Проводящая система сердца проходит в. Узлы и пучки проводящей системы сердца

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Карагандинский государственный медицинский университет

Кафедра: анатомии

Дисциплина: анатомия-2

На тему: "Узлы и пучки проводящей системы сердца"

Выполнил: Паливода Д.С.

Проверила: Баймагомбетова Д.Д.

Караганда 2012

Проводящая система сердца

Электрическая ось сердца

Волокна Пуркинье

Заключение

Проводящая система сердца

Сердце как орган, работающий в системе постоянного автоматизма, включает в себя проводящую систему сердца, systema conducens cordis, координирующую, корригирующую и обеспечивающую его автоматизм с учетом сокращения мускулатуры отдельных камер.

Проводящая система сердца состоит из узлов и проводящих путей (пучков). Эти пучки и узлы, сопровождаемые нервами и их разветвлениями, служат для передачи импульсов с одного отдела сердца на другие, обеспечивая последовательность сокращений миокарда отдельных камер сердца.

У места впадения верхней полой вены в правое предсердие, между веной и правым ушком, располагается синусно-предсердный узел, nodus sinuatrialis. Волокна от этого узла идут вдоль пограничного гребня, т.е. по границе, разделяющей правое ушко и синус полых вен, и окружают проходящий здесь артериальный стволик, направляясь к миокарду предсердий и к предсердно-желудочковому узлу.

Мускулатура предсердий в основном изолирована от мускулатуры желудочков. Исключение составляет пучок волокон, начинающийся в межпредсердной перегородке в области венечного синуса сердца. Этот пучок состоит из волокон с большим количеством саркоплазмы и небольшим количеством миофибрилл. В состав пучка входят и нервные волокна, они направляются к межжелудочковой перегородке, проникая в ее толщу.

В пучке различают утолщенную начальную часть - предсердно-желудочковый узел, nodus atrioventricularis, переходящий в более тонкий предсердно-желудочковый пучок, fasciculus atrioventricularis. Начальная часть пучка - ствол, truncus, направляется к межжелудочковой перегородке, проходит между обоими фиброзными кольцами и у верхнезаднего отдела мышечной части перегородки делится на правую и левую ножки.

Правая ножка, crux dextrum, короткая и более тонкая, следует по перегородке со стороны полости правого желудочка к основанию передней сосочковой мышцы и в виде сети тонких волокон распространяется в мышечном слое желудочка.

Левая ножка, crus sinistrum, шире и длиннее правой, располагается по левой стороне межжелудочковой перегородки, в своих начальных отделах залегает более поверхностно, ближе к эндокарду. Направляясь к основанию сосочковых мышц, она рассыпается на тонкую сеть волокон, образующих переднюю и заднюю ветви, распространяющиеся в миокарде левого желудочка.

проводящая узел пучок сердце

Внутренняя оболочка сердца, или эндокард. Эндокард, endocardium, образована из эластических волокон, среди которых располагаются соединительнотканные и гладкомышечные клетки. Со стороны полости сердца эндокард покрыт эндотелием.

Эндокард выстилает все камеры сердца, плотно сращен с подлежащим мышечным слоем, следует за всеми его неровностями, образуемыми мясистыми трабекулами, гребенчатыми и сосочковыми мышцами, а также их сухожильными выростами.

На внутреннюю оболочку отходящих от сердца и впадающих в него сосудов - полых и легочных вен, аорты и легочного ствола - эндокард переходит без резких границ. В предсердиях эндокард толще, чем в желудочках, особенно в левом предсердии, и тоньше там, где покрывает сосочковые мышцы с сухожильными хордами и мясистые трабекулы.

В наиболее истонченных участках стенок предсердий, где в их мышечном слое образуются промежутки, эндокард близко соприкасается и даже срастается с эпикардом. В области фиброзных колец предсердно-желудочковых отверстий, а также отверстий аорты и легочного ствола эндокард путем удвоения своего листка - дупликатуры эндокарда - образует створки предсердно-желудочковых клапанов и полулунные клапаны легочного ствола и аорти. Волокнистая соединительная ткань между обоими листками каждой из створок и полулунных заслонок соединена с фиброзными кольцами и таким образом фиксирует к ним клапаны.

Расположение элементов проводящей системы сердца

Синоатриальный узел

Атриовентрикулярный узел

Пучок Гиса

Левая ножка пучка Гиса

Левая передняя ветвь

Левая задняя ветвь

Левый желудочек

Межжелудочковая перегородка

Правый желудочек

Правая ножка пучка Гиса

Основную массу сердца составляет миокард. Его образуют отдельные мышечные волокна, соединённые последовательно с помощью вставочных дисков - нексусов, обладающих незначительным электрическим сопротивлением, и тем самым обеспечивающие функциональное единство миокарда. Кроме сократительных волокон в миокарде имеется особая система мышечных единиц, способных к генерации спонтанной ритмической активности, распространению возбуждения по всем мышечным слоям и координации последовательности сокращения камер сердца. Эти специализированные мышечные волокна образуют проводящую систему сердца. Проводящая система сердца включает в себя:

Синоатриальный (синусно-предсердный, синусовый, Ашоффа-Товара) узел - центр автоматизма (пейсмекер) первого порядка, расположенный в месте впадения полых вен в правое предсердие. Он генерирует 60 - 80 импульсов в минуту;

Межузловые проводящие тракты Брахмана, Векенбаха и Тореля;

Атриовентрикулярный (предсердно-желудочковый) узел, расположенный справа от межпредсердной перегородки рядом с устьем коронарного синуса (вдаваясь в перегородку между предсердиями и желудочками), и атриовентрикулярное соединение (место перехода АВ узла в пучок Гиса). Они являются пейсмекерами второго порядка и генерируют 40 - 50 импульсов в минуту;

Пучок Гиса, берущий начало от АВ узла и образующий две ножки, и волокна Пуркинье - пейсмекеры третьего порядка. Они вырабатывают около 20 импульсов в минуту.

