Что находится в крови. Физиологические функции крови

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:
Кровь (sanguis) - жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему.

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеточных (форменных) элементов. Нерастворимые жировые частицы клеточного происхождения, присутствующие в плазме, называют гемокониями (кровяная пыль). Объем К. в норме составляет в среднем у мужчин 5200 мл, у женщин 3900 мл.

Различают красные и белые кровяные тельца (клетки). В норме красных кровяных телец (эритроцитов) у мужчин 4-5×1012/л, у женщин 3,9-4,7×1012/л, белых кровяных телец (лейкоцитов) - 4-9×109/л крови.
Кроме того, в 1 мкл крови содержится 180-320×109/л тромбоцитов (кровяных пластинок). В норме объем клеток составляет 35-45% объема крови.

Физико-химические свойства.
Плотность цельной крови зависит от содержания в ней эритроцитов, белков и липидов Цвет крови меняется от алого до темно-красного в зависимости от соотношения форм гемоглобина, а также присутствия его дериватов - метгемоглобина, карбоксигемоглобина и др. Алый цвет артериальной крови связан с присутствием в эритроцитах оксигемоглобина, темно красный цвет венозной крови - с наличием восстановленного гемоглобина. Окраска плазмы обусловлена присутствием в ней красных и желтых пигментов, главным образом каротиноидов и билирубина; содержание в плазме большого количества билирубина при ряде патологических состояний придает ей желтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические вещества плазмы - растворенными веществами, а белки и их комплексы - коллоидным компонентом.
На поверхности клеток К. имеется двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счет двойною электрического слоя возникает электрокинетический потенциал (дзета-потенциал), предотвращающий агрегацию (склеивание) клеток и играющий, т.о., важную роль в их стабилизации.

Поверхностный ионный заряд мембран клеток крови непосредственно связан с физико-химическими превращениями, происходящими на клеточных мембранах. Определить клеточный заряд мембран можно с помощью электрофореза. Электрофоретическая подвижность прямо пропорциональна величине заряда клетки. Наибольшей электрофоретической подвижностью обладают эритроциты, наименьшей - лимфоциты.

Проявлением микрогетерогенности К.
является феномен оседания эритроцитов. Склеивание (агглютинация) эритроцитов и связанное с ним оседание во многом зависят от состава среди, в которой они взвешены.

Электропроводность крови, т.е. ее способность проводить электрический ток, зависит от содержания электролитов в плазме и величины гематокритного числа. Электропроводность цельной К. на 70% определяется присутствующими в плазме солями (главным образом хлоридом натрия), на 25% белками плазмы и лишь на 5% клетками крови. Измерение электропроводности крови используют в клинической практике, в частности при определении СОЭ.

Ионная сила раствора - величина, характеризующая взаимодействие растворенных в нем ионов, что сказывается на коэффициентах активности, электропроводности и других свойствах растворов электролитов; для плазмы К. человека эта величина равна 0,145. Концентрация водородных ионов плазмы выражается в величинах водородного показателя. Средний рН крови 7,4. В норме рН артериальной крови 7,35-7,47, венозной крови на 0,02 ниже, содержимое эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Поддержание постоянства концентрации водородных ионов в крови обеспечивается многочисленными физико-химическими, биохимическими и физиологическими механизмами, среди которых важную роль играют буферные системы крови. Их свойства зависят от присутствия солей слабых кислот, главным образом угольной, а также гемоглобина (он диссоциирует как слабая кислота), низкомолекулярных органических кислот и фосфорной кислоты. Сдвиг концентрации водородных ионов в кислую сторону называется ацидозом, в щелочную - алкалозом. Для поддержания постоянства рН плазмы наибольшее значение имеет бикарбонатная буферная система (см. Кислотно-щелочное равновесие). Т.к. буферные свойства плазмы почти целиком зависят от содержания в ней бикарбоната, а в эритроцитах большую роль играет также гемоглобин, то буферные свойства цельной К. в большой степени обусловлены содержанием в ней гемоглобина. Гемоглобин, как и подавляющее большинство белков К., при физиологических значениях рН диссоциирует как слабая кислота, при переходе в оксигемоглобин он превращается в значительно более сильную кислоту, что способствует вытеснению угольной кислоты из К. и переходу ее в альвеолярный воздух.

Осмотическое давление плазмы крови определяется ее осмотической концентрацией, т.е. суммой всех частиц - молекул, ионов, коллоидных частиц, находящихся в единице объема. Эта величина поддерживается физиологическими механизмами с большим постоянством и при температуре тела 37° составляет 7,8 мН/м2 (» 7,6 атм). Она в основном зависит от содержания в К. хлористого натрия и других низкомолекулярных веществ, а также белков, главным образом альбуминов, неспособных легко проникать через эндотелий капилляров. Эту часть осмотического давления называют коллоидно-осмотическим, или онкотическим. Оно играет важную роль в движении жидкости между кровью и лимфой, а также в образовании гломерулярного фильтрата.

Одно из важнейших свойств крови - вязкость составляет предмет изучения биореологии. Вязкость крови зависит от содержания белков и форменных элементов, главным образом эритроцитов, от калибра кровеносных сосудов. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра), вязкость крови в 4-5 раз выше вязкости воды. Величина, обратная вязкости, называется текучестью. При патологических состояниях текучесть крови существенно изменяется вследствие действия определенных факторов свертывающей системы крови.

Морфология и функция форменных элементов крови. К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (нейтрофильными, эозинофильными и базофильными полиморфно-ядерными) и агранулоцитами (лимфоцитами и моноцитами), а также тромбоциты. В крови содержится незначительное количество плазматических и других клеток. На мембранах клеток крови происходят ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток крови несут информацию о группах К. в тканевых антигенах.

Эритроциты (около 85%) являются безъядерными двояковогнутыми клетками с ровной поверхностью (дискоцитами), диаметром 7-8 мкм. Объем клетки 90 мкм3 площадь 142 мкм2, наибольшая толщина 2,4 мкм, минимальная - 1 мкм, средний диаметр на высушенных препаратах 7,55 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, 5% приходится на долю других веществ (негемоглобиновые белки и липиды). Ультраструктура эритроцитов однообразна. При исследовании их с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина; органеллы отсутствуют. На более ранних стадиях развития эритроцита (ретикулоцита) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.). Клеточная мембрана эритроцита на всем протяжении одинакова; она имеет сложное строение. Если мембрана эритроцитов нарушается, то клетки принимают сферические формы (стоматоциты, эхиноциты, сфероциты). При исследовании в сканирующем электронном микроскопе (растровая электронная микроскопия) определяют различные формы эритроцитов в зависимости от их поверхностной архитектоники. Трансформация дискоцитов вызывается рядом факторов, как внутриклеточных, так и внеклеточных.

Эритроциты в зависимости от размера называют нормо-, микро- и макроцитами. У здоровых взрослых людей количество нормоцитов составляет в среднем 70%.

Определение размеров эритроцитов (эритроцитометрия) дает представление об эритроцитопоэзе. Для характеристики эритроцитопоэза используют также эритрограмму - результат распределения эритроцитов по какому-либо признаку (например, по диаметру, содержанию гемоглобина), выраженный в процентах и (или) графически.

Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина. Для них характерен относительно низкий уровень обмена, что обусловливает длительную продолжительность их жизни (приблизительно 120 дней). Начиная с 60-го дня после попадания эритроцита в кровяное русло постепенно снижается активность ферментов. Это приводит к нарушению гликолиза и, следовательно, к уменьшению потенциала энергетических процессов в эритроците. Изменения внутриклеточного обмена связаны со старением клетки и в итоге приводят к ее разрушению. Большое число эритроцитов (около 200 млрд.) ежедневно подвергается деструктивным изменениям и погибает.

Лейкоциты.
Гранулоциты - нейтрофильные (нейтрофилы), эозинофильные (эозинофилы), базофильные (базофилы) полиморфно-ядерные лейкоциты - крупные клетки от 9 до 15 мкм, они циркулируют в крови несколько часов, а затем перемещаются в ткани. В процессы дифференциации гранулоциты проходят стадии метамиелоцитов и палочкоядерных форм. В метамиелоцитах бобовидное ядро имеет нежное строение. В палочкоядерных гранулоцитах хроматин ядра более плотно упакован, ядро вытягивается, иногда в нем намечается образование долек (сегментов). В зрелых (сегментоядерных) гранулоцитах ядро обычно имеет несколько сегментов. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную. В последней, в свою очередь, различают зрелую и незрелую зернистость.

В нейтрофильных зрелых гранулоцитах количество сегментов бывает от 2 до 5; новообразования гранул в них не происходит. Зернистость нейтрофильных гранулоцитов окрашивается красителями от коричневатого до красновато-фиолетового цвета; цитоплазма - в розовый цвет. Соотношение азурофильных и специльных гранул непостоянно. Относительное число азурофильных гранул достигает 10-20%. Важную роль в жизнедеятельности гранулоцитов играет их поверхностная мембрана. По набору гидролитических ферментов гранулы могут быть идентифицированы как лизосомы с некоторыми специфическими особенностями (наличие фагоцитина и лизоцима). При ультрацитохимическом исследовании показано, что активность кислой фосфатазы в основном связана с азурофильными гранулами, а активность щелочной фосфатазы - со специальными гранулами. С помощью цитохимических реакций в нейтрофильных гранулоцитах обнаружены липиды, полисахариды, пероксидаза и др. Основной функцией нейтрофильных гранулоцитов является защитная реакция по отношению к микроорганизмам (микрофаги). Они активные фагоциты.

Эозинофильные гранулоциты содержат ядро, состоящее из 2, реже 3 сегментов. Цитоплазма слабо базофильна. Эозинофильная зернистость окрашивается кислыми анилиновыми красителями, особенно хорошо эозином (от розового до цвета меди). В эозинофилах выявлены пероксидаза, цитохромоксидаза, сукцинатдегидрогеназа, кислая фосфатаза и др. Эозинофильные гранулоциты обладают дезинтоксикационной функцией. Количество их увеличивается при введении в организм чужеродного белка. Эозинофилия является характерным симптомом при аллергических состояниях. Эозинофилы принимают участие в дезинтеграции белка и удалении белковых продуктов, наряду с другими гранулоцитами способны к фагоцитозу.

Базофильные гранулоциты обладают свойством окрашиваться метахроматически, т.е. в оттенки, отличные от цвета краски. Ядро этих клеток не имеет структурных особенностей. В цитоплазме органеллы развиты слабо, в ней определяются специальные гранулы полигональной формы (диаметром 0,15-1,2 мкм), состоящие из электронно-плотных частиц. Базофилы наряду с эозинофилами участвуют в аллергических реакциях организма. Несомненна их роль и в обмене гепарина.

Для всех гранулоцитов характерна высокая лабильность клеточной поверхности, которая проявляется в адгезивных свойствах, способности к агрегации, образованию псевдоподий, передвижению, фагоцитозу. В гранулоцитах обнаружены кейлоны - вещества, которые оказывают специфическое действие, подавляя синтез ДНК в клетках гранулоцитарного ряда.

