под контроль дыха­тельного центра, преодолевая корковое влияние.

Роль коры головного мозга в регуляции дыхания показана в экс­периментах на животных с электрическим раздражением различных зон больших полушарий, а также с их удалением. Оказалось, что стоит лишь бескорковому животному в течение 1-2 мин сделать несколько шагов, как у него начинается резко выраженная и дли­тельная одышка, т.е. значительное учащение и усиление дыхания. Следовательно, если требуется приспособление дыхания к условиям внешней среды, например при мышечной деятельности, необходимо участие высших отделов центральной нервной системы. Бескорковые животные сохраняют равномерное дыхание лишь в состоянии пол­ного покоя и теряют способность к адаптации дыхания к измене­ниям внешней среды при мышечной работе.

Влияние коры головного мозга на дыхание у человека проявля­ется, например, в усилении дыхания еще в стартовых условиях перед выполнением мышечных усилий, сразу после команды "пригото­виться". Дыхание усиливается у человека непосредственно после начала движений, когда образующиеся при мышечной работе гумо­ральные вещества еще не достигли дыхательного центра. Следова­тельно, усиление дыхания в самом начале мышечной работы обу­словлено рефлекторными воздействиями, повышающими возбудимость дыхательного центра.

Кортикальные влияния на дыхание отчетливо проявляются при тренировке к выполнению одной и той же работы: при этом про­исходит постепенное развитие и совершенствование адекватных для данной работы функциональных взаимосвязей между мышечной ра­ботой и дыханием. На это указывает динамика изменения внешнего дыхания в процессе, например, тренировки к работе на велоэрго-метре с переменной интенсивностью. Если темп работы постоянен, а ее интенсивность периодически меняется по заранее составленно­му графику, то по мере тренировки с такой программой средний уровень легочной вентиляции снижается, но изменение вентиляции при переключении на новый уровень интенсивности наступает бы­стрее. Следовательно, в результате тренировки к работе переменной интенсивности развивается способность к более быстрому переклю­чению деятельности дыхательного аппарата на новый уровень функ­циональной активности, адекватной новым условиям работы. Лучшая согласованность во времени процессов координации функции внеш­него дыхания при переходе от одних условий работы к другим связана с функциональной перестройкой высших отделов ЦНС. В результате этого, по мере тренировки к мышечной работе колебания объема дыхания становятся меньше и дыхание делается более ров­ным. Выработанный, таким образом, динамический стереотип про­является в том, что при переходе к работе с постоянной интенсив­ностью вентиляция легких имеет выраженный волнообразный характер.

Роль высших отделов ЦНС в регуляции дыхания у человека про­является не только в его способности произвольно менять темп, ритм и амплитуду дыхательных движения, но и в его способности к "сознательному" восприятию своего гипоксического, либо гипер- капнического состояния.

Человек не может непосредственно воспринимать содержание кислорода и углекислого газа во вдыхаемом воздухе в силу отсут­ствия адекватных рецепторов в дыхательных путях и легких. Однако, с помощью метода активного выбора предпочитаемых дыхательных смесей (так называемый газопреферендум) показано, что люди избе­гают дышать газовыми смесями, которые вызывают в организме гипоксические или гиперкапнические сдвиги. Например, человеку предлагали выбрать одну из двух поочередно вдыхаемых смесей газов с разным, неизвестным ему содержанием кислорода. В таких усло­виях смеси, содержавшие 15% О 2 и более, люди еще не отличали от обычного воздуха, 12%-е содержание кислорода вызывало у час­ти людей уже отрицательную реакцию, а смесь с 9% кислорода отвергалась почти всеми испытуемыми. Аналогичным образом чело­век, избегал дышать смесями, обогащенными углекислым газом.

Исследования на спортсменах выявили их способность оценивать гипоксические и гиперкапнические сдвиги в своем организме не только при вдыхании соответствующих газов, но и при интенсивной мышечной деятельности. В частности, после спортивной тренировки исследуемые могли по своим ощущениям почти точно определять степень оксигенации собственной артериальной крови.

При дыхании газовыми смесями, имеющими физиологически не­адекватный состав, человек независимо от интенсивности развива­ющейся гипервентиляции иногда заявляет, что ему "трудно дышать", т.е. жалуется на одышку. Ощущение одышки является отражением рассогласования между хеморецептивной сигнализацией и другими звеньями рефлекторной регуляции дыхания, в том числе обратной афферентацией, исходящей из работающей дыхательной мускулатуры. Такого рода ощущения лежат в основе самоконтроля резервной работоспособности при выполнении человеком значительной мы­шечной нагрузки.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»