Сокращение сердечной мышцы называется систолой, а её расслабление - диастолой. Систола и диастола четко согласованы во времени и вместе они составляют сердечный цикл, общая продолжительность которого составляет 0,6 - 0,8 с. Сердечный цикл имеет три фазы: систола предсердий, систола желудочков и диастола. Началом каждого цикла считается систола предсердий, длящаяся 0,1 с. При этом волна возбуждения, генерируемая синоатриальным узлом, распространяется по сократительному миокарду предсердий (сначала правого, затем обоих и на заключительном этапе - левого), по межпредсердному пучку Бахмана и межузловым специализированным трактам (Бахмана, Венкебаха, Тореля) к атриовентрикулярному узлу. Основное направление движения волны деполяризации предсердий (суммарного вектора) - вниз и влево. Скорость распространения возбуждения составляет 1 м/с. Далее поток возбуждения достигает атриовентрикулярного (АВ) узла. Возбуждение через него может проходить только в одном направлении, ретроградное проведение импульса невозможно. Так достигается направленность движения процесса возбуждения, и как следствие, координированность работы желудочков и предсердий. При прохождении через АВ узел импульсы задерживаются на 0,02 - 0,04 с, скорость распространения возбуждения при этом составляет не более 2-5 см/с. Функциональное значение этого явления состоит в том, что за время задержки успевает завершиться систола предсердий и их волокна будут находиться в фазе рефрактерности. По окончании систолы предсердий начинается систола желудочков, длительность которой 0,3 с. Волна возбуждения пройдя АВ-узел быстро распространяется по внутрижелудочковой проводящей системе. Она состоит из пучка Гиса (предсердно-желудочкового пучка), ножек (ветвей) пучка Гиса и волокон Пуркинье. Пучок Гиса делится на правую и левую ножки. Левая ножка вблизи от основного ствола пучка Гиса разделяется на два разветвления: передне-верхнее и задне-нижнее. В ряде случаев имеется третья, срединная ветвь. Конечные разветвления внутрижелудочковой проводящей системы представлены волокнами Пуркинье. Они располагаются преимущественно субэндокардиально и непосредственно связаны с сократительным миокардом. Скорость распространения возбуждения по пучку Гиса составляет 1 м/с, по его ветвям - 2-3 м/с, а по волокнам Пуркинье - до 3-4 м/с. Большая скорость способствует почти одновременному охвату желудочков волной возбуждения. Возбуждение идет от эндокарда к эпикарду. Суммарный вектор деполяризации правого желудочка направлен вправо и вперед. После вступления в процесс возбуждения левого желудочка суммарный вектор сердца начинает отклоняться вниз и влево, а затем по мере охвата все большей массы миокарда левого желудочка он отклоняется все больше влево. После систолы желудочков миокард желудочков начинает расслабляться и наступает диастола (реполяризация) всего сердца, которая продолжается до следующей систолы предсердий. Суммарный вектор реполяризации имеет то же направление, что и вектор деполяризации желудочков. Из вышесказанного следует, что в процессе сердечного цикла суммарный вектор, постоянно изменяясь по величине и ориентации, большую часть времени направляет сверху и справа вниз и влево. Проводящая система сердца обладает функциями автоматизма, возбудимости, и проводимости.

Автоматизм - способность сердца вырабатывать электрические импульсы, вызывающие возбуждение. В норме наибольшим автоматизмом обладает синусовый узел.

Проводимость - способность проводить импульсы от места их возникновения до миокарда. В норме импульсы проводятся от синусового узла к мышце предсердий и желудочков.

Возбудимость - способность сердца возбуждаться под влиянием импульсов. Функцией возбудимости обладают клетки проводящей системы и сократительного миокарда.

Важными электрофизиологическими процессами являются рефрактерность и аберрантность.

Рефрактерность - это невозможность клеток миокарда снова активизироваться при возникновении дополнительного импульса. Различают абсолютную и относительную рефрактерность. Во время относительного рефрактерного периода сердце сохраняет способность к возбуждению, если сила поступающего импульса сильнее, чем обычно. Абсолютный рефрактерный период соответствует комплексу QRS и сегменту RS-T, относительный - зубцу Т. Во время диастолы рефрактерность отсутствует. Аберрантность - это патологическое проведение импульса по предсердиям и желудочкам. Аберрантное проведение возникает в тех случаях, когда импульс, чаще поступающий в желудочки, застает проводящую систему в состоянии рефрактерности. Таким образом, электрокардиография позволяет изучать функции автоматизма, возбудимости, проводимости, рефрактерности и аберрантности. О сократительной функции по электрокардиограмме можно получить лишь косвенное представление.

Электрическая ось сердца

Сердце имеет так называемую электрическую ось, представляющую собой направление распространения процесса деполяризации в сердце. Электрическая ось сердца определяется состоянием пучка Гиса и мышцы желудочка и до некоторой степени анатомической позицией сердца. Последнее особенно важно для определения электрической оси здорового сердца. Электрическая ось в норме направлена от основания к верхушке почти параллельно анатомической оси сердца. Ее направление зависит в основном от следующих факторов: положения сердца в грудной клетке, соотношения массы миокарда желудочков, нарушения проведения импульса к желудочкам и очаговых поражений миокарда. В настоящее время большинство авторов выделяет пять вариантов положения электрической оси сердца, определяемых во фронтальной плоскости: нормальное, вертикальное, отклонение вправо, горизонтальное и отклонение влево. Все эти варианты могут быть выражены количественно в градусах угла α (рис.2.9). При нормальном положении электрической оси сердца угол α находится в пределах от +30о до +70о. При вертикальном положении электрической оси, обусловленном небольшим поворотом его вправо, угол α находится в пределах от +70о до +90о. Более значительный поворот электрической оси вправо с углом α от +90о до +180о называется отклонением оси сердца вправо. Значительное отклонение оси сердца вправо, обычно встречается при патологии. Оно может наблюдаться при вертикальном положении сердца, блокаде правой ножки пучка Гиса, гипертрофии правого желудочка, инфаркте передней стенки, декстрокардии, смещении вниз диафрагмы (при эмфиземе легких, инспирации).

Варианты положения электрической оси сердца, выраженные в градусах угла α. При горизонтальном положении электрической оси сердца угол α колеблется в пределах от +30о до 0о. Отклонением электрической оси влево считается такое ее положение, когда угол α становится отрицательным (когда средний вектор находится между 0о и - 90о). Заметное отклонение оси влево обычно встречается при патологии. Оно может быть результатом горизонтального положения сердца, блокады левой ножки пучка Гиса, синдрома преждевременного возбуждения желудочков, гипертрофии левого желудочка, верхушечного инфаркта миокарда, кардиомиопатии, некоторых врожденных заболеваний сердца, смещения вверх диафрагмы (при беременности, асцитах, внутрибрюшных опухолях).

Синусно-предсердный синоатриальный узел (синоатриальный узел Киса-Флака, пейсмекер)

Автоматизм сердца - это его способность ритмически сокращаться под влиянием возникающих в нем самом (в клетках его проводящей системы) импульсов. Генератором этих импульсов является синусно-предсердныи узел, в клетках которого возникает потенциал действия (около 90 - 100 мВ), передающийся соседним клеткам проводящей системы, а с них - через вставочные диски на рабочие кардиомиоциты. Возбуждение распространяется по миокарду. Вначале сокращаются предсердия, а затем желудочки.