В отличие от эритроцитов лейкоциты в функциональном отношении являются полноценными клетками с большим ядром и митохондриями, высоким содержанием нуклеиновых кислот и окислительным фосфорилированием. В них сосредоточен весь гликоген крови, служащий источником энергии при недостатке кислорода, например в очагах воспаления. Основная функция сегментоядерных лейкоцитов - фагоцитоз. Их антимикробная и антивирусная активность связана с выработкой лизоцима и интерферона.

Лимфоциты - центральное звено в специфических иммунологических реакциях; они являются предшественниками антителообразующих клеток и носителями иммунологической памяти. Основная функция лимфоцитов - выработка иммуноглобулинов (см. Антитела). В зависимости от величины различают малые, средние и большие лимфоциты. В связи с различием иммунологических свойств выделяют лимфоциты тимусзависимые (Т-лимфоциты), ответственные за опосредованный иммунный ответ, и В-лимфоциты, которые являются предшественниками плазматических клеток и ответственны за эффективность гуморального иммунитета.

Большие лимфоциты имеют обычно круглое или овальное ядро, хроматин конденсируется по краю ядерной мембраны. В цитоплазме находятся одиночные рибосомы. Эндоплазматическая сеть развита слабо. Выявляют 3-5 митохондрий, реже их больше. Пластинчатый комплекс представлен небольшими пузырьками. Определяются электронно-плотные осмиофильные гранулы, окруженные однослойной мембраной. Малые лимфоциты характеризуются высоким ядерно-цитоплазматическим отношением. Плотно упакованный хроматин образует крупные конгломераты по периферии и в центре ядра, которое бывает овальной или бобовидной формы. Цитоплазматические органеллы локализуются на одном полюсе клетки.

Продолжительность жизни лимфоцита колеблется от 15-27 дней до нескольких месяцев и лет. В химическом составе лимфоцита наиболее выраженными компонентами являются нуклеопротеиды. Лимфоциты содержат также катепсин, нуклеазу, амилазу, липазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Моноциты - наиболее крупные (12-20 мкм) клетки крови. Форма ядра разнообразная, клетка окрашивается в фиолетово-красный цвет; хроматиновая сеть в ядре имеет широко-нитчатое, рыхлое строение (рис. 5). Цитоплазма обладает слабобазофильными свойствами, окрашивается в сине-розовый цвет, имея в разных клетках различные оттенки. В цитоплазме определяется мелкая нежная азурофильная зернистость, диффузно распределенная по всей клетке; окрашивается в красный цвет. Моноциты обладают резко выраженной способностью к окрашиванию, амебоидному движению и фагоцитозу, особенно остатков клеток и мелких чужеродных тел.

Тромбоциты - полиморфные безъядерные образования, окруженные мембраной. В кровяном русле тромбоциты имеют округлую или овальную форму. В зависимости от степени целости различают зрелые формы тромбоцитов, юные, старые, так называемые формы раздражения и дегенеративные формы (последние встречаются у здоровых людей крайне редко). Нормальные (зрелые) тромбоциты - круглой или овальной формы с диаметром 3-4 мкм; составляют 88,2 ± 0,19% всех тромбоцитов. В них различают наружную бледно-голубую зону (гиаломер) и центральную с азурофильной зернистостью - грануломер (рис. 6). При соприкосновении с чужеродной поверхностью волоконца гиаломера, переплетаясь между собой, образуют на периферии тромбоцита отростки различной величины. Юные (незрелые) тромбоциты - несколько больших размеров по сравнению со зрелыми с базофильным содержимым; составляют 4,1 ± 0,13%. Старые тромбоциты - различной формы с узким ободком и обильной грануляцией, содержат много вакуолей; составляют 4,1 ± 0,21%. Процентное соотношение различных форм тромбоцитов отражают в тромбоцитограмме (тромбоцитарной формуле), которая зависит от возраста, функционального состояния кроветворения, наличия патологических процессов в организме. Химический состав тромбоцитов достаточно сложен. Так, в их сухом остатке содержится 0,24% натрия, 0,3% калия, 0,096% кальция, 0,02% магния, 0,0012% меди, 0,0065% железа и 0,00016% марганца. Наличие в тромбоцитах железа и меди позволяет предположить их участие в дыхании. Большая часть кальция тромбоцитов связана с липидами в виде липидно-кальциевого комплекса. Важную роль играет калий; в процессе образования кровяного сгустка он переходит в сыворотку крови, что необходимо для осуществления его ретракции. До 60% сухого веса тромбоцитов составляют белки. Содержание липидов достигает 16-19% от сухого веса. В тромбоцитах выявлены также холинплазмалоген и этанолплазмалоген, играющие определенную роль в ретракции сгустка. Кроме того, в тромбоцитах отмечаются значительные количества b-глюкуронидазы и кислой фосфатазы, а также цитохромоксидазы и дегидрогеназы, полисахариды, гистидин. В тромбоцитах обнаружено соединение, близкое к гликопротеидам, способное ускорять процесс образования кровяного сгустка, и небольшое количество РНК и ДНК, которые локализуются в митохондриях. Хотя в тромбоцитах отсутствуют ядра, в них протекают все основные биохимические процессы, например синтезируется белок, происходит обмен углеводов и жиров. Основная функция тромбоцитов - способствовать остановке кровотечения; они обладают свойством распластываться, агрегировать и сжиматься, обеспечивая тем самым начало образования кровяного сгустка, а после его формирования - ретракцию. В тромбоцитах содержится фибриноген, а также сократительный белок тромбастенин, во многом напоминающий мышечный сократительный белок актомиозин. Они богаты аденилнуклеотидами, гликогеном, серотонином, гистамином. В гранулах содержится III, а на поверхности адсорбированы V, VII, VIII, IX, X, XI и XIII факторы свертывания крови.

Плазматические клетки встречаются в нормальной крови, в единичном количестве. Для них характерно значительное развитие структур эргастоплазмы в виде канальцев, мешочков и др. На мембранах эргастоплазмы очень много рибосом, что делает цитоплазму интенсивно-базофильной. Около ядра локализуется светлая зона, в которой обнаруживается клеточный центр и пластинчатый комплекс. Ядро располагается эксцентрично. Плазматические клетки продуцируют иммуноглобулины

Биохимия.
Перенос кислорода к тканям крови (эритроциты) осуществляет с помощью специальных белков - переносчиков кислорода. Это содержащие железо или медь хромопротеиды, которые получили название кровяных пигментов. Если переносчик низкомолекулярный, он повышает коллоидно-осмотическое давление, если высокомолекулярный - увеличивает вязкость крови, затрудняя ее движение.

Сухой остаток плазмы крови человека около 9%, из них 7% составляют белки, в том числе около 4% приходится на альбумин, поддерживающий коллоидно-осмотическое давление. В эритроцитах плотных веществ значительно больше (35-40%), из них 9/10 приходится на гемоглобин.

Исследование химического состава цельной крови широко используется для диагностики заболеваний и контроля за лечением. Для облегчения интерпретации результатов исследования вещества, входящие в состав крови, делят на несколько групп. В первую группу входят вещества (водородные ионы, натрий, калий, глюкоза и др.), имеющие постоянную концентрацию, которая необходима для правильного функционирования клеток. К ним применимо понятие постоянства внутренней среды (гомеостаза). Ко второй группе относятся вещества (гормоны, плазмоспецифические ферменты и др.), продуцируемые специальными видами клеток; изменение их концентрации свидетельствует о повреждении соответствующих органов. Третья группа включает вещества (некоторые из них токсичны), удаляемые из организма лишь специальными системами (мочевина, креатинин, билирубин и др.); накопление их в крови является симптомом повреждения этих систем. Четвертую группу составляют вещества (органоспецифические ферменты), которыми богаты лишь некоторые ткани; появление их в плазме служит признаком разрушения или повреждения клеток этих тканей. В пятую группу входят вещества, в норме продуцируемые в небольших количествах; в плазме они появляются при воспалении, новообразовании, нарушении обмена веществ и др. К шестой группе относятся токсические вещества экзогенного происхождения.

Для облегчения лабораторной диагностики разработано понятие нормы, или нормального состава, кровь -диапазон концентраций, не свидетельствующих о заболевании. Однако общепринятые нормальные величины удалось установить лишь для некоторых веществ. Сложность заключается в том, что в большинстве случаев индивидуальные различия значительно превышают колебания концентрации у одного и того же человека в разное время. Индивидуальные различия связаны с возрастом, полом, этнической принадлежностью (распространенностью генетически обусловленных вариантов нормального обмена веществ), географическими и профессиональными особенностями, с употреблением определенной пищи.

В плазме крови содержится более 100 различных белков, из которых около 60 выделено в чистом виде. Подавляющее большинство из них гликопротеиды. Плазматические белки образуются в основном в печени, которая у взрослого человека продуцирует их до 15-20 г в день. Плазматические белки служат для поддержания коллоидно-осмотического давления (и тем самым для удержания воды и электролитов), выполняют транспортные, регуляторные и защитные функции, обеспечивают свертывание крови (гемостаз) и могут служить резервом аминокислот. Различают 5 основных фракций белков крови: альбумины, ×a1-, a2-, b-, g-глобулины. Альбумины составляют относительно однородную группу, состоящую из альбумина и преальбумина. Больше всего в крови альбумина (около 60% всех белков). При содержании альбумина ниже 3% развиваются отеки. Определенное клиническое значение имеет отношение суммы альбуминов (более растворимых белков) к сумме глобулинов (менее растворимых)- так называемый альбумин-глобулиновый коэффициент, уменьшение которого служит показателем воспалительного процесса.

Глобулины неоднородны по химической структуре и функциям. В группу a1-глобулинов входят следующие белки: орозомукоид (a1-гликопротеид), a1-антитрипсин, a1-липопротеид и др. К числу a2-глобулинов относятся a2-макроглобулин, гаптоглобулин, церулоплазмин (медьсодержащий белок, обладающий свойствами фермента оксидазы), a2-липопротеид, тироксинсвязывающий глобулин и др. b-Глобулины очень богаты липидами, в них входят также трансферин, гемопексин, стероидсвязывающий b-глобулин, фибриноген и др. g-Глобулины - белки, ответственные за гуморальные факторы иммунитета, в их составе различают 5 групп иммуноглобулинов: lgA, lgD, lgE, lgM, lgG. В отличие от других белков, они синтезируются в лимфоцитах. Многие из перечисленных белков существуют в нескольких генетически обусловленных вариантах. Их присутствие в К. в одних случаях сопровождается заболеванием, в других - является вариантом нормы. Иногда присутствие нетипичного аномального белка приводит к незначительным нарушениям. Приобретенные заболевания могут сопровождаться накоплением специальных белков - парапротеинов, являющихся иммуноглобулинами, которых у здоровых людей значительно меньше. К ним относятся белок Бенс-Джонса, амилоид, иммуноглобулин класса М, J, А, а также криоглобулин. Среди ферментов плазмы К. обычно выделяют органоспецифические и плазмоспецифические. К первым относят те из них, которые содержатся в органах, а в плазму в значительных количествах попадают лишь при повреждении соответствующих клеток. Зная спектр органоспецифических ферментов в плазме, можно установить, из какого органа происходит данная комбинация ферментов и насколько значительно ею повреждение. К плазмоспецифическим относят ферменты, основная функция которых реализуется непосредственно в кровотоке; их концентрация в плазме всегда выше, чем в каком-либо органе. Функции плазмоспецифических ферментов разнообразны.

В плазме крови циркулируют все аминокислоты, входящие в состав белков, а также некоторые родственные им аминосоединения - таурин, цитруллин и др. Азот, входящий в состав аминогрупп, быстро обменивается путем переаминирования аминокислот, а также включения в состав белков. Общее содержание азота аминокислот плазмы (5-6 ммоль/л) примерно в два раза ниже, чем азота, входящего в состав шлаков. Диагностическое значение имеет в основном увеличение содержания некоторых аминокислот, особенно в детском возрасте, которое свидетельствует о недостаточности ферментов, осуществляющих их метаболизм.

К безазотистым органическим веществам относятся липиды, углеводы и органические кислоты. Липиды плазмы не растворимы в воде, поэтому переносятся кровь только в составе липопротеинов. Это вторая по величине группа веществ, уступающая белкам. Среди них больше всего триглицеридов (нейтральных жиров), затем идут фосфолипиды - главным образом лецитин, а также кефалин, сфингомиелин и лизолецитии. Для выявления и типирования нарушений жирового обмена (гиперлипидемий) большое значение имеет исследование содержания в плазме холестерина и триглицеридов.

Глюкоза крови (иногда ее не совсем правильно идентифицируют с сахаром крови) - основной источник энергии для многих тканей и единственный для головного мозга, клетки которого очень чувствительны к уменьшению ее содержания. Помимо глюкозы в крови присутствуют в небольших количествах другие моносахариды: фруктоза, галактоза, а также фосфорные эфиры сахаров - промежуточные продукты гликолиза.

Органические кислоты плазмы крови (не содержащие азота) представлены продуктами гликолиза (большая часть их фосфорилирована), а также промежуточными веществами цикла трикарбоновых кислот. Среди них особое место занимает молочная кислота, которая накапливается в больших количествах, если организм совершает более значительный объем работы, чем получает для этого кислорода (кислородный долг). Накопление органических кислот происходит также при различных видах гипоксии. b-Оксимасляная и ацетоуксусная кислоты, которые вместе с образующимся из них ацетоном относятся к кетоновым телам, в норме вырабатываются в сравнительно небольших количествах как продукты обмена углеводородных остатков некоторых аминокислот. Однако при нарушении углеводного обмена, например при голодании и сахарном диабете, вследствие недостатка щавелевоуксусной кислоты изменяется нормальная утилизация остатков уксусной кислоты в цикле трикарбоновых кислот, и поэтому кетоновые тела могут накапливаться в крови в больших количествах.

Печень человека продуцирует холевую, уродезоксихолевую и хенодезоксихолевую кислоты, которые выделяются с желчью в двенадцатиперстную кишку, где, эмульгируя жиры и активируя ферменты, способствуют пищеварению. В кишечнике под действием микрофлоры из них образуются дезоксихолевая и литохолевая кислоты. Из кишечника желчные кислоты частично всасываются в крови, где большая часть их находится в виде парных соединений с таурином или глицином (конъюгированные желчные кислоты).

Все продуцируемые эндокринной системой гормоны циркулируют в крови. Их содержание у одного и того же человека в зависимости от физиологического состояния может очень значительно изменяться. Для них характерны также суточные, сезонные, а у женщин и месячные циклы. В крови всегда присутствуют продукты неполного синтеза, а также распада (катаболизма) гормонов, которые часто обладают биологическим действием, поэтому в клинической практике широкое распространение имеет определение сразу целой группы родственных веществ, например 11-оксикортикостероидов, йодсодержащих органических веществ. Циркулирующие в К. гормоны быстро выводятся из организма; период их полувыведения обычно измеряется минутами, реже часами.

В крови содержатся минеральные вещества и микроэлементы. Натрий составляет 9/10 всех катионов плазмы, концентрация его поддерживается с очень большим постоянством. В составе анионов доминируют хлор и бикарбонат; их содержание менее постоянно, чем катионов, поскольку выделение угольной кислоты через легкие приводит к тому, что венозная кровь бывает богаче бикарбонатом, чем артериальная. В процессе дыхательного цикла хлор перемещается из эритроцитов в плазму и обратно. В то время как все катионы плазмы представлены минеральными веществами, примерно 1/6 часть всех содержащихся в ней анионов приходится на белок и органические кислоты. У человека и почти у всех высших животных электролитный состав эритроцитов резко отличается от состава плазмы: вместо натрия преобладает калий, содержание хлора также значительно меньше.

Железо плазмы крови полностью связано с белком трансферрином, в норме насыщая его на 30-40%. Поскольку одна молекула этого белка связывает два атома Fe3+, образовавшихся при распаде гемоглобина, двухвалентное железо предварительно окисляется до трехвалентного. В плазме содержится кобальт, входящий в состав витамина В12. Цинк находится преимущественно в эритроцитах. Биологическая роль таких микроэлементов, как марганец, хром, молибден, селен, ванадий и никель, полностью не ясна; количество этих микроэлементов в организме человека во многом зависит от содержания их в растительной пище, куда они попадают из почвы или с промышленными отходами, загрязняющими окружающую среду.

В крови могут появиться ртуть, кадмий и свинец. Ртуть и кадмий в плазме крови связаны с сульфгидрильными группами белков, в основном альбумина. Содержание свинца в крови служит показателем загрязненности атмосферы; согласно рекомендациям ВОЗ, оно не должно превышать 40 мкг%, то есть 0,5 мкмоль/л.

Концентрация гемоглобина в крови зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Различают гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено понижение гемоглобина крови с уменьшением или увеличением его содержания в одном эритроците. Допустимые концентрации гемоглобина, при изменении которых можно судить о развитии анемии, зависят от пола, возраста и физиологического состояния. Большую часть гемоглобина у взрослого человека составляет HbA, в небольших количествах присутствуют также HbA2 и фетальный HbF, который накапливается в крови у новорожденных, а также при ряде заболеваний крови. У некоторых людей генетически обусловлено наличие в крови аномальных гемоглобинов; всего их описано более сотни. Часто (но не всегда) это сопряжено с развитием заболевания. Небольшая часть гемоглобина существует в виде его дериватов - карбоксигемоглобина (связанного с СО) и метгемоглобина (в нем железо окислено до трехвалентного); при патологических состояниях появляются цианметгемоглобин, сульфгемоглобин и др. В небольших количествах в эритроцитах присутствуют лишенная железа простетическая группа гемоглобина (протопорфирин IX) и промежуточные продукты биосинтеза - копропорфирин, аминолевуленовая кислота и др.

ФИЗИОЛОГИЯ
Основной функцией крови является перенос различных веществ, в т.ч. тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов. В зависимости от характера переносимых веществ различают следующие функции крови.

Дыхательная функция включает транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким. Питательная функция - перенос питательных веществ (глюкозы, аминокислот, жирных кислот, триглицеридов и др.) от органов, где эти вещества образуются или накапливаются, к тканям, в которых они подвергаются дальнейшим превращениям, этот перенос тесно связан с транспортом промежуточных продуктов обмена веществ. Экскреторная функция состоит в переносе конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и др.) в почки и другие органы (например, кожу, желудок) и участии в процессе образования мочи. Гомеостатическая функция - достижение постоянства внутренней среды организма благодаря перемещению крови, омыванию ею всех тканей, с межклеточной жидкостью которых ее состав уравновешивается. Регуляторная функция заключается в переносе гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, с помощью которых осуществляется регуляция функций отдельных клеток тканей, а также удаление этих веществ и их метаболитов после того, как их физиологическая роль выполнена. Терморегуляторная функция реализуется путем изменения величины кровотока в коже, подкожной клетчатке, мышцах и внутренних органах под влиянием изменения температуры окружающей среды: перемещение крови благодаря ее высокой теплопроводности и теплоемкости увеличивает потери тепла организмом, когда существует угроза перегревания, или, наоборот, обеспечивает сохранение тепла при понижении температуры окружающей среды. Защитную функцию выполняют вещества обеспечивающие гуморальную защиту организма от инфекции и попадающих в крови токсинов (например, лизоцим), а также лимфоциты, участвующие в образовании антител. Клеточную защиту осуществляют лейкоциты (нейтрофилы, моноциты), которые переносятся током крови в очаг инфекции, к месту проникновения возбудителя, и совместно с тканевыми макрофагами формируют защитный барьер. Током крови удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции. К защитной функции крови относится также ее способность к свертыванию, образованию тромба и прекращению кровотечения. В этом процессе принимают участие факторы свертывания крови и тромбоциты. При значительном снижении количества тромбоцитов (тромбоцитопении) наблюдается замедленное свертывание крови.

Группы крови.
Количество крови в организме - величина довольно постоянная и тщательно регулируемая. В течение всей жизни человека не меняется также его группа крови - иммуногенетические признаки К. позволяющие объединять крови людей в определенные группы по сходству антигенов. Принадлежность крови к той или иной группе и наличие нормальных или изоиммунных антител предопределяют биологически благоприятное или, наоборот, неблагоприятное совместимое сочетание К. различных лиц. Это может иметь место при поступлении эритроцитов плода в организм матери во время беременности или при переливании крови. При разных группах К. у матери и плода и при наличии у матери антител к антигенам К. плода у плода или новорожденного развивается гемолитическая болезнь.

Переливание реципиенту крови не той группы в связи с наличием у него антител к вводимым антигенам донора приводит к несовместимости и повреждению перелитых эритроцитов с тяжелыми последствиями для реципиента. Поэтому основным условием при переливании К. является учет групповой принадлежности и совместимости крови донора и реципиента.

Генетические маркеры крови- свойственные форменным элементам и плазме крови признаки, используемые в генетических исследованиях для типирования индивидов. К генетическим маркерам крови относят групповые факторы эритроцитов, антигены лейкоцитов, ферментные и другие белки. Различают также генетические маркеры клеток крови - эритроцитов (групповые антигены эритроцитов, кислая фосфатаза, глюкозо-6-фосфатдегидрогеназа и др.), лейкоцитов (антигены HLA) и плазмы (иммуноглобулины, гаптоглобин, трансферрин и др.). Изучение генетических маркеров крови оказалось весьма перспективным при разработке таких важных проблем медицинской генетики, молекулярной биологии и иммунологии, как выяснение механизмов мутаций и генетического кода, молекулярной организации.

Особенности крови у детей. Количество крови у детей изменяется в зависимости от возраста и массы ребенка. У новорожденного на 1 кг массы тела приходится около 140 мл крови, у детей первого года жизни - около 100 мл. Удельный вес крови у детей, особенно раннего детского возраста, выше (1,06-1,08), чем у взрослых (1,053-1,058).

У здоровых детей химический состав крови отличается определенным постоянством и сравнительно мало меняется с возрастом. Между особенностями морфологического состава крови и состоянием внутриклеточного обмена существует тесная связь. Содержание таких ферментов крови, как амилаза, каталаза и липаза, у новорожденных понижено, у здоровых детей первого года жизни отмечается повышение их концентраций. Общий белок сыворотки крови после рождения постепенно уменьшается до 3-го месяца жизни и после 6-го месяца достигает уровня подросткового возраста. Характерны выраженная лабильность глобулиновых и альбуминовых фракций и стабилизация белковых фракций после 3-го месяца жизни. Фибриноген в плазме крови обычно составляет около 5% общего белка.

Антигены эритроцитов (А и В) достигают активности только к 10-20 годам, а агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Изоантитела (a и b) начинают вырабатываться у ребенка на 2-3-м месяце после рождения, и титры их остаются низкими до года. Изогемагглютинины обнаруживаются у ребенка с 3-6-месячного возраста и только к 5-10 годам достигают уровня взрослого человека.

У детей средние лимфоциты в отличие от малых в 11/2 раза больше эритроцита, цитоплазма их шире, в ней чаще содержится азурофильная зернистость, ядро менее интенсивно окрашивается. Большие лимфоциты почти вдвое больше малых лимфоцитов, ядро их окрашивается в нежные тона, располагается несколько эксцентрично и имеет часто почковидную форму из-за вдавления сбоку. В цитоплазме голубого цвета могут содержаться азурофильная зернистость и иногда вакуоли.

Изменения крови у новорожденных и детей первых месяцев жизни обусловлены наличием красного костного мозга без очагов жирового, большой регенераторной способностью красного костного мозга и при необходимости мобилизацией экстрамедуллярных очагов кроветворения в печени и селезенке.

Снижение у новорожденных содержания протромбина, проакцелерина, проконвертина, фибриногена, а также тромбопластической активности крови способствует изменениям в свертывающей системе и склонности к геморрагическим проявлениям.

Изменения в составе крови у грудных детей менее выражены, чем у новорожденных. К 6-му месяцу жизни количество эритроцитов уменьшается в среднем до 4,55×1012/л, гемоглобина - до 132,6 г/л; диаметр эритроцитов становится равным 7,2-7,5 мкм. Содержание ретикулоцитов в среднем равно 5%. Количество лейкоцитов составляет около 11×109/л. В лейкоцитарной формуле преобладают лимфоциты, выражен умеренный моноцитоз и часто встречаются плазматические клетки. Количество тромбоцитов у грудных детей равно 200-300×109/л. Морфологический состав крови ребенка со 2-го года жизни до момента полового созревания постепенно приобретает черты, характерные для взрослых.

Заболевания крови.
Частота заболеваний самой К. относительно невелика. Однако изменения в крови возникают при многих патологических процессах. Среди болезней крови выделяют несколько основных групп: анемии (самая многочисленная группа), лейкозы, геморрагические диатезы.

С нарушением гемоглобинообразования связано возникновение метгемоглобинемии, сульфгемоглобинемии, карбоксигемоглобинемии. Известно, что для синтеза гемоглобина необходимы железо, белки и порфирины. Последние образуются эритробластами и нормобластами костного мозга и гепатоцитами. Отклонения в порфириновом обмене могут вызывать заболевания, получившие название порфирий. Генетические дефекты эритроцитопоэза лежат в основе наследственных эритроцитозов, протекающих с повышенным содержанием эритроцитов и гемоглобина.

Значительное место среди болезней крови занимают гемобластозы - заболевания опухолевой природы, среди которых выделяют миелопролиферативные и лимфопролиферативные процессы. В группе гемобластозов выделяют лейкозы. Парапротеинемические гемобластозы рассматривают как лимфопролиферативные заболевания в группе хронических лейкозов. Среди них различают болезнь Вальденстрема, болезнь тяжелых и легких цепей, миеломную болезнь. Отличительной особенностью этих заболеваний является способность опухолевых клеток синтезировать патологические иммуноглобулины. К гемобластозам относят также лимфосаркомы и лимфомы, характеризующиеся первичной локальной злокачественной опухолью, исходящей из лимфоидной ткани.

К заболеваниям системы крови относятся болезни моноцитарно-макрофагальной системы: болезни накопления и гистиоцитозы X.

Нередко патология в системе крови проявляется агранулоцитозом. Причиной его развития может быть иммунный конфликт или воздействие миелотоксических факторов. Соответственно различают иммунный и миелотоксический агранулоцитоз. В некоторых случаях нейтропения представляет собой следствие генетически обусловленных дефектов гранулоцитопоэза (см. Нейтропении наследственные).

Методы лабораторного исследования крови разнообразны. Одним из наиболее распространенных методов является изучение количественного и качественного состава крови. Эти исследования применяют в целях диагностики, изучения динамики патологического процесса, эффективности терапии и прогнозирования заболевания. Внедрение в практику унифицированных методов лабораторных исследований средств и методов контроля качества проводимых анализов, а также использование гематологических и биохимических автоанализаторов обеспечивают современный уровень проведения лабораторных исследований, преемственность и сопоставимость данных различных лабораторий. Лабораторные методы исследования крови включают световую, люминесцентную, фазово-контрастную, электронную и сканирующую микроскопию, а также цитохимические методы исследования крови (визуальную оценку специфических цветных реакций), цитоспектрофотометрию (выявление количества и локализацию химических компонентов в клетках крови по изменению величины поглощения света с определенной длиной волны), клеточный электрофорез (количественную оценку величины поверхностного заряда мембраны клеток крови), радиоизотопные методы исследования (оценку временной циркуляции клеток крови), голографию (определение размеров и формы клеток крови), иммунологические методы (выявление антител к тем или иным клеткам крови).

Многообразны функции крови - этой единственной жидкой ткани в организме. Она не только доставляет клеткам кислород и питательные вещества, но и переносит гормоны, выделяемые железами внутренней секреции, удаляет продукты обмена, регулирует температуру тела, защищает организм от болезнетворных микробов. Состоит кровь из плазмы - жидкости, в которой взвешены форменные элементы: красные кровяные клетки - эритроциты, белые кровяные клетки - лейкоциты и кровяные пластинки - тромбоциты.

Продолжительность жизни форменных элементов крови различна. Естественная их убыль непрерывно восполняется. А «следят» за этим органы кроветворения - именно в них образуется кровь. К ним относятся красный костный мозг (именно в этой части кости образуется кровь), селезенка и лимфатические узлы. В период внутриутробного развития клетки крови образуются также в печени и в соединительной ткани почки. У новорожденного и у ребенка первых 3-4 лет жизни во всех костях содержится только красный костный мозг. У взрослых он сосредоточен в губчатом веществе костей. В костномозговых полостях длинных трубчатых костей красный мозг замещается желтым мозгом, который представляет собой жировую ткань.

Находясь в губчатом веществе костей черепа, таза, грудины, лопаток, позвоночника, ребер, ключиц, в концах трубчатых костей, красный костный мозг надежно защищен от внешних воздействий и испрвно выполняет функцию образования крови. На силуэте скелета показано расположение красного костного мозга. Основу его составляет ретикулярная строма. Так называют ткань организма, клетки которой имеют многочисленные отростки и составляют густую сеть. Если взглянуть на ретикулярную ткань под микроскопом, то ясно видно ее решетчато-петлистое строение. Эта ткань содержит ретикулярные и жировые клетки, ретикулиновые волокна, сплетение кровеносных сосудов. Из ретикулярных клеток стромы развиваются гемоцито-бласты. Это, согласно современным представлениям, родоначальные, материнские клетки, из которых и образуется кровь в процессе их развития в форменные элементы крови.

Преобразование ретикулярных клеток в материнские клетки крови начинается в ячейках губчатого вещества кости. Затем не вполне зрелые клетки крови переходят в синусоиды - широкие капилляры с тонкими, проницаемыми для форменных элементов крови стенками. Здесь незрелые клетки крови дозревают, устремляются в вены костного мозга и по ним выходят в общий кровоток.

Селезенка располагается в брюшной полости в левом подреберье между желудком и диафрагмой. Хотя функции селезенки не исчерпываются кроветворением, ее конструкция определяется именно этой главной «обязанностью». Длина селезенки - в среднем 12 сантиметров, ширина - около 7 сантиметров, вес - 150-200 граммов. Заключена она между листками брюшины и лежит как бы в кармане, который образован диафрагмально-кишечной связкой. Если селезенка не увеличена, ее не удается прощупать через переднюю брюшную стенку.

На поверхности селезенки, обращенной к желудку, есть выемка. Это ворота органа - место вхождения сосудов (1, 2) и нервов.

Селезенка покрыта двумя оболочками - серозной и соединительнотканой (фиброзной), которые составляют ее капсулу (3). От эластической фиброзной оболочки в глубь органа идут перегородки, которые разделяют массу селезенки на скопления белого и красного вещества - мякоти (4). Благодаря наличию в перегородках гладких мышечных волокон селезенка может энергично сокращаться, отдавая в кровяное русло большое количество крови, которая здесь образуется и депонируется.

Мякоть селезенки состоит из нежной ретикулярной ткани, ячейки которой заполнены различными видами кровяных клеток, и из густой сети кровеносных сосудов. По ходу артерий в селезенке образуются лимфатические фолликулы (5) в виде манжеток вокруг сосудов. Это белая мякоть. Красная мякоть заполняет пространство между перегородками; здесь содержатся ретикулярные клетки, эритроциты.

Через стенки капилляров клетки крови попадают в синусы (6), а затем в селезеночную вену и разносятся по сосудам всего тела.

Лимфатические узлы - составная часть лимфатической системы организма. Это мелкие образования овальной или бобовидной формы, различные по величине (от просяного зерна до грецкого ореха). На конечностях лимфатические узлы концентрируются в подмышечных впадинах, паховых, подколенных и локтевых сгибах; их много на шее в подчелюстной и зачелюстной областях. Они располагаются по ходу воздухоносных путей, а в брюшной полости как бы гнездятся между листками брыжейки, в воротах органов, вдоль аорты. В организме человека насчитывается 460 лимфатических узлов.

Каждый из них имеет с одной стороны вдавление - ворота (7). Здесь в узел проникают кровеносные сосуды и нервы, а также выходит выносящий лимфатический сосуд (8), отводящий лимфу от узла. Приносящие лимфатические сосуды (9) подходят к узлу с его выпуклой стороны.

Кроме участия в процессе кроветворения, лимфатические узлы выполняют и другие важные функции: в них происходит механическая фильтрация лимфы, обезвреживание ядовитых веществ и микробов, проникших в лимфатические сосуды.

В строении лимфатических узлов и селезенки много общего. Основу узлов также составляет сеть ретикулиновых волокон и ретикулярных клеток, они покрыты соединительнотканой капсулой (10), от которой тянутся перегородки. Между перегородками заключены островки плотной лимфоидной ткани, называемые фолликулами. Различают корковое вещество узла (11), состоящее из фолликулов, и мозговое вещество (12), где лимфоидная ткань собрана в виде тяжей - шнуров. В середине фолликулов находятся зародышевые центры: в них концентрируется резерв материнских клеток крови.

КРОВЬ
жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету. Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток. Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем ок. 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты.
Функции крови. Примитивные многоклеточные организмы (губки, актинии, медузы) живут в море, и "кровью" для них является морская вода. Вода омывает их со всех сторон и свободно проникает в ткани, доставляя питательные вещества и унося продукты метаболизма. Высшие организмы не могут обеспечить свою жизнедеятельность таким простым способом. Их тело состоит из миллиардов клеток, многие из которых объединены в ткани, составляющие сложные органы и органные системы. У рыб, например, хотя они и живут в воде, не все клетки находятся настолько близко к поверхности тела, чтобы вода обеспечивала эффективную доставку питательных веществ и удаление конечных продуктов метаболизма. Еще сложнее дело обстоит с наземными животными, вовсе не омываемыми водой. Ясно, что у них должна была возникнуть собственная жидкая ткань внутренней среды - кровь, а также распределительная система (сердце, артерии, вены и сеть капилляров), обеспечивающая кровоснабжение каждой клетки. Функции крови значительно сложнее, чем просто транспорт питательных веществ и отходов метаболизма. С кровью переносятся также гормоны, контролирующие множество жизненно важных процессов; кровь регулирует температуру тела и защищает организм от повреждений и инфекций в любой его части.
Транспортная функция. С кровью и кровоснабжением тесно связаны практически все процессы, имеющие отношение к пищеварению и дыханию - двум функциям организма, без которых жизнь невозможна. Связь с дыханием выражается в том, что кровь обеспечивает газообмен в легких и транспорт соответствующих газов: кислорода - от легких в ткани, диоксида углерода (углекислого газа) - от тканей к легким. Транспорт питательных веществ начинается от капилляров тонкого кишечника; здесь кровь захватывает их из пищеварительного тракта и переносит во все органы и ткани, начиная с печени, где происходит модификация питательных веществ (глюкозы, аминокислот, жирных кислот), причем клетки печени регулируют их уровень в крови в зависимости от потребностей организма (тканевого метаболизма). Переход транспортируемых веществ из крови в ткани осуществляется в тканевых капиллярах; одновременно в кровь из тканей поступают конечные продукты, которые далее выводятся через почки с мочой (например, мочевина и мочевая кислота).
См. также
ДЫХАНИЯ ОРГАНЫ ;
КРОВЕНОСНАЯ СИСТЕМА ;
ПИЩЕВАРЕНИЕ . Кровь переносит также продукты секреции эндокринных желез - гормоны - и тем самым обеспечивает связь между различными органами и координацию их деятельности (см. также ЭНДОКРИННАЯ СИСТЕМА). Регуляция температуры тела. Кровь играет ключевую роль в поддержании постоянной температуры тела у гомойотермных, или теплокровных, организмов. Температура человеческого тела в нормальном состоянии колеблется в очень узком интервале ок. 37° С. Выделение и поглощение тепла различными участками тела должны быть сбалансированы, что достигается переносом тепла с помощью крови. Центр температурной регуляции располагается в гипоталамусе - отделе промежуточного мозга. Этот центр, обладая высокой чувствительностью к небольшим изменениям температуры проходящей через него крови, регулирует те физиологические процессы, при которых выделяется или поглощается тепло. Один из механизмов состоит в регуляции тепловых потерь через кожу посредством изменения диаметра кожных кровеносных сосудов кожи и соответственно объема крови, протекающей вблизи поверхности тела, где тепло легче теряется. В случае инфекции определенные продукты жизнедеятельности микроорганизмов либо продукты вызванного ими распада тканей взаимодействуют с лейкоцитами, вызывая образование химических веществ, стимулирующих центр температурной регуляции в головном мозге. В результате наблюдается подъем температуры тела, ощущаемый как жар. Защита организма от повреждений и инфекции. В осуществлении этой функции крови особую роль играют лейкоциты двух типов: полиморфноядерные нейтрофилы и моноциты. Они устремляются к месту повреждения и накапливаются вблизи него, причем большая часть этих клеток мигрирует из кровотока через стенки близлежащих кровеносных сосудов. К месту повреждения их привлекают химические вещества, высвобождаемые поврежденными тканями. Эти клетки способны поглощать бактерии и разрушать их своими ферментами. Таким образом, они препятствуют распространению инфекции в организме. Лейкоциты принимают также участие в удалении мертвых или поврежденных тканей. Процесс поглощения клеткой бактерии или фрагмента мертвой ткани называется фагоцитозом, а осуществляющие его нейтрофилы и моноциты - фагоцитами. Активно фагоцитирующий моноцит называют макрофагом, а нейтрофил - микрофагом. В борьбе с инфекцией важная роль принадлежит белкам плазмы, а именно иммуноглобулинам, к которым относится множество специфических антител. Антитела образуются другими типами лейкоцитов - лимфоцитами и плазматическими клетками, которые активируются при попадании в организм специфических антигенов бактериального или вирусного происхождения (либо присутствующих на клетках, чужеродных для данного организма). Выработка лимфоцитами антител против антигена, с которым организм встречается в первый раз, может занять несколько недель, но полученный иммунитет сохраняется надолго. Хотя уровень антител в крови через несколько месяцев начинает медленно падать, при повторном контакте с антигеном он вновь быстро растет. Это явление называется иммунологической памятью. При взаимодействии с антителом микроорганизмы либо слипаются, либо становятся более уязвимыми для поглощения фагоцитами. Кроме того, антитела мешают вирусу проникнуть в клетки организма хозяина (см. также ИММУНИТЕТ).
рН крови. pH - это показатель концентрации водородных (H) ионов, численно равный отрицательному логарифму (обозначаемому латинской буквой "p") этой величины. Кислотность и щелочность растворов выражают в единицах шкалы рН, имеющей диапазон от 1 (сильная кислота) до 14 (сильная щелочь). В норме рН артериальной крови составляет 7,4, т.е. близок к нейтральному. Венозная кровь из-за растворенного в ней диоксида углерода несколько закислена: диоксид углерода (СО2), образующийся в ходе метаболических процессов, при растворении в крови реагирует с водой (Н2О), образуя угольную кислоту (Н2СО3). Поддержание рН крови на постоянном уровне, т.е., другими словами, кислотно-щелочного равновесия, исключительно важно. Так, если рН заметно падает, в тканях снижается активность ферментов, что опасно для организма. Изменение рН крови, выходящее за рамки интервала 6,8-7,7, несовместимо с жизнью. Поддержанию этого показателя на постоянном уровне способствуют, в частности, почки, поскольку они по мере надобности выводят из организма кислоты или мочевину (которая дает щелочную реакцию). С другой стороны, рН поддерживается благодаря присутствию в плазме определенных белков и электролитов, обладающих буферным действием (т.е. способностью нейтрализовать некоторый избыток кислоты или щелочи).
КОМПОНЕНТЫ КРОВИ
Рассмотрим более подробно состав плазмы и клеточных элементов крови.
Плазма. После отделения взвешенных в крови клеточных элементов остается водный раствор сложного состава, называемый плазмой. Как правило, плазма представляет собой прозрачную или слегка опалесцирующую жидкость, желтоватый цвет которой определяется присутствием в ней небольшого количества желчного пигмента и других окрашенных органических веществ. Однако после потребления жирной пищи в кровь попадает множество капелек жира (хиломикронов), в результате чего плазма становится мутной и маслянистой. Плазма участвует во многих процессах жизнедеятельности организма. Она переносит клетки крови, питательные вещества и продукты метаболизма и служит связующим звеном между всеми экстраваскулярными (т.е. находящимися вне кровеносных сосудов) жидкостями; последние включают, в частности, межклеточную жидкость, и через нее осуществляется связь с клетками и их содержимым. Таким образом плазма контактирует с почками, печенью и другими органами и тем самым поддерживает постоянство внутренней среды организма, т.е. гомеостаз. Основные компоненты плазмы и их концентрации приведены в табл. 1. Среди растворенных в плазме веществ - низкомолекулярные органические соединения (мочевина, мочевая кислота, аминокислоты и т.д.); большие и очень сложные по структуре молекулы белков; частично ионизированные неорганические соли. К числу наиболее важных катионов (положительно заряженных ионов) относятся катионы натрия (Na+), калия (K+), кальция (Ca2+) и магния (Mg2+); к числу важнейших анионов (отрицательно заряженных ионов) - хлорид-анионы (Cl-), бикарбонат (HCO3-) и фосфат (HPO42- или H2PO4-). Основные белковые компоненты плазмы - альбумин, глобулины и фибриноген.
Таблица 1. КОМПОНЕНТЫ ПЛАЗМЫ
(в миллиграммах на 100 миллилитров)

Натрий 310-340
Калий 14-20
Кальций 9-11
Фосфор 3-4,5
Хлорид-ионы 350-375
Глюкоза 60-100
Мочевина 10-20
Мочевая кислота 3-6
Холестерин 150-280
Белки плазмы 6000-8000
Альбумин 3500-4500
Глобулин 1500-3000
Фибриноген 200-600
Диоксид углерода 55-65
(объем в миллилитрах,
с поправкой на температуру
и давление, в расчете
на 100 миллилитров плазмы)


Белки плазмы. Из всех белков в наибольшей концентрации в плазме присутствует альбумин, синтезируемый в печени. Он необходим для поддержания осмотического равновесия, обеспечивающего нормальное распределение жидкости между кровеносными сосудами и экстраваскулярным пространством (см. ОCМОС). При голодании или недостаточном поступлении белков с пищей содержание альбумина в плазме падает, что может привести к повышенному накоплению воды в тканях (отек). Это состояние, связанное с белковой недостаточностью, называется голодным отеком. В плазме присутствуют глобулины нескольких типов, или классов, важнейшие из которых обозначаются греческими буквами a (альфа), b (бета) и g (гамма), а соответствующие белки - a1, a2, b, g1 и g2. После разделения глобулинов (методом электрофореза) антитела обнаруживаются лишь во фракциях g1, g2 и b. Хотя антитела часто называют гамма-глобулинами, тот факт, что некоторые из них присутствуют и в b-фракции, обусловил введение термина "иммуноглобулин". В a- и b-фракциях содержится множество различных белков, обеспечивающих транспорт в крови железа, витамина В12, стероидов и других гормонов. В эту же группу белков входят и факторы коагуляции, которые наряду с фибриногеном участвуют в процессе свертывания крови. Основная функция фибриногена состоит в образовании кровяных сгустков (тромбов). В процессе свертывания крови, будь то in vivo (в живом организме) или in vitro (вне организма), фибриноген превращается в фибрин, который и составляет основу кровяного сгустка; не содержащая фибриногена плазма, обычно имеющая вид прозрачной жидкости бледно-желтого цвета, называется сывороткой крови.
Эритроциты. Красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2-7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде ок. 34%. В пересчете на сухой вес содержание гемоглобина в эритроцитах - 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16 г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин. Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом. Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела. В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз - образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника). Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро - за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг. Срок созревания эритроцитов в костном мозге - от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания - составляет 4-5 дней. Срок жизни зрелого эритроцита в периферической крови - в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться. Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин - красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).



Значение для антропологии и судебной медицины. Из описания систем АВ0 и резус ясно, что группы крови имеют значение для генетических исследований и изучения рас. Они легко определяются, причем у каждого конкретного человека данная группа либо есть, либо ее нет. Важно отметить, что хотя те или иные группы крови встречаются в разных популяциях с разной частотой, нет никаких оснований утверждать, что определенные группы дают какие-либо преимущества. А тот факт, что в крови у представителей разных рас системы групп крови практически одни и те же, делает бессмысленным разделение расовых и этнических групп по крови ("негритянская кровь", "еврейская кровь", "цыганская кровь"). Группы крови имеют важное значение в судебной медицине для установления отцовства. Например, если женщина с группой крови 0 предъявляет мужчине с группой крови В иск, что именно он является отцом ее ребенка, имеющего группу крови А, суд должен признать мужчину невиновным, так как его отцовство генетически невозможно. На основании данных о группах крови по системам АВ0, Rh и MN у предполагаемого отца, матери и ребенка, удается оправдать больше половины мужчин (51%), ложно обвиненных в отцовстве.
ПЕРЕЛИВАНИЕ КРОВИ
С конца 1930-х годов переливание крови или ее отдельных фракций получило широкое распространение в медицине, особенно в военной. Основная цель переливания крови (гемотрансфузии) - замена эритроцитов больного и восстановление объема крови после массивной кровопотери. Последняя может произойти либо спонтанно (например, при язве двенадцатиперстной кишки), либо в результате травмы, в ходе хирургической операции или при родах. Переливание крови применяют также для восстановления уровня эритроцитов при некоторых анемиях, когда организм теряет способность вырабатывать новые кровяные клетки с той скоростью, какая требуется для нормальной жизнедеятельности. Общее мнение авторитетных медиков таково, что переливание крови следует производить только в случае строгой необходимости, поскольку оно связано с риском осложнений и передачи больному инфекционного заболевания - гепатита, малярии или СПИДа.
Типирование крови. Перед переливанием определяют совместимость крови донора и реципиента, для чего проводится типирование крови. В настоящее время типированием занимаются квалифицированные специалисты. Небольшое количество эритроцитов добавляют к антисыворотке, содержащей большое количество антител к определенным эритроцитарным антигенам. Антисыворотку получают из крови доноров, специально иммунизированных соответствующими антигенами крови. Агглютинацию эритроцитов наблюдают невооруженным глазом или под микроскопом. В табл. 4 показано, как можно использовать антитела анти-А и анти-В для определения групп крови системы АВ0. В качестве дополнительной проверки in vitro можно смешать эритроциты донора с сывороткой реципиента и, наоборот, сыворотку донора с эритроцитами реципиента - и посмотреть, не будет ли при этом агглютинации. Данный тест называют перекрестным типированием. Если при смешивании эритроцитов донора и сыворотки реципиента агглютинирует хотя бы небольшое количество клеток, кровь считается несовместимой.



Переливание крови и ее хранение. Первоначальные методы прямого переливания крови от донора реципиенту отошли в прошлое. Сегодня донорскую кровь берут из вены в стерильных условиях в специально подготовленные емкости, куда предварительно внесены антикоагулянт и глюкоза (последняя - в качестве питательной среды для эритроцитов при хранении). Из антикоагулянтов чаще всего используют цитрат натрия, который связывает находящиеся в крови ионы кальция, необходимые для свертывания крови. Жидкую кровь хранят при 4° С до трех недель; за это время остается 70% первоначального количества жизнеспособных эритроцитов. Поскольку этот уровень живых эритроцитов считается минимально допустимым, кровь, хранившуюся больше трех недель, для переливания не используют. В связи с растущей потребностью в переливании крови появились методы, позволяющие сохранить жизнеспособность эритроцитов в течение более длительного времени. В присутствии глицерина и других веществ эритроциты могут храниться сколь угодно долго при температуре от -20 до -197° С. Для хранения при -197° С используют металлические контейнеры с жидким азотом, в которые погружают контейнеры с кровью. Кровь, бывшую в заморозке, успешно применяют для переливания. Заморозка позволяет не только создавать запасы обычной крови, но и собирать и хранить в специальных банках (хранилищах) крови редкие ее группы. Раньше кровь хранили в стеклянных контейнерах, но сейчас для этой цели используются в основном пластиковые емкости. Одно из главных преимуществ пластикового мешка состоит в том, что к одной емкости с антикоагулянтом можно прикрепить несколько мешочков, а затем с помощью дифференциального центрифугирования в "закрытой" системе выделить из крови все три типа клеток и плазму. Это очень важное новшество в корне изменило подход к переливанию крови. Сегодня уже говорят о компонентной терапии, когда под переливанием имеется в виду замена лишь тех элементов крови, в которых нуждается реципиент. Большинству людей, страдающих анемией, нужны только цельные эритроциты; больным лейкозом требуются в основном тромбоциты; больные гемофилией нуждаются лишь в определенных компонентах плазмы. Все эти фракции могут быть выделены из одной и той же донорской крови, после чего останутся только альбумин и гамма-глобулин (и тот, и другой имеют свои сферы применения). Цельная кровь применяется лишь для компенсации очень большой кровопотери, и сейчас ее используют для переливания менее чем в 25% случаев.
Плазма. При острой сосудистой недостаточности, вызванной массивной кровопотерей или же шоком вследствие тяжелого ожога либо травмы с разможжением тканей, требуется очень быстро восстановить объем крови до нормального уровня. Если цельная кровь недоступна, для спасения жизни больного могут быть использованы ее заменители. В качестве таких заменителей чаще всего применяется сухая человеческая плазма. Ее растворяют в водной среде и вводят больному внутривенно. Недостаток плазмы как кровезаменителя состоит в том, что с ней может передаваться вирус инфекционного гепатита. Для снижения риска заражения используются различные подходы. Например, вероятность заражения гепатитом уменьшается, хотя и не сводится к нулю, при хранении плазмы в течение нескольких месяцев при комнатной температуре. Возможна также тепловая стерилизация плазмы, сохраняющая все полезные свойства альбумина. В настоящее время рекомендуется использовать только стерилизованную плазму. В свое время при тяжелом нарушении водного баланса, обусловленном массивной кровопотерей или шоком, в качестве временных заменителей белков плазмы применялись синтетические кровезаменители, например полисахариды (декстраны). Однако применение таких веществ не дало удовлетворительных результатов. Физиологические (солевые) растворы при срочных переливаниях тоже оказались не столь эффективны, как плазма, раствор глюкозы и другие коллоидные растворы.
Банки крови. Во всех развитых странах создана сеть станций переливания крови, которые обеспечивают гражданскую медицину необходимым количеством крови для переливания. На станциях, как правило, только собирают донорскую кровь, а хранят ее в банках (хранилищах) крови. Последние предоставляют по требованию больниц и клиник кровь нужной группы. Кроме того, они обычно располагают специальной службой, которая занимается получением из просроченной цельной крови как плазмы, так и отдельных фракций (например, гамма-глобулина). При многих банках имеются также квалифицированные специалисты, проводящие полное типирование крови и изучающие возможные реакции несовместимости.
Уменьшение риска заражения. Особую опасность представляет заражение реципиента вирусом иммунодефицита человека (ВИЧ), вызывающим синдром приобретенного иммунодефицита (СПИД). Поэтому в настоящее время вся донорская кровь подвергается обязательной проверке (скринингу) на наличие в ней антител против ВИЧ. Однако антитела появляются в крови лишь спустя несколько месяцев после попадания ВИЧ в организм, поэтому скрининг не дает абсолютно надежных результатов. Сходная проблема возникает и при скрининге донорской крови на вирус гепатита В. Более того, долгое время не существовало серийных методов выявления гепатита С - они разработаны лишь в последние годы. Поэтому переливание крови всегда связано с определенным риском. Сегодня надо создавать условия для того, чтобы любой человек мог хранить в банке свою кровь, сдав ее, например, перед запланированной операцией; это позволит в случае кровопотери использовать для переливания его собственную кровь. Заражения можно не бояться и в тех случаях, когда вместо эритроцитов вводят их синтетические заменители (перфторуглероды), которые тоже служат переносчиками кислорода.
БОЛЕЗНИ КРОВИ
Болезни крови проще всего разделить на четыре категории - в зависимости от того, какие из основных компонентов крови при этом затрагиваются: эритроциты, тромбоциты, лейкоциты или плазма.
Аномалии эритроцитов. Болезни, связанные с аномалиями эритроцитов, сводятся к двум противоположным типам: анемии и полицитемии. Анемии - заболевания, при которых снижено либо количество эритроцитов в крови, либо содержание гемоглобина в эритроцитах. В основе анемии могут лежать следующие причины: 1) сниженная продукция эритроцитов или гемоглобина, не компенсирующая нормального процесса разрушения клеток (анемии, обусловленные нарушением эритропоэза); 2) ускоренное разрушение эритроцитов (гемолитическая анемия); 3) значительная потеря эритроцитов при сильных и продолжительных кровотечениях (постгеморрагическая анемия). Во многих случаях болезнь обусловлена комбинацией двух из этих причин (см. также АНЕМИЯ).
Полицитемия. В отличие от анемии при полицитемии количество эритроцитов в крови превышает норму. При истинной полицитемии, причины которой остаются неизвестными, наряду с эритроцитами увеличивается, как правило, содержание в крови лейкоцитов и тромбоцитов. Полицитемия может развиваться и в тех случаях, когда под действием факторов внешней среды или болезни снижается связывание кислорода кровью. Так, повышенный уровень эритроцитов в крови характерен для жителей высокогорья (например, для индейцев в Андах); то же наблюдается и у больных с хроническими нарушениями легочного кровообращения.
Аномалии тромбоцитов. Известны следующие аномалии тромбоцитов: падение их уровня в крови (тромбоцитопения), увеличение этого уровня (тромбоцитоз) или, что бывает редко, аномалии их формы и состава. Во всех названных случаях возможно нарушение функции тромбоцитов с развитием таких явлений, как склонность к кровоподтекам (подкожным кровоизлияниям) при ушибах; пурпура (спонтанные капиллярные кровотечения, часто подкожные); продолжительные, трудно останавливаемые кровотечения при травмах. Чаще всего встречается тромбоцитопения; ее причины - повреждение костного мозга и избыточная активность селезенки. Тромбоцитопения может развиваться как изолированное нарушение, так и в сочетании с анемией и лейкопенией. Когда не удается обнаружить явную причину болезни, говорят о т.н. идиопатической тромбоцитопении; чаще всего она встречается в детском и юношеском возрасте одновременно с гиперактивностью селезенки. В этих случаях удаление селезенки способствует нормализации уровня тромбоцитов. Есть и другие формы тромбоцитопении, которые развиваются либо при лейкозе или иной злокачественной инфильтрации костного мозга (т.е. заселении его раковыми клетками), либо при повреждении костного мозга под действием ионизирующей радиации и лекарственных препаратов.
Аномалии лейкоцитов. Как и в случае эритроцитов и тромбоцитов, лейкоцитарные аномалии связаны либо с возрастанием, либо с уменьшением количества лейкоцитов в крови.
Лейкопения. В зависимости от того, каких белых клеток крови становится меньше, различают два вида лейкопении: нейтропения, или агранулоцитоз (снижение уровня нейтрофилов), и лимфопения (снижение уровня лимфоцитов). Нейтропения возникает при некоторых инфекционных заболеваниях, сопровождающихся подъемом температуры (грипп, краснуха, корь, свинка, инфекционный мононуклеоз), и при кишечных инфекциях (например, при брюшном тифе). Нейтропению могут также вызывать лекарственные препараты и токсичные вещества. Поскольку нейтрофилы играют ключевую роль в защите организма от инфекции, нет ничего удивительного в том, что при нейтропении на коже и слизистых нередко появляются инфицированные язвы. При тяжелых формах нейтропении возможно заражение крови, грозящее смертельным исходом; часто отмечаются инфекции глотки и верхних дыхательных путей. Что касается лимфопении, то одна из ее причин - сильное рентгеновское облучение. Она также сопровождает некоторые заболевания, в частности болезнь Ходжкина (лимфогранулематоз), при которой нарушаются функции иммунной системы.
Лейкоз. Подобно клеткам других тканей организма, клетки крови могут перерождаться в раковые. Как правило, перерождению подвергаются лейкоциты, обычно какого-то одного типа. В результате развивается лейкоз, который может быть идентифицирован как моноцитарный лейкоз, лимфолейкоз или - в случае перерождения полиморфноядерных стволовых клеток - миелолейкоз. При лейкозе в крови в большом количестве обнаруживаются аномальные или незрелые клетки, которые иногда дают раковые инфильтраты в разных частях тела. Вследствие инфильтрации костного мозга раковыми клетками и замещения ими тех клеток, которые участвуют в эритропоэзе, лейкоз часто сопровождается анемией. Кроме того, анемия при лейкозе может возникать и потому, что быстро делящиеся клетки-предшественники лейкоцитов истощают запасы питательных веществ, необходимые для образования эритроцитов. Некоторые формы лейкоза поддаются лечению препаратами, подавляющими активность костного мозга (см. также ЛЕЙКОЗ).
Аномалии плазмы. Имеется группа болезней крови, которые характеризуются повышенной склонностью к кровотечениям (как спонтанным, так и в результате травм), связанной с недостаточностью в плазме определенных белков - факторов свертывания крови. Наиболее распространенная болезнь такого типа - гемофилия А (см. ГЕМОФИЛИЯ). Другой тип аномалии связан с нарушением синтеза иммуноглобулинов и соответственно с недостаточностью в организме антител. Это заболевание называется агаммаглобулинемией, причем известны как наследственные формы данной болезни, так и приобретенные. В основе ее лежит дефект лимфоцитов и плазматических клеток, в функцию которых входит продукция антител. Некоторые формы этой болезни приводят к смертельному исходу еще в детском возрасте, другие успешно лечат ежемесячными инъекциями гамма-глобулина.
КРОВЬ ЖИВОТНЫХ
У животных, кроме наиболее просто организованных, есть сердце, система кровеносных сосудов и некий специализированный орган, в котором может совершаться газообмен (легкие или жабры). Даже у самых примитивных многоклеточных организмов существуют подвижные клетки, т.н. амебоциты, которые переходят из одной ткани в другую. Эти клетки обладают некоторыми свойствами лимфоцитов. У животных, имеющих замкнутую кровеносную систему, кровь как по составу плазмы, так и по структуре и размерам клеточных элементов похожа на человеческую. У многих из них, в частности у большинства беспозвоночных, в крови нет клеток, подобных эритроцитам, а дыхательный пигмент (гемоглобин или гемоцианин) находится в плазме (гемолимфе). Как правило, эти животные отличаются малой активностью и низкой скоростью процессов обмена веществ. Возникновение клеток с гемоглобином, как это видно на примере эритроцитов человека, существенно увеличивает эффективность транспорта кислорода. Как правило, у рыб, земноводных и пресмыкающихся эритроциты ядерные, т.е. даже в зрелой форме они сохраняют ядро, хотя у некоторых видов встречаются в небольшом количестве и безъядерные красные клетки. Эритроциты низших позвоночных обычно крупнее, чем у млекопитающих. У птиц эритроциты имеют форму эллипса и содержат ядро. У всех перечисленных животных в крови есть также клетки, сходные с гранулоцитами и агранулоцитами человека. Для животных с меньшим кровяным давлением, чем у человека и высших млекопитающих, характерны и более простые механизмы гемостаза: в некоторых случаях остановка кровотечения достигается прямой закупоркой поврежденных сосудов крупными тромбоцитами. Млекопитающие почти не различаются по типу и размерам клеток крови. Исключение составляет верблюд, эритроциты которого не круглые, а в форме эллипса. Содержание эритроцитов в крови разных животных варьирует в широких пределах, а диаметр их колеблется от 1,5 мкм (азиатский оленек) до 7,4 мкм (лесной североамериканский сурок). Иногда в криминалистике возникает задача определить, оставлено ли данное пятно крови человеком или оно имеет животное происхождение. Хотя у разных видов животных также имеются групповые факторы крови (часто многочисленные), система групп крови не достигла у них такого уровня развития, как у человека. При исследовании пятен используют специфические для каждого вида антисыворотки против некоторых животных тканей, в том числе крови.
Толковый словарь Даля

  • Состав крови представляет собою соединение клеточных элементов и плазмы. Клеточные элементы крови — это органические и химические соединения, а плазма — это жидкое вещество светло-желтого цвета, которое соединяет клетки. Кровь — это особенный вид соединительной ткани в организме человека, в состав которой входят тромбоциты, . Она, как и любая ткань, выполняет определенные функции в организме человека: защитную, дыхательную, транспортную и регуляторную. Общий ее объем в организме человека составляет 4-5 литров.

    Составляющие элементы

    Форменные элементы крови — это тромбоциты, эритроциты и лейкоциты, которые непрерывно образуются в красном костном мозге человека. Каждая клетка крови осуществляет определенную функцию в кровеносной системе и в организме человека в целом. Тромбоциты — это , имеющие клетки без ядра, округлой формы и бесцветные. в красном костном мозге, этот процесс называется тромбопоэзом.

    Тромбоциты играют важную роль в процессе свертывания крови. Если человек получает открытую рану, нарушается , возникает кровотечение. Но когда при этом тромбоциты попадают в плазму, происходит свертывание. На один литр крови в человеческом организме присутствуют от 200 до 400 тыс. тромбоцитов.

    Эритроциты — это кровяные клетки дискообразной формы красного цвета, которые, так же как и тромбоциты, не имеют ядра. Эритроциты образуются в красном костном мозге организма, этот процесс называется эритропоэз. В процессе образования и вызревания, эритроциты теряют ядро клетки, благодаря чему попадают в кровеносную систему человека.

    На 1 мм3 приходится 5 млн. эритроцитов. С момента образования нового эритроцита до появления следующего проходит приблизительно 100-130 дней, т. е. эритроциты циклически меняются в организме человека. Гемоглобин представляет собой пигмент эритроцитов, который переносит кислород в клетки тканей из легких человека, после чего раскладывается на химические соединения.

    Следующие элементы — это лейкоциты. Лейкоцитами называются кровяные тельца белого цвета, которые имеют ядро, но не имеют постоянную форму. Процесс образования лейкоцитов происходит в лимфоузлах, в красном костном мозге и в селезенке и называется лейкопоэзом. На 1 мм3 приходится от 6 до 8 тысяч лейкоцитов. С момента образования до смены лейкоцитов проходит от 2 до 4 дней, т.е. срок функционирования этих тел самый короткий. Процесс разрушения клеток лейкоцитов происходит в селезенке, где они погибают и преобразовываются в ферменты. В состав крови входят фагоциты. Это клетки иммунной системы человека, которые в процессе циркуляции по организму человека связывают и уничтожают чужеродные клетки, бактерии и вирусы, выполняя очистительные функции от микробов и чужеродных бактерий.

    Химический состав крови зависит от образа жизни человека, наличия заболеваний, от продуктов питания, от экологических факторов, на ее состав влияют физиологические и возрастные особенности организма человека. Состав крови новорожденного ребенка и взрослого человека существенно отличается, это обусловлено физиологическими факторами развития человеческого организма. Таблица показывает норму показателей форменных элементов.

    Плазма и ее состав

    Еще один главный элемент крови — это плазма. составляет от 4 до 5 литров, плазма занимает около 60 % состава крови. Плазма крови состав имеет жидкий, а цвет — прозрачный желтый или прозрачный белый. Если проанализировать химический состав плазмы крови, можно отметить, что плазма содержит соли, электролиты, липиды, гормоны, органические кислоты и основания, витамины и азот. Минеральный состав плазмы — это соединения ионов Nа, К, Са, Мg и солей CaCl2, NaCl, NaH2PO4.

    В состав плазмы входит 90 % воды, 7% органических и минеральных веществ, до 7 % составляют белки, остальное — жиры и глюкоза. Если клетки плазмы теряют жидкость, то повышается уровень солей, эритроциты теряют способность переносить полезные вещества и происходит их гибель, в некоторых случаях происходит попадание гемоглобина в плазму.

    Функции белков плазмы разнообразны. Они принимают участие в создании осмотического давления и в процессе свертывания, способствуют нормализации вязкости.

    Для организма человека очень важно держать химические свойства плазмы крови в норме, чтобы не допускать потерю воды в плазме под воздействием токсических веществ, повышения показателей солей, гормонов и кислот, что влияет на обмен эритроцитов и понижает уровень свертываемости. Состав крови человека может отличаться у разных людей, на это влияет половая принадлежность, особенности развития человеческого организма и возраст человека.

    Функции кровяных клеток

    Как уже говорилось, в крови человека есть клетки определенного состава и количества, которые вырабатываются организмом и распадаются в нем, выполняя определенные функции на клеточном уровне. Состав и функции крови зависят от образа жизни и от физиологических особенностей человека, она меняет показатели в зависимости от внутренних и внешних воздействий на работу организма. Основные функции крови, которые выполняются эритроцитами, лейкоцитами, тромбоцитами, плазмой и фагоцитами — это транспортная, гомеостатическая и защитная функции.

    1. Транспортная функция крови играет важную роль для жизни человека. Она обеспечивает перенос полезных веществ по всему организму. Благодаря кровеносной системе, каждый капилляр, вена, артерия и органы человека насыщаются необходимыми для жизнедеятельности веществами. Содержащиеся в крови вещества транспортируются в чистом виде и вступают в химические реакции с другими веществами, образовывая сложные органические, минеральные и витаминные соединения.
    2. Дыхательная функция крови обеспечивает ткани и органы, кислородом перенося его из легких. Отработанный кислород в форме углекислого газа кровь транспортирует обратно в легкие с помощью эритроцитов.
    3. Выделительная функция заключается в купировании отрицательных соединений в организме человека и выведении их через выделительные системы и органы.
    4. Питательная функция обеспечивает насыщение клеток и органов полезными веществами и кислородом и активизирует иммунные силы организма.
    5. Регуляторная функция заключается в балансировании между составами полезных и отработанных веществ и соединений в организме человека. Полезные вещества кровь разносит по органам и системам, а отработанные соединения и клетки выводит из организма. Лейкоциты играют главную роль в процессе связывания и уничтожения чужеродных клеток в организме человека.
    6. Трофическая функция обеспечивает органы полезными веществами, которые всасываются стенками кишечника.
    7. Защитная функция крови включает в себя фагоцитную, гемостатическую и иммунную функцию. Фагоцитная функция оказывает связывающее действие на чужеродные микроорганизмы и клетки, поглощая их здоровыми клетками. Когда в организм попадают инфекции, вирусы или бактерии, кровь немедленно реагирует на это, пытаясь нейтрализовать их присутствие. Переболев один раз краснухой, вырабатывается иммунитет от этой болезни. Благодаря этому, второй раз человек уже не заболеет. Если кровь со временем теряет естественный иммунитет, как при дифтерии, его возобновляют искусственным путем (вакцинацией). Гемостатическая функция обеспечивается с помощью тромбоцитов. Она заключается в остановке кровотечения и обеспечивает свертываемость при ранениях и других нарушениях телесных покровов. Гомеостатическая функция обеспечивает поддержание некоторых процессов внутри кровеносной системы, а именно: поддержка рН баланса, поддержка и стабилизация внутренней температуры тела, органов, поддержание осмотического давления. Защитную функцию обеспечивают лейкоциты, тромбоциты и фагоциты.

    Физические и химические свойства крови

    Физические и химические свойства крови включают в себя цвет, удельный вес и вязкость, суспензионные свойства и осмотические свойства. Что это означает? Цвет определяется по концентрации в ней гемоглобина. Так, в центральных венах и артериях, кровь имеет яркий насыщенный окрас, а в капиллярах она имеет слабый цвет. Это обусловлено уровнем гемоглобина. Из школьного курса биологии известно, что чем выше уровень гемоглобина, тем ярче и насыщеннее становится цвет.

    Удельный вес или плотность. Плотность определяется по количеству эритроцитов. Чем больше в крови эритроцитов, тем лучше всасываются полезные вещества. Примерная плотность составляет 1,051 -1,062. Показатель плотности плазмы составляет примерно от 1,029 до 1,032 ед. Вязкость образуется в ходе взаимодействия плазмы с микромолекулами коллоидов и форменными элементами. Вязкость крови в 2 раза выше вязкости плазмы.

    Кровь и ее суспензионные свойства зависят от скорости оседания эритроцитов, чем больше альбуминов содержится в составе, тем выше ее суспензионные свойства. Осмотические давление обеспечивает регуляцию и обмен воды в крови и соединительных тканях. При повышенном осмотическом давлении проникновение воды в клетки будет выше, а при пониженном давлении — наоборот.

    Группы крови

    Существует 4 группы и каждая из них имеет определенные элементы и состав. Группу и состав крови определяет биохимический анализ при рождении ребенка. Определение группы осуществляется при рождении по показателям белков в эритроцитах и в плазме. Этот показатель остается неизменным на протяжении всей жизни человека. Но в некоторых случаях возможна смесь кровей. Это случается в процессе переливания при травмах, кровопотерях и операциях.

    Человек, который отдает свою кровь, называется донор, а тот, кто ее получает, называется реципиент. В процессе переливания врачи руководствуются принципами совместимости групп. Каждая группа полноценна, но не каждая из них может быть смешана. Это обусловлено присутствием или отсутствием в плазме агглютинина, который способствуют склеиванию эритроцитов с одинаковыми показателями. Выделяют нормы совместимости при переливании. Основная характеристика крови первой группы — это универсальность, потому что она подходит для переливания представителям остальных трех групп.

    Вторую группу можно использовать для переливания людям со второй и с четвертой группой. Третью группу можно переливать только людям с третьей или с четвертой группой. Четвертую группу разрешается переливать людям с этой же группой. Людям, которые имеют первую группу, для переливания используют только первую группу.

    Если группы для переливания неправильно совмещаются, возникает риск склеивания эритроцитов, что вызывает их разрушение и летальный исход пациента. Значение крови бесценно, потому что она является основной жидкостью организма, которая обеспечивает все жизненно важные процессы жизнедеятельности человека.

    Кровь - жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов.

    Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету.

    Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток. Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем около 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты.

    Функции крови

    Функции крови значительно сложнее, чем просто транспорт питательных веществ и отходов метаболизма. С кровью переносятся также гормоны, контролирующие множество жизненно важных процессов; кровь регулирует температуру тела и защищает организм от повреждений и инфекций в любой его части.

    Транспортная функция крови . С кровью и кровоснабжением тесно связаны практически все процессы, имеющие отношение к пищеварению и дыханию - двум функциям организма, без которых жизнь невозможна. Связь с дыханием выражается в том, что кровь обеспечивает газообмен в легких и транспорт соответствующих газов: кислорода - от легких в ткани, диоксида углерода (углекислого газа) - от тканей к легким. Транспорт питательных веществ начинается от капилляров тонкого кишечника; здесь кровь захватывает их из пищеварительного тракта и переносит во все органы и ткани, начиная с печени, где происходит модификация питательных веществ (глюкозы, аминокислот, жирных кислот), причем клетки печени регулируют их уровень в крови в зависимости от потребностей организма (тканевого метаболизма). Переход транспортируемых веществ из крови в ткани осуществляется в тканевых капиллярах; одновременно в кровь из тканей поступают конечные продукты, которые далее выводятся через почки с мочой (например, мочевина и мочевая кислота). Кровь переносит также продукты секреции эндокринных желез - гормоны - и тем самым обеспечивает связь между различными органами и координацию их деятельности.

    Регуляция температуры тела . Кровь играет ключевую роль в поддержании постоянной температуры тела у гомойотермных, или теплокровных, организмов. Температура человеческого тела в нормальном состоянии колеблется в очень узком интервале около 37° С. Выделение и поглощение тепла различными участками тела должны быть сбалансированы, что достигается переносом тепла с помощью крови. Центр температурной регуляции располагается в гипоталамусе - отделе промежуточного мозга. Этот центр, обладая высокой чувствительностью к небольшим изменениям температуры проходящей через него крови, регулирует те физиологические процессы, при которых выделяется или поглощается тепло. Один из механизмов состоит в регуляции тепловых потерь через кожу посредством изменения диаметра кожных кровеносных сосудов кожи и соответственно объема крови, протекающей вблизи поверхности тела, где тепло легче теряется. В случае инфекции определенные продукты жизнедеятельности микроорганизмов либо продукты вызванного ими распада тканей взаимодействуют с лейкоцитами, вызывая образование химических веществ, стимулирующих центр температурной регуляции в головном мозге. В результате наблюдается подъем температуры тела, ощущаемый как жар.

    Защита организма от повреждений и инфекции . В осуществлении этой функции крови особую роль играют лейкоциты двух типов: полиморфноядерные нейтрофилы и моноциты. Они устремляются к месту повреждения и накапливаются вблизи него, причем большая часть этих клеток мигрирует из кровотока через стенки близлежащих кровеносных сосудов. К месту повреждения их привлекают химические вещества, высвобождаемые поврежденными тканями. Эти клетки способны поглощать бактерии и разрушать их своими ферментами.

    Таким образом, они препятствуют распространению инфекции в организме.

    Лейкоциты принимают также участие в удалении мертвых или поврежденных тканей. Процесс поглощения клеткой бактерии или фрагмента мертвой ткани называется фагоцитозом, а осуществляющие его нейтрофилы и моноциты - фагоцитами. Активно фагоцитирующий моноцит называют макрофагом, а нейтрофил - микрофагом. В борьбе с инфекцией важная роль принадлежит белкам плазмы, а именно иммуноглобулинам, к которым относится множество специфических антител. Антитела образуются другими типами лейкоцитов - лимфоцитами и плазматическими клетками, которые активируются при попадании в организм специфических антигенов бактериального или вирусного происхождения (либо присутствующих на клетках, чужеродных для данного организма). Выработка лимфоцитами антител против антигена, с которым организм встречается в первый раз, может занять несколько недель, но полученный иммунитет сохраняется надолго. Хотя уровень антител в крови через несколько месяцев начинает медленно падать, при повторном контакте с антигеном он вновь быстро растет. Это явление называется иммунологической памятью. П

    ри взаимодействии с антителом микроорганизмы либо слипаются, либо становятся более уязвимыми для поглощения фагоцитами. Кроме того, антитела мешают вирусу проникнуть в клетки организма хозяина.

    рН крови . pH - это показатель концентрации водородных (H) ионов, численно равный отрицательному логарифму (обозначаемому латинской буквой «p») этой величины. Кислотность и щелочность растворов выражают в единицах шкалы рН, имеющей диапазон от 1 (сильная кислота) до 14 (сильная щелочь). В норме рН артериальной крови составляет 7,4, т.е. близок к нейтральному. Венозная кровь из-за растворенного в ней диоксида углерода несколько закислена: диоксид углерода (СО2), образующийся в ходе метаболических процессов, при растворении в крови реагирует с водой (Н2О), образуя угольную кислоту (Н2СО3).

    Поддержание рН крови на постоянном уровне, т.е., другими словами, кислотно-щелочного равновесия, исключительно важно. Так, если рН заметно падает, в тканях снижается активность ферментов, что опасно для организма. Изменение рН крови, выходящее за рамки интервала 6,8-7,7, несовместимо с жизнью. Поддержанию этого показателя на постоянном уровне способствуют, в частности, почки, поскольку они по мере надобности выводят из организма кислоты или мочевину (которая дает щелочную реакцию). С другой стороны, рН поддерживается благодаря присутствию в плазме определенных белков и электролитов, обладающих буферным действием (т.е. способностью нейтрализовать некоторый избыток кислоты или щелочи).

    Физико-химические свойства крови . Плотность цельной крови зависит главным образом от содержания в ней эритроцитов, белков и липидов. Цвет крови меняется от алого до тёмно-красного в зависимости от соотношения оксигенированной (алой) и неоксигенированной форм гемоглобина, а также присутствия дериватов гемоглобина - метгемоглобина, карбоