Репродуктивная функция и биологическое значение мейоза. Мейоз

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки — зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).


Рис. 2. Схема гаметогенеза: à — сперматогенез; á — овогенез


Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: ? - сперматогенез; ? - овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Уже почти три года как я веду свой блог репетитора по биологии . Некоторые темы вызывают особый интерес и комментарии к статьям становятся невероятно «раздутым». Понимаю, что читать такие длинные «портянки» со временем становится очень неудобно.
Поэтому решил часть вопросов читателей и мои ответы на них, имеющих, возможно, интерес для многих, размещать в отдельной рубрике блога, которую назвал «Из диалогов в комментариях».

Чем интересна тема этой статьи? Ведь понятно, что основное биологическое значение мейоза: обеспечение постоянства числа хромосом в клетках из поколения в поколение при половом размножении.

Причем, не надо забывать, что у животных организмов в специализированных органах (гонадах) из диплоидных соматических клеток (2n) мейозом образуются гаплоидные половые клетки гаметы (n).

Так же помним, что все растения живут с : спорофита, образующего споры и гаметофита, образующего гаметы. Мейоз у растений протекает на стадии созревания гаплоидных спор (n). Из спор развивается гаметофит, все клетки которого гаплоидные (n). Поэтому в гаметофитах митозами образуются гаплоидные мужские и женские половые клетки гаметы (n) .

Теперь давайте посмотрим материалы комментариев к статье какие же существуют тесты для ЕГЭ по вопросу о биологическом значении мейоза .

Светлана (учитель биологии). Добрый день, Борис Фагимович!

Я проанализировала 2 пособия ЕГЭ Калиновй Г.С. и вот что обнаружила.

1 вопрос.


2. Образовании клеток с удвоенным числом хромосом;
3. Образовании гаплоидных клеток;
4. Рекомбинации участков негомологичных хромосом;
5. Новых комбинациях генов;
6. Появление большего числа соматических клеток.
Официальный ответ 3,4,5 .

2 вопрос похожий, НО!
Биологическое значение мейоза состоит в:
1. Появлении новой последовательности нуклеотидов;
2. Образовании клеток с диплоидным набором хромосом;
3. Образовании клеток с гаплоидным набором хромосом;
4. Формировании кольцевой молекулы ДНК;
5. Возникновении новых комбинаций генов;
6. Увеличении числа зародышевых листков.
Официальный ответ 1,3,5.

Что же выходит: в 1 вопросе ответ 1 отметается, а во 2 вопросе он верный? Но 1 — это скорее всего ответ на вопрос, что обеспечивает мутационный процесс; если — 4, то, в принципе, это тоже может быть правильным, поскольку кроме гомологичных хромосом негомологичные тоже вроде могут перекомбинироваться? Я больше склоняюсь к ответам 1,3,5.

Здравствуйте, Светлана! Есть наука биология, излагаемая в вузовских учебниках. Есть дисциплина биология, излагаемая (как можно более доступно) в школьных учебниках. Доступность (а фактически популяризация науки) часто выливается во всевозможные неточности, которыми “грешат” школьные учебники (даже переиздаваемые по 12 раз с одними и теми же ошибками).

Светлана, а что уж говорить про тестовые задания, которых “насочиняли” уже десятки тысяч (в них конечно встречаются и откровенные ошибки, и всевозможные некорректности, связанные с двояким трактованием вопросов и ответов).

Да, Вы правы, доходит до явного абсурда, когда один и тот же ответ в разных заданиях даже одного автора оценивается им как правильный и как не правильный. И такой, мягко говоря, “путаницы”, очень и очень много.

Учим школьников, что коньюгациягомологичных хромосом в профазу 1 мейоза может привести к кроссинговеру. Кроссинговер обеспечивает комбинативную изменчивость — появление нового сочетания генов или, что тоже самое «новой последовательности нуклеотидов». В этом тоже заключается одно из биологических значений мейоза, поэтому ответ 1 бесспорно следует считать правильным.

А вот в правильности ответа 4 на счет рекомбинации участков НЕГОМОЛОГИЧНЫХ хромосом вижу огромную «крамолу» в составлении такого теста вообще. При мейозе в норме коньюгируют ГОМОЛОГИЧНЫЕ хромосомы (в этом суть мейоза, в этом его биологическое значение ). Но бывают хромосомные мутации, возникающие из-за ошибок мейоза, когда коньюгируют негомологичные хромосомы. Вот в ответе на вопрос: «Как возникают хромосомные мутации» — этот ответ был бы правильным.

Составители порой видимо “не видят” частицу “не” перед словом “гомологичные”, так как мне тоже попадались другие тесты, где на вопрос о биологическом значении мейоза надо было выбрать этот ответ как правильный. Конечно, абитуриентам надо знать, что верные ответы здесь 1,3,5.

Как видим, эти два теста плохие еще и потому, что в них вообще не предлагается основного правильного ответа на вопрос о биологическом значении мейоза, а ответы 1 и 5 — это фактически одно и тоже.

Да, Светлана, это “ляпы” за которые расплачиваются выпускники и абитуриенты на экзаменах при сдаче ЕГЭ. Поэтому, главное все же, даже для сдачи ЕГЭ, учить своих учеников в основном по учебникам , а не по тестовым заданиям. Учебники дают комплексные знания. Только такие знания помогут ответить учащимся на любые правильно составленные тесты.

**************************************************************

У кого будут вопросы по статье к репетитору биологии по Скайпу , обращайтесь в комментариях.

Уже почти три года как я веду свой блог репетитора по биологии . Некоторые темы вызывают особый интерес и комментарии к статьям становятся невероятно «раздутым». Понимаю, что читать такие длинные «портянки» со временем становится очень неудобно.
Поэтому решил часть вопросов читателей и мои ответы на них, имеющих, возможно, интерес для многих, размещать в отдельной рубрике блога, которую назвал «Из диалогов в комментариях».

Чем интересна тема этой статьи? Ведь понятно, что основное биологическое значение мейоза: обеспечение постоянства числа хромосом в клетках из поколения в поколение при половом размножении.

Причем, не надо забывать, что у животных организмов в специализированных органах (гонадах) из диплоидных соматических клеток (2n) мейозом образуются гаплоидные половые клетки гаметы (n).

Так же помним, что все растения живут с : спорофита, образующего споры и гаметофита, образующего гаметы. Мейоз у растений протекает на стадии созревания гаплоидных спор (n). Из спор развивается гаметофит, все клетки которого гаплоидные (n). Поэтому в гаметофитах митозами образуются гаплоидные мужские и женские половые клетки гаметы (n) .

Теперь давайте посмотрим материалы комментариев к статье какие же существуют тесты для ЕГЭ по вопросу о биологическом значении мейоза .

Светлана (учитель биологии). Добрый день, Борис Фагимович!

Я проанализировала 2 пособия ЕГЭ Калиновй Г.С. и вот что обнаружила.

1 вопрос.


2. Образовании клеток с удвоенным числом хромосом;
3. Образовании гаплоидных клеток;
4. Рекомбинации участков негомологичных хромосом;
5. Новых комбинациях генов;
6. Появление большего числа соматических клеток.
Официальный ответ 3,4,5 .

2 вопрос похожий, НО!
Биологическое значение мейоза состоит в:
1. Появлении новой последовательности нуклеотидов;
2. Образовании клеток с диплоидным набором хромосом;
3. Образовании клеток с гаплоидным набором хромосом;
4. Формировании кольцевой молекулы ДНК;
5. Возникновении новых комбинаций генов;
6. Увеличении числа зародышевых листков.
Официальный ответ 1,3,5.

Что же выходит: в 1 вопросе ответ 1 отметается, а во 2 вопросе он верный? Но 1 — это скорее всего ответ на вопрос, что обеспечивает мутационный процесс; если — 4, то, в принципе, это тоже может быть правильным, поскольку кроме гомологичных хромосом негомологичные тоже вроде могут перекомбинироваться? Я больше склоняюсь к ответам 1,3,5.

Здравствуйте, Светлана! Есть наука биология, излагаемая в вузовских учебниках. Есть дисциплина биология, излагаемая (как можно более доступно) в школьных учебниках. Доступность (а фактически популяризация науки) часто выливается во всевозможные неточности, которыми “грешат” школьные учебники (даже переиздаваемые по 12 раз с одними и теми же ошибками).

Светлана, а что уж говорить про тестовые задания, которых “насочиняли” уже десятки тысяч (в них конечно встречаются и откровенные ошибки, и всевозможные некорректности, связанные с двояким трактованием вопросов и ответов).

Да, Вы правы, доходит до явного абсурда, когда один и тот же ответ в разных заданиях даже одного автора оценивается им как правильный и как не правильный. И такой, мягко говоря, “путаницы”, очень и очень много.

Учим школьников, что коньюгациягомологичных хромосом в профазу 1 мейоза может привести к кроссинговеру. Кроссинговер обеспечивает комбинативную изменчивость — появление нового сочетания генов или, что тоже самое «новой последовательности нуклеотидов». В этом тоже заключается одно из биологических значений мейоза, поэтому ответ 1 бесспорно следует считать правильным.

А вот в правильности ответа 4 на счет рекомбинации участков НЕГОМОЛОГИЧНЫХ хромосом вижу огромную «крамолу» в составлении такого теста вообще. При мейозе в норме коньюгируют ГОМОЛОГИЧНЫЕ хромосомы (в этом суть мейоза, в этом его биологическое значение ). Но бывают хромосомные мутации, возникающие из-за ошибок мейоза, когда коньюгируют негомологичные хромосомы. Вот в ответе на вопрос: «Как возникают хромосомные мутации» — этот ответ был бы правильным.

Составители порой видимо “не видят” частицу “не” перед словом “гомологичные”, так как мне тоже попадались другие тесты, где на вопрос о биологическом значении мейоза надо было выбрать этот ответ как правильный. Конечно, абитуриентам надо знать, что верные ответы здесь 1,3,5.

Как видим, эти два теста плохие еще и потому, что в них вообще не предлагается основного правильного ответа на вопрос о биологическом значении мейоза, а ответы 1 и 5 — это фактически одно и тоже.

Да, Светлана, это “ляпы” за которые расплачиваются выпускники и абитуриенты на экзаменах при сдаче ЕГЭ. Поэтому, главное все же, даже для сдачи ЕГЭ, учить своих учеников в основном по учебникам , а не по тестовым заданиям. Учебники дают комплексные знания. Только такие знания помогут ответить учащимся на любые правильно составленные тесты.

**************************************************************

У кого будут вопросы по статье к репетитору биологии по Скайпу , обращайтесь в комментариях.

Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. .С помощью мейоза образуются споры и половые клетки - гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.

В профазе мейоза I растворяются ядрышки, распадается ядерная оболочка и начинается формирование веретена деления. Хроматин спи-рализуется с образованием двухроматидных хромосом (в диплоидной клетке - набор 2п4с). Гомологичные хромосомы попарно сближаются, этот процесс называется конъюгацией хромосом. При конъюгации хроматиды гомологичных хромосом в некоторых местах перекрещиваются. Между некоторыми хроматида-ми гомологичных хромосом может происходить обмен соответствующими участками - кроссинговер.

В метафазе I пары гомологичных хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация хромосом достигает максимума.

В анафазе I гомологичные хромосомы (а не сестринские хроматиды, как при митозе) отходят друг от друга и растягиваются нитями веретена деления к противоположным полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадет только одна. Таким образом, в конце анафазы I набор хромосом и хроматид у каждого полюса делящейся клетки составляет \ti2c - он уже уменьшился вдвое, но хромосомы все еще остаются двухро матидными.

В телофазе I веретено деления разрушается, происходит формирование двух ядер и деление цитоплазмы. Образуются две дочерние клетки, содержащие гаплоидный набор хромосом, каждая хромосома состоит из двух хроматид (\п2с).

Промежуток между мейозом I и мейозом II очень короткий. И н т е р ф а з а II практически отсутствует. В это время не происходит репликация ДНК и две дочерние клетки быстро вступают во второе деление мейоза, протекающее по типу митоза.

В профазе II происходят те же процессы, что и в профазе митоза: формируются хромосомы, они беспорядочно располагаются в цитоплазме клетки. Начинает формироваться веретено деления.



В метафазе II хромосомы располагаются в экваториальной плоскости.

В анафазе II сестринские хроматиды каждой хромосомы разделяются и отходят к противоположным полюсам клетки. В конце анафазы II набор хромосом и хроматид у каждого полюса - \ti\c.

В телофазе II образуются четыре гаплоидные клетки, каждая хромосома состоит из одной хроматиды (lnlc).

Таким образом, мейоз представляет собой два последовательных деления ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время и н тер фазы I.

В профазе мейоза I происходит кроссинговер, что ведет к перекомбинации наследственного материала. В анафазе I гомологичные хромосомы случайным образом расходятся к разным полюсам клетки, в анафазе II то же самое происходит с сестринскими хроматидами. Все эти процессы обусловливают комби-нативную изменчивость живых организмов, о которой будет говориться позже.

Биологическое значение мейоза. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов.

Благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.



Сущность мейоза состоит в том, что каждая половая клетка получает одинарный - гаплоидный набор хромосом. Вместе с тем, мейоз - это стадия, во время которой созда­ются новые комбинации генов путем сочетания разных ма­теринских и отцовских хромосом. Перекомбинирование на­следственных задатков возникает, кроме того, и в результа­те обмена участками между гомологичными хромосомами, происходящего в мейозе. Мейоз включает два последовательных, следующих друг за другом практически без перерыва, деления. Как и при митозе, в каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу. Второе мейотическое деление – сущность периода созревания состоит в том, что в половых клетках путем двукратного мейотиче-ского деления количество хромосом уменьшается вдвое, а количество ДНК - вчетверо. Биологический смысл второго мейотического деления заключается в том, что количество ДНК приводится в соот­ветствие хромосомному набору. У особей мужского пола все четыре гаплоидные клетки, образовавшиеся в результате мейоза, в дальнейшем преоб­разуются в гаметы - сперматозоиды. У особей женского пола вследствие неравномерного мейоза лишь из одной клет­ки получается жизнеспособное яйцо. Три другие дочерние клетки гораздо мельче, они превращаются в так называемые направительные, или редукционные, тельца, вскоре поги­бающие. Биологический смысл образования только одной яйце­клетки и гибели трех полноценных (с генетической точки зрения) направительных телец обусловлен необходимостью сохранения в одной клетке всех запасных питательных веществ, для развития, будущего зародыша.

Клеточная теория.

Клетка - элементарная единица строения, функционирования и развития живых организмов. Существуют неклеточные формы жизни - вирусы, однако они проявляют свои свойства только в клетках живых организмов. Клеточные формы делятся на прокариот и эукариот.

Открытие клетки принадлежит английскому ученому Р. Гуку, который, просматривая под микроскопом тонкий срез пробки, увидел структуры, похожие на пчелиные соты, и назвал их клетками. Позже одноклеточные организмы исследовал голландский ученый Антони ван Левенгук. Клеточную теорию сформулировали немецкие ученые М. Шлейден и Т. Шванн в 1839 г. Современная клеточная теория существенно дополнена Р. Биржевым и др.

Основные положения современной клеточной теории:

клетка - основная единица строения, функционирования и развития всех живых организмов, наименьшая единица живого, способная к самовоспроизведению, саморегуляции и самообновлению;

клетки всех одноклеточных и многоклеточных организмов сходны (гомологиины) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.

Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира. Благодаря клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов.

Клетка - самая мелкая единица организма, граница его делимости, наделенная жизнью и всеми основными признаками организма. Как элементарная живая система, она лежит в основе строения и развития всех живых организмов. На уровне клетки проявляются такие свойства жизни, как способность к обмену веществ и энергии, авторегуляция, размножение, рост и развитие, раздражимость.

50. Закономерности наследования, установленные Г. Менделем .

Закономерности наследования были сформулированы в 1865г Грегори Менделем. В своих экспериментах он проводил скрещивание различных сортов гороха.

Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:

Анализ начинается со скрещивания чистых линий: гомозиготных особей.

Анализируются отдельные альтернативные взаимоисключающие признаки.

Точный количественный учет потомков с различной комбинацией признаков

Наследование анализированных признаков прослеживается в ряду поколений.

1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"

При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.

В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).

2 ой закон Менделя: "Закон расщепления"

При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1

В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.

3 ий закон Менделя: "Закон независимого комбинирования признаков"

При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Для изучения закономерности наследования растений, отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание. Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание, где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами. Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.

При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями. Анализирующее скрещивание

Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»