Синоатриальный (синусно-предсердный) узел расположен в правом предсердии у места впадения верхней полой вены. Этот узел является рудиментарным остатком венозного синуса низших позвоночных. Он состоит из небольшого числа беспорядочно расположенных сердечных мышечных волокон, бедных миофибрилами и иннервированных окончаниями вегетативных нейронов.

В клетках синоатриального узла за счет разности концентраций ионов поддерживается мембранный потенциал около - 90 мВ. Мембране этих клеток всегда свойственна высокая проницаемость для натрия, поэтому ионы натрия непрерывно диффундируют внутрь клетки. Поступление ионов натрия ведет к деполяризации мембраны, в результате чего в клетках, соседствующих с синоатриальным узлом, возникают распространяющиеся потенциалы действия. Волна возбуждения проходит по мышечным волокнам сердца и заставляет их сокращаться. Синоатриальный узел называют водителем сердечного ритма (пейсмекером), так как именно в нем зарождается каждая волна возбуждения, которая, в свою очередь, служит стимулом для зарождения следующей волны.

Раз начавшись, сокращение распространяется по стенкам предсердия через сеть сердечных мышечных волокон со скоростью 1 м/с. Оба предсердия сокращаются более - менее одновременно. Мышечные волокна предсердий и желудочков полностью разделены соединительнотканной предсердно - желудочковой перегородкой, и связь между ними осуществляется только в одном участке правого предсердия - атриовентрикулярном узле.

Схема. Влияние управляющих сигналов, поступающих по волокнам симпатических нервов (1) и по волокнам парасимпатических нервов (2), соответствующих медиаторов или гуморальных активных веществ на электрическую активность синоатриального узла.

На верхней части рисунка (1) изображены два процесса. Ритмическое самовозбуждение синоатриального узла в условиях отсутствия внешних воздействий - кривая черного цвета. Ритмическое самовозбуждение синоатриального узла в условиях раздражения симпатических нервных волокон - кривая красного цвета. Горизонтальный пунктир черного цвета - критический уровень деполяризации. Горизонтальная тонкая сплошная линия - уровень минимальной полярности клеток пейсмекера. От этого уровня начинается самопроизвольная медленная диастолическая деполяризация клеток пейсмекера (пейсмекерный потенциал). Когда процесс медленной деполяризации достигает критического уровня (пунктир), возникает потенциал действия, распространяющийся по межузловым путям к атриовентрикулярному узлу. Чем меньше разница между минимальным уровнем полярности и критическим уровнем деполяризации, тем выше возбудимость пейсмекера и тем больше частота самовозбуждений. Именно это и возникает при раздражении симпатических нервных волокон. Смещения минимального исходного уровня полярности (деполяризации) показаны стрелками синего цвета, направленными вверх.

На нижней части рисунка (2) изображены два процесса. Ритмическое самовозбуждение синоатриального узла в условиях отсутствия внешних воздействий - кривая черного цвета. Ритмическое самовозбуждение синоатриального узла в условиях раздражения парасимпатических нервных волокон - кривая красного цвета. Горизонтальный пунктир черного цвета - критический уровень деполяризации. Горизонтальная тонкая сплошная линия - уровень минимальной полярности клеток пейсмекера. От этого уровня начинается самопроизвольная медленная диастолическая деполяризация клеток пейсмекера (пейсмекерный потенциал). Когда процесс медленной деполяризации достигает критического уровня (пунктир), возникает потенциал действия, распространяющийся по межузловым путям к атриовентрикулярному узлу. Чем больше разница между минимальным уровнем полярности и критическим уровнем деполяризации, тем ниже возбудимость пейсмекера и тем меньше частота самовозбуждений. Именно это и возникает при раздражении парасимпатических нервных волокон. Смещения минимального исходного уровня полярности (гиперполяризации) показаны стрелками красного цвета, направленными вниз.

В норме единственным водителем ритма является СА-узел, который подавляет автоматическую активность остальных (эктопических) водителей ритма.

Атриовентрикулярный (АВ, предсердно-желудочковый) узел (Ашоффа-Тавара)

Атриовентрикулярный узел расположен в правом предсердии в нижней части межпредсердной перегородки сразу над трикуспидальным кольцом и спереди от коронарного синуса, кровоснабжается в 90% случаев задней межжелудочковой ветвью правой коронарной артерии. Его ткань сходна с тканью синоатриального узла. От атриовентрикулярного узла отходит пучок специализированных волокон (атриовентрикулярный пучок) - единственный путь, по которому волна возбуждения передается от предсердий к желудочкам. Передача импульсов от синоатриального узла к атриовентрикулярному происходит с задержкой, составляющей около 0,15 с, благодаря чему систола предсердий успевает закончиться раньше, чем начнется систола желудочков. Атриовентрикулярный пучок переходит в пучок Гиса, который состоит из видоизмененных сердечных мышечных волокон и от которого отходят более тонкие веточки - волокна Пуркине. Импульсы проходят по пучку со скоростью 5 м/с и распространяются в конце концов по всему миокарду желудочков. Оба желудочка сокращаются одновременно, причем волна их сокращения начинается в верхушке сердца и распространяется вверх, выталкивая кровь из желудочков в артерии, которые отходят от сердца вертикально вверх.

Скорость проведения в АВ-узле низкая, что приводит к физиологической задержке проведения, на ЭКГ она соответствует сегменту PQ.

На электрическую активность синусового узла и АВ-узла оказывает существенное влияние вегетативная нервная система. Парасимпатические нервы подавляют автоматизм синусового узла, замедляют проводимость и удлиняют рефрактерный период в синусовом узле и прилежащих к нему тканях и в АВ-узле. Симпатические нервы оказывают противоположное действие.

Волокна Пуркинье

Пучок Гиса отходит от АВ-узла, проникает в строму сердца, направляется вперед и пересекает мембранозную часть межжелудочковой перегородки. В мышечной части межжелудочковой перегородки пучок Гиса делится на широкую левую и узкую правую ножки. Их разветвления стелются по эндокарду желудочков, и от них вглубь миокарда отходят конечные ветви - волокна Пуркинье.

Клетки Пуркинье (Purkinje cells) - крупные эфферентные нервные клетки, имеющиеся в большом количестве в коре мозжечка. Свое название клетки получили в честь их первооткрывателя, чешского врача и физиолога Яна Эвангелисты Пуркинье.

Тело клетки Пуркинье имеет грушевидную форму, от которой отходит множество обильно разветвляющихся дендритов, которые образуют множество синапсов с другими нейронами и направляются к поверхности мозжечка. Длинный аксон, который берет свое начало от расположенного в глубине коры мозжечка основания клетки, направляется через белое вещество к ядрам мозжечка, образуя синапсы с их нейронами, а также к вестибулярным ядрам.

Рисунок "Потенциал действия волокон Пуркинье"

Клетки Пуркинье (А) и гранулярные клетки (B) в срезе мозгового вещества голубя. Рисунок Сантьяго Рамон-и-Кахаля

Заключение

Пейсмекеры относятся к популяции миоцитов сердца и локализованы в узлах автоматии

Узлы автоматии

) синоатриальный узел (SA - узел), или узел Кис-Фляка (венозный вход в правое предсердие) - реальный пейсмекер, или водитель 1-го порядка;

) атриовентрикулярный узел, или узел Ашофф - Тавара (на границе 4 камер) - водитель 2-го порядка;

) волокна Пуркинье как компоненты пучка Гиса - водитель 3 - го порядка

Вариабельность ритма сердца (ВСР), или синусовая аритмия, определяемая, в частности, по изменению длительности цикла (RR), - это нормальное явление, обусловленное влиянием на водитель ритма симпатических, парасимпатических и других воздействий.

Математический анализ вариабельности сердечного ритма - один из современных методов оценки состояния вегетативной нервной системы

Чем ниже ЧСС, чем больше ВСР - тем больше вероятность парасимапатических воздействий. При доминировании симпатических воздействий - выше ЧСС и меньше ВСР.

Список использованной литературы

1.А.Н. Климов, Б.М. Липовецкий. "Быть или не быть инфаркту" "Беларусь". Минск.

2.1987г. - 80 с.

.Д. Ковалёв. "Кровеносная и лимфатическая системы" Энциклопедия для детей.

.Синельников. Атлас "Анатомия человека"

Знание проводящей системы сердца необходимо для освоения ЭКГ и понимания сердечных аритмий .

Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца . Рассмотрим компоненты проводящей системы сердца:

  • синусно-предсердный узел,
  • предсердно-желудочковый узел,
  • пучок Гиса с его левой и правой ножкой,
  • волокна Пуркинье.

Схема проводящей системы сердца .

Теперь подробнее.

1) синусно-предсердный узел (= синусовый, синоатриальный, SA ; от лат. atrium - предсердие) - источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово «синус» в переводе означает «пазуха», «полость».

Фраза «ритм синусовый » в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле. Нормальная частота ритма в покое - от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией , а выше 90 - тахикардия . У тренированных людей обычно наблюдается брадикардия.

Интересно знать, что в норме импульсы генерируются не с идеальной точностью. Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на? 10% превышает среднее значение). При дыхательной аритмии ЧСС на вдохе увеличивается , а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС. Дыхательная синусовая аритмия бывает преимущественно у здоровых людей , особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV ; от лат. ventriculus - желудочек) является, можно сказать, «фильтром» для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

Почему я назвал AV-узел «фильтром »? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто. С помощью различных препаратов можно регулировать ЧСС , повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы). Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС > 6% больных старше 60 лет. Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией (один из примеров описан ранее), при ней без экстренной медицинской помощи больной умирает за 6 минут.

Проводящая система сердца .

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек крупнее, то левой ножке приходится разделиться на две ветви - переднюю и заднюю .

Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, «полная блокада левой ножки пучка Гиса».

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту. Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел - водитель ритма 2-го порядка , генерирующий импульсы 40-60 раз в минуту. Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace - скорость, темп).

Проведение импульса в проводящей системе сердца (анимация).

В норме активен только водитель ритма первого порядка, остальные «спят» . Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный. Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки - в своем с частотой 20-40 в минуту.

Про основы ЭКГ будет отдельная статья.

  • Электрокардиограмма. Часть 1 из 3: теоретические основы ЭКГ
  • ЭКГ, часть 3a. Мерцательная аритмия и наджелудочковая пароксизмальная тахикардия

Главный водитель ритма сердца, синусовый узел, обладает интересной историей открытия и рядом удивительных особенностей в строении и функционировании. От слаженности работы этой части сердца зависит общая деятельность целого органа, поэтому при дисфункции синусового узла обязательно проводится лечение, иначе грозит смертельный исход.


Синоатриальный узел (часто сокращенно САУ, также называется синусовым узлом, водителем первого порядка) является нормальным естественным водителем ритма сердца и отвечает за запуск сердечного цикла (сердцебиение). Он спонтанно генерирует электрический импульс, который после прохождения по всему сердцу заставляет его сокращаться. Хотя электрические импульсы генерируются спонтанно, скорость поступления импульсов (и, следовательно, частота сердечных сокращений) находится под контролем нервной системы, иннервирующей синоатриальный узел.

Синоатриальный узел расположен в стенке миокарда вблизи места, где устье полых вен (sinus venarum) соединяется с правым предсердием (верхняя камера); следовательно, название образованию дано соответствующее - синусоидальный узел.

Значение синусового узла в работе сердца первостепенно, поскольку при слабости САУ возникают различные заболевания, иногда способствующие развитию внезапной остановки сердца и смерти. В некоторых случаях болезнь никак не проявляется, а в других необходима специфическая диагностика и соответствующее лечение.

Видео: SA NODE

Открытие

В жаркий летний день в 1906 году Мартин Флэк, студент-медик, изучал микроскопические срезы сердца крота, тогда как его наставник Артур Кейт и его жена катались на велосипеде по красивым вишневым садам возле своего коттеджа в Кенте, Англия. По возвращении Флэк взволнованно показала Кейту “чудесную структуру, которую он обнаружил в ушке правого предсердия крота, именно там, где в эту камеру входит верхняя полая вена”. Кейт быстро понял, что эта структура очень напоминает атриовентрикулярный узел, описанный Сунао Таварой в начале этого года. Дальнейшие анатомические исследования подтвердили ту же структуру в сердцах других млекопитающих, которую они назвали “синусоидальным узлом” (sino‐auricular node). Наконец, был обнаружен долгожданный генератор сердечного ритма.

Начиная с 1909 года, используя гальванометр с двумя струнами, Томас Льюис одновременно записывал данные с двух участков с поверхности сердца собаки, делая точные сравнения прихода волны возбуждения в разные точки. Льюис идентифицировал синусоидальный узел как кардиостимулятор сердца двумя инновационными подходами.

  • Во-первых, он стимулировал вышестоящую полую вену (SVC), коронарный синус и левое ушко и показал, что только кривые вблизи синусового узла были идентичны нормальному ритму.
  • Во-вторых, было известно, что точка, в которой начинается сжатие, становится электрически отрицательной относительно неактивных точек мышц. В результате электрод возле САУ неизменно имел первичную отрицательность, указывающую: “Узловая область SA - это то место, в котором зарождается волна возбуждения”.

Охлаждение и нагревание синусового узла для изучения реакции сердечного ритма осуществлял G Ganter и другие, которые также указывали на местоположение и первичную функцию синусоидального узла. Когда Эйнтховен был удостоен Нобелевской премии в 1924 году, он щедро упомянул Томаса Льюиса, говоря: “Я сомневаюсь, что без его ценного вклада у меня была бы привилегия стоять перед вами сегодня».

Место нахождения и структура

Синоатриальный узел состоит из группы специализированных клеток, расположенных в стенке правого предсердия, только поперечно к устью полых вен на стыке, где верхняя полая вена входит в правое предсердие. Узел SA располагается в миокарде. Это глубокое образование упирается в сердечные миоциты, принадлежащие правому предсердию, а его поверхностная часть покрыта жировой тканью.

Эта удлиненная структура, которая простирается от 1 до 2 см справа от края ушка, представляет собой гребень правого предсердного придатка, и проходит по вертикали в верхнюю часть концевой канавки. Волокна узла SA являются специализированными кардиомиоцитами, которые смутно напоминают нормальные, сократительные сердечные миоциты. У них есть некоторые сократительные нити, но при этом они не сжимаются так же крепко. Кроме того, волокна СА-узла заметно более тонкие, извилистые и окрашиваются менее интенсивно, чем сердечные миоциты.

Иннервация

Синусовый узел богато иннервирован парасимпатической нервной системой (десятым черепным нервом (блуждающим нервом)) и волокнами симпатической нервной системы (спинномозговые нервы грудного отдела на уровне хребцов 1-4). Это уникальное анатомическое расположение делает узел СА восприимчивым к явно спаренным и противостоящим вегетативным воздействиям. В состоянии покоя работа узла в основном зависит от блуждающего нерва или его “тонуса”.

  • Стимуляция через блуждающие нервы (парасимпатические волокна) вызывает снижение скорости работы узла СА (что в свою очередь уменьшает частоту сердечных сокращений). Таким образом, парасимпатическая нервная система через действие блуждающего нерва оказывает отрицательное инотропное воздействие на сердце.
  • Стимуляция через симпатические волокна вызывает увеличение скорости работы узла СА (при этом увеличивается частота сердечных сокращений и сила сокращений). Симпатические волокна могут увеличивать силу сокращения, потому что помимо иннервации синусового и атриовентрикулярного узлов они непосредственно воздействуют на предсердия и желудочки.

Таким образом, нарушение иннервации может приводить к развитию различных расстройств сердечной деятельности. В частности, может повышаться или понижаться ЧСС и возникать клинические признаки.

Кровоснабжение

Узел СА получает кровоснабжение от артерии узла СА. Исследования анатомической диссекции показали, что это питание может быть ветвью правой коронарной артерии в большинстве (около 60-70%) случаев, а ветвь левой коронарной артерии кровоснабжает СА узел примерно в 20-30% случаев.

В более редких случаях может отмечаться кровоснабжение как правой, так и левой коронарными артериями или двумя ветвями правой коронарной артерии.

Функциональные возможности

  • Главный водитель ритма

Хотя некоторые из сердечных клеток обладают способностью генерировать электрические импульсы (или потенциалы действия), которые вызывают сердечное сокращение, синоатриальный узел обычно инициирует сердечный ритм просто потому, что он генерирует импульсы быстрее и сильнее, чем другие области с потенциалом генерации импульсов. Кардиомиоциты, как и все мышечные клетки, имеют рефрактерные периоды после сокращения, в течение которых дополнительные сокращения не могут быть вызваны. В такие моменты их потенциал действия переопределяется синоатриальным или атриовентрикулярным узлами.

В отсутствие внешнего нейронного и гормонального контроля клетки в синоатриальном узле, расположенные в правом верхнем углу сердца, будут естественным образом разряжаться (создавать потенциалы действия) более 100 ударов в минуту. Поскольку синоатриальный узел отвечает за остальную часть электрической активности сердца, его иногда называют основным кардиостимулятором.

Клиническое значение

Дисфункция синусового узла выражается в нерегулярном сердцебиении, вызваннои неправильными электрическими сигналами сердца. Когда синусовый узел сердца неисправен, сердечный ритм становится ненормальным - как правило, слишком медленным. Иногда появляются паузы в его воздействии или комбинации, и очень редко ритм бывает быстрее, чем обычно.

Окклюзия артериального кровоснабжения синусового узла (чаще всего из-за инфаркта миокарда или прогрессирующей болезни коронарной артерии) может вызвать ишемию и гибель клеток в СА узле. Это нередко нарушает пейсмекерную активность САУ и приводит к синдрому слабости синусового узла.

Если узел СА не работает или сгенерированный в нем импульс блокируется до того, как он проходит вниз по электропроводящей системе, группа клеток, расположенных дальше по сердцу, выполняют роль водителей ритма второго порядка. Этот центр обычно представлен клетками внутри атриовентрикулярного узла (AV-узла), который является областью между предсердиями и желудочками, внутри предсердной перегородки.

Если узел AV также терпит неудачу, волокна Пуркинье иногда могут действовать как кардиостимулятор по умолчанию. Если же клетки волокон Пуркинье не контролируют сердечный ритм, то чаще всего по той причине, что они генерируют потенциалы действия с более низкой частотой, чем узлы AV или SA.

Дисфункция синусового узла

Дисфункция узла СА относится к ряду состояний, вызывающих физиологическое несоответствие показателей предсердий. Симптомы могут быть минимальными или включать слабость, непереносимость усилий, учащенное сердцебиение и обморочное состояние. Диагноз ставится на основании ЭКГ. Симптоматическим пациентам требуется кардиостимулятор.

Дисфункция синусового узла включает

  • Жизнеопасную синусовую брадикардию
  • Чередующуюся брадикардию и предсердные тахиаритмиями (синдром брадикардии и тахикардии)
  • Синоатриальную блокаду или временную остановку работы САУ
  • Выходную блокаду САУ

Дисфункция синусового узла возникает преимущественно у пожилых людей, особенно при наличии других сердечных расстройств или сахарного диабета.

Остановка синусового узла - это временное прекращение активности синусового узла, наблюдаемое на ЭКГ в виде исчезновения P-волн в течение нескольких секунд.

Пауза обычно вызывает активность эвакуации в более низких кардиостимуляторах (например, предсердный или соединительный), сохраняя частоту сердечных сокращений и функцию, но длительные паузы становятся причиной головокружения и обмороков.

При выходной блокаде СА узла его клетки деполяризуются, но при этом нарушается передача импульсов в миокард предсердий.

  • При блокаде САУ 1-й степени импульс немного замедляется, но при этом ЭКГ остается нормальным.
  • При блокаде САУ 2-й степени I типа импульсная проводимость замедляется вплоть до полной блокады. На ЭКГ нарушения видны как интервалы P-P, которые постепенно уменьшаются до тех пор, пока P-волна вообще не исчезает. Вместо нее появляется пауза и сгруппированные удары. Продолжительность задержки импульсов составляет менее 2 циклов P-P.
  • При блокаде САУ 2-й степени II типа проводимость импульсов блокируется без предшествующего замедления, в результате создается пауза, которая является кратной интервалу P-P и проявляется на ЭКГ сгруппированными сердцебиениями.
  • При блокаде САУ 3-й степени проводимость импульсов полностью блокируется; Р-волны отсутствуют, что приводит к полному отказу синусового узла.

Этиология

Дисфункция синусового узла может развиваться, когда электрическая система сердца повреждена из-за органических или функциональных нарушений. Причины дисфункции синусового узла включают:

  • Старение . Со временем связанный с возрастом износ сердца может ослабить работу синусового узла и заставить его неправильно функционировать. Возрастное повреждение сердечной мышцы является наиболее распространенной причиной дисфункции синусового узла.
  • Лекарственные препараты . Некоторые медикаменты для лечения высокого артериального давления, болезни коронарных артерий, аритмий и других сердечных заболеваний могут вызывать или ухудшать функцию синусового узла. К таким препаратам относятся бета-блокаторы, блокаторы кальциевых каналов и антиаритмические средства. Все же принимать сердечные лекарства чрезвычайно важно и при выполнении врачебных рекомендаций они в большинстве случаев не вызывают проблем.
  • Операция на сердц е. Хирургические вмешательства с участием верхних камер сердца могут привести к образованию рубцовой ткани, которая блокирует электрические сигналы от синусового узла. Послеоперационные рубцы на сердце обычно являются причиной дисфункции синусового узла у детей с врожденным пороком сердца.
  • Идиопатический фиброз узла СА , который может сопровождаться дегенерацией ниже расположенных элементов проводящей системы.

Другими причинами являются наркотики, чрезмерный вагусный тонус и различные ишемические, воспалительные и инфильтративные расстройства.

Симптомы и признаки

Часто дисфункция синусового узла не вызывает симптомов. Только когда состояние становится серьезным, возникают проблемы. Даже признаки болезни могут быть расплывчатыми или вызванными другими патологиями.

Симптомы дисфункции синусового узла включают:

  • Обморок или предобморочное состояние, вызванное тем, что мозг не получает достаточное количество крови от сердца. Также может возникнуть головокружение.
  • Боль в груди (по типу стенокардической), возникает тогда, когда сердцу не хватает кислорода и питательных веществ.
  • Усталость , вызванная нарушением работы сердца, которое не прокачивает кровь достаточно эффективно. Когда кровоток уменьшается, жизненно важные органы недополучают кровь. Это может оставить мышцы без достаточного количества питания и кислорода, вызывая слабость или недостаток энергии.
  • Одышка , возникает в основном при присоединении к дисфункции СА узла сердечной недостаточности или отека легких.
  • Плохой сон , вызванный ненормальным сердечным ритмом. Апноэ сна, при котором человек испытывает паузы во время дыхания, может способствовать дисфункции синусового узла из-за уменьшения подачи кислорода к сердцу.
  • Нарушенное сердцебиение , изменяется чаще всего в сторону его учащения (тахикардии). Иногда ощущается, что ритм неправильный или наоборот чувствуется стук в груди.

Диагностика

После врачебного сбора медицинской истории и проведения физического обследования, назначаются тесты, используемые для диагностики дисфункции синусового узла. Чаще всего к ним относится:

  • Стандартная электрокардиограмма (ЭКГ). Широко используется для выявления нерегулярного сердечного ритма. Перед исследованием на грудь, руки и ноги помещаются электроды, чтобы обеспечить разностороннее измерение сердца. Посредством проводов электроды прикрепляются к аппаратуре, которая измеряет электрическую активность сердца и преобразует импульсы в линии, выглядающие как ряд зубцов. Эти линии, называемые волнами, показывают определенную часть сердечного ритма. Во время анализа ЭКГ врач исследует размер и форму волн и количество времени между ними.
  • Холтеровский мониторинг . Прибор постоянно регистрирует сердцебиение в течение 24-48 часов. Три электрода, прикрепленные к грудной клетке, подключены к устройству, которое больной носит в кармане или надевает на пояс / плечевой ремень. Дополнительно больной ведет дневник своих действий и симптомов во время ношения монитора. Это позволяет врачам определить, что именно происходило в момент нарушения ритма.
  • Монитор событий . Этим методом регистрируется сердцебиение только тогда, когда испытываются симптомы болезни. Монитор событий может использоваться вместо монитора Холтера, если симптомы у больного встречаются реже, чем один раз в день. Некоторые мониторы событий имеют провода, которые соединяют их с электродами, прикрепленными к грудной клетке. Прибор автоматически начинает запись, когда обнаруживает нерегулярное сердцебиение, или больной начинает запись при возникновении симптомов.
  • Нагрузочный тест на беговой дорожк е. Это тестирование может быть выполнено для определения соответствующего ответа на тренировку, представляемого в виде изменения частоты сердечных сокращений.

Прогноз

Прогноз при дисфункции синусового узла неоднозначен.

При отсутствии лечения, смертность составляет около 2% / год, в основном в результате прогрессирования основного заболевания, нередко представляющего собой структурное поражение сердца.

Каждый год примерно у 5% пациентов развивается фибрилляция предсердий с возникновением таких осложнений, как сердечная недостаточность и инсульт.

Лечение

Выраженная дисфункция синусового узла чаще всего устраняется посредством имплантации электрокардиостимулятора. Риск фибрилляции предсердий значительно снижается, когда используется физиологический (предсердный или предсердный и желудочковый) кардиостимулятор, а не только желудочковый кардиостимулятор.

Новые двухкамерные кардиостимуляторы, которые минимизируют стимуляцию желудочков, могут дополнительно снизить риск возникновения фибрилляции предсердий.

Антиаритмические препараты используются для предотвращения пароксизмальных тахиаритмий, особенно после установки кардиостимулятора.

Теофиллин и гидралазин - это препараты, способствующие увеличению частоты сердечных сокращений у здоровых молодых пациентов с брадикардией без обморока в анамнезе.

Видео: Жить Здорово! Слабость синусового узла

Октябрь 26, 2017 Нет комментариев

Основным координатором насосной функции предсердий и желудочков является проводящая система сердца, которая благодаря своей электрической активности способна обеспечить их согласованную работу. В норме электрический импульс генерируется в синусовом узле и активизирует оба предсердия. Наряду с этим импульс из синусового узла поступает к AV-соединению, в котором происходит некоторая задержка его продвижения, позволяющая желудочкам «без спешки» полноценно и своевременно заполниться кровью, поступающей из предсердий. Затем после прохождения AV сигнал достигает предсердно-желудочкового пучка Гиса и наконец по ветвям и волокнам Пуркинье направляется к желудочкам для активации их насосной функции.

Предсердия и желудочки разделены электрически инертными волокнистыми структурами (кольцами) так, что электрическое соединение между предсердиями и желудочками сердца при нормальных условиях обеспечивает только лишь AV-узел. Его участие в передаче сигналов позволяет предсердиям и желудочкам синхронизировать свою работу и, кроме того, минимизировать вероятность электрической обратной связи между сердечными камерами.

Проводящая система сердца представляет собой комплекс структурнофункциональных образований сердца (узлов, пучков и волокон), состоящих из атипичных мышечных волокон (син.: сердечные проводящие кардиомиоциты). Выделяют два взаимосвязанных компонента проводящей системы: синоатриальный (синусно-предсердный) и атриовентрикулярной (предсердно-желудочковый) .

Синоатриальный компонент включает синусовый узел, находящийся в стенке правого предсердия, межпредсердные пучки и межузловые проводящие тракты, связывающие предсердия друг с другом, а также с атриовентрикулярным узлом.

Синусовый узел

Синусовый узел (синузел синоатриальный, синоаурикулярный, Кисса-Флека) представлен небольшими атипичными (несократительными) кардиомиоцитами, входящими в проводящую систему сердца. Связь синусового узла с атриовентрикулярным узлом обеспечивается тремя трактами: передним (пучок Бахмана), средним (пучок Венкебаха) и задним (пучок Тореля). Обычно импульсы достигают атриовентрикулярного узла по переднему и среднему трактам. Следуя по ним, импульсы равномерно охватывают возбуждением прилегающие к проводящим путям отделы миокарда. Пейс-мекерные клетки синусового узла не имеют быстрых Na+-каналов, поэтому развивают лишь низкую скорость нарастания потенциала действия, величина которой зависит от внутриклеточного притока Са++. Вместе с тем, клетки синусового узла обладают относительно быстрой спонтанной деполяризацией (фаза 4), что обеспечивает их способность автоматически генерировать до 100 импульсов и более в минуту.

Синусовый узел богато иннервирован симпатическими и парасимпатическими нервами, которые позволяют центральной нервной системе (ЦНС) оказывать на него существенное регулирующее влияние в интересах организма.

Симпатическая стимуляция вызывает в пейсмекерных клетках повышение скорости продолжительного тока кальция. Это изменение связано с увеличением активности цАМФ и протеинкиназы А, которое обусловливает фосфорилирование Ca++-L каналов. Симпатическая стимуляция увеличивает также ток калия из клетки, что укорачивает продолжительность потенциала действия и способствует преждевременному старту следующего потенциала действия.

Наконец, симпатическая стимуляция увеличивает вход Na+ в клетку, что приводит к повышению скорости спонтанной диастолической деполяризации. Активация парасимпатической нервной системы вызывает противоположный эффект. Увеличение ацетилхолина активирует G-белок, который ингибирует аденилатциклазу и приводит к снижению концентрации цАМФ, что уменьшает скорость ионных потоков кальция в клетку, калия из клетки и натрия в клетку.

Предсердно-желудочковый компонент объединяет расположенный в нижней стенке правого предсердия атриовентрикулярный узел и отходящий от него пучок Гиса, который имеет 2 ножки - правую и левую. Этот пучок связывает между собой желудочки. Отходящие от пучка Гиса ветви обозначают как волокна Пуркинье.

В атриовентрикулярном АВ-соединении, главным образом в его пограничных участках между атриовентрикулярным узлом и пучком 1иса, происходит достаточно существенное замедление скорости проведения импульсов. Эта замедление обеспечивает отсроченное возбуждение желудочков после окончания полноценного сокращения предсердий. В целом основными функциями атриовентрикулярного узла являются:

а) антеградная задержка и «фильтрация» волн возбуждения от предсердий к желудочкам, обеспечивающая скоординированное сокращение предсердий и желудочков;
б) функциональная защита желудочков от возбуждения в «уязвимой» фазе потенциала действия: минимизация вероятности электрической обратной связи между желудочками и предсердиями.

Кроме того, в условиях угнетения активности синоатриального узла атриовентрикулярный узел способен выполнять роль самостоятельного генератора сердечного ритма, т.е. выступать в качестве пейсмекера второго порядка, индуцируя в среднем 40-60 импульсов в минуту.

Доминирующим в роли пейсмекера при прочих равных условиях является синусовый узел – водитель ритма первого порядка, т.к. в норме по сравнению с АВ-узлом генерирует импульсы с большей частотой.

Атриовентрикулярный узел

Атриовентрикулярный (АВ) узел (син.: АВ узел Ашоффа-Тавары; АВ-соединение). Предсердия изолированы от желудочков фиброзным кольцом, которое неспособно пропускать сигналы от синусового узла. В норме есть только один электрически активный путь между предсердиями и желудочками - это атриовентрикулярный узел, нередко называемый АВ-соединением В предсердной части АВ-узла находятся т. н. «переходные» клетки-пейсмекеры, аналогичные клеткам водителя ритма первого порядка. Скорость (крутизна) спонтанной диастолической деполяризации в этих клетках очень низкая, составляя всего 0,05 м/с (для сравнения скорость проведения сигналов в предсердии 1,0 м/с), поэтому пороговый потенциал возбуждения достигается медленнее, что можно объяснить, во-первых, исключительно продолжительным током кальция в клетки-пейсмекеры, а во-вторых, - их низкой плотностью в АВ-соединении.

Пучок Гиса (син .: АВ-пучок Гиса) и волокна Пуркинье (син. : система Шса-Пуркинье). Пучок Гкса - это совокупность волокон, которые заключены в фиброзные оболочки и отходят от АВ-узла, постепенно расслаиваясь на две группы волокон-левую ножку пучка, которая иннервирует межжелудочковую перегородку, левый желудочек, и правый пучок, иннервирующий правый желудочек. Дистальные ветви этих пучков проникают во все регионы правого и левого желудочков, образуя систему Пуркинье.

Потенциалы действия пучка Шса и волокон Пуркинье схожи между собой. Для них характерны быстрая фаза 0 деполяризации, длительный период плато, и очень медленная диастолическая деполяризация. Быстрая фаза 0 деполяризации обусловлена чрезвычайно высокой плотностью быстрых Na+-каналов. Длительный период плато (фаза 2), как полагают, возникает либо из-за сравнительно поздней инактивации Са2+-каналов или поздней активации К+-каналов. Фаза 4 деполяризации замедлена из-за медленного потока ионов Na+ внутрь клетки (If). Достаточно быстрое проведение сигналов в системе Пуркинье необходимо для практически одновременной активации желудочков. Этому способствует также высокая плотность синаптических контактов клеток Пуркинье на кардиомиоцитах (рис. 6.9).

Проводящая система обладает рядом свойств, определяющих ее участие в работе сердца: автоматизм, возбудимость и проводимость. Основным из них является автоматизм, без которого остальные свойства бессмысленны.

Автоматизм клеток миокарда

Автоматизм - это способность специализированных клеток миокарда спонтанно вырабатывать электрические импульсы (син: потенциалы действия; ПД). Существует продольный (от предсердий к верхушке сердца) градиент автомата и проводящей системы. Принято различать три «центра» автоматизма:

1. синоатриальный узел - водитель ритма сердца первого порядка. В физиологических условиях этот узел генерирует импульсы с частотой 60-1 80 в мин;

2. атриовентрикулярный узел (клетки АВ-соединения) – водитель ритма сердца второго порядка, который способен генерировать 40-50 импульсов в 1 мин;

3. пучок Гиса (30-40 импульсов в 1 мин) и волокна Пуркинье (в среднем 20 импульсов в 1 мин) - водители ритма третьего порядка.

В норме единственным водителем ритма является синоатриальный узел, 1 который «не позволяет» реализоваться автоматической активности других потенциальных водителей ритма.

В основе автоматизма лежит медленная диастолическая деполяризация, постепенно понижающая мембранный потенциал до уровня порогового (критического) потенциала, с которого начинается быстрая регенеративная деполяризация мембраны, или фаза 0 потенциала действия.

Ритмичное возбуждение пейсмекерных клеток с частотой 70-80 в 1 мин можно объяснить двумя процессами: 1) ритмичным спонтанным повышением проницаемости мембран этих клеток для ионов Na+ и Са++, вследствие чего они поступают в клетку; 2) ритмичным снижением проницаемости для J ионов К+, в результате чего количество покидающих клетку ионов К+ уменьшается.

Согласно предложенному недавно альтернативному механизму, входящий пейсмекерный ток ионов Na+ (If) со временем возрастает, тогда как выходящий ток К+ остается неизменным. В целом данные процессы детерминируют развитие мед ленной диастолической деполяризации клеток пейс-мекера и достижение критического порога возбуждения (-40 мВ), обеспечивающего возникновение потенциала действия и его распространение по миокарду. Восходящая часть ПД клеток-пейсмекеров обеспечивается входом Са2+ в клетку Отсутствие плато можно объяснить характерным изменением проницаемости мембраны для ионов, при котором процессы деполяризации и инверсии плавно переходят в реполяризацию, которая также проходит более медленно из-за замедленного тока К+ из клетки. Амплитуда ПД составляет 70-80 мВ, его продолжительность - около 200 мс, рефрактерность - около 300 мс, те. длительность рефрактерного периода продолжительнее ПД, что защищает сердце от внеочередных импульсов (и соответственно преждевременного возбуждения), исходящих из других (как нормальных, так, и патологических) генераторов возбуждения, приходящихся на период не-возбудимости сердечной мышцы.

Функционирование дистальной (эффекторной) часта проводящей системы обеспечивают такие же процессы, которые происходят в клетках сино-атриального пейсмекера. В развитии спонтанной диастолической депаляризации в структурах системы Гиса-Пуркинье важную роль играет также ток ионов Na+ (И). Кроме того, в этом процессе участвуют и другие ионные токи, включая ток ионов К+ (ik), который в значительной степени определяет зависимость автоматизма волокон Пуркинье от внеклеточной концентрации ионов К+. При этом, отметим ток ионов К+ весьма незначителен в пейсмекерных клетках синоатриального узла, поскольку в них мало калиевых каналов.

В современной модели автоматизма волокон Пуркинье представлены четыре ионных механизма, зависящие от внеклеточной концентрации ионов К+:

1) активация тока ионов Na+ (If), усиливающая пейсмекерную активность;

2) активация тока ионов К+ (Ik), замедляющая или приостанавливающая пейсмекерную активность;

3) активация Na+/K+-Hacoca (Ip), замедляющая пейсмекерную активность;

4) уменьшение тока ионов K+(Ik), усиливающая пейсмекерную активность.

С электрофизиологической точки зрения, интервал между сокращениями сердца равен отрезку времени, в течение которого мембранный потенциал покоя в клетках-пейсмекерах синоатриального узла смещается до уровня порогового потенциала возбуждения

Существует строгая согласованность между процессом электрической активации каждого кардиомиоцита [потенциалом действия], возбуждением всего миокардиального синцития [ЭКГ-комплексом] и сердечным циклом [биомеханограммой] сердца.

Проводящая система сердца (ПСС) -- комплекс анатомических образований (узлов, пучков и волокон), обладающих способностью генерировать импульс сердечных сокращений и проводить его ко всем отделам миокарда предсердий и желудочков, обеспечивая их координированные сокращения .

Проводящая система сердца включает в себя:

  • 1. Синусный узел - Киса-Флекса. Синусный узел располагается в правом предсердии на задней стенке у места впадения верхней полой вены. Он является водителем ритма, в нем возникают импульсы, определяющие частоту сердечных сокращений. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).
  • 2. Атриовентрикулярный узел - Ашофа-Товара.

Расположен в нижней части межпредсердной перегородки справа, кпереди от коронарного синуса. В последние годы вместо термина «атриовентрикулярный узел» часто употребляют более широкое понятие -- «атриовентрикулярное соединение». Этим термином обозначают анатомическую область, включающую в себя атриовентрикулярный узел, специализированные клетки предсердий, лежащие в области узла, и часть проводящей ткани, от которой регистрируется потенциал Н электрограммы. Различают четыре типа клеток атриовентрикулярного узла, аналогичных клеткам синусового узла:

  • · Р-клетки, имеющиеся в небольшом количестве и располагающиеся главным образом в области перехода атриовентрикулярного узла в пучок Гиса;
  • · переходные клетки, которые составляют основную массу атриовентрикулярного узла;
  • · клетки сократительного миокарда, располагающиеся главным образом у атрионодального края;
  • · клетки Пуркинье
  • 3. Пучок Гиса, который делится на правую и левую ножки, переходящие в волокна Пуркинье.

Пучок Гиса состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм. Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь - заднюю стенку левого желудочка, и нижние отделы боковой стенки. Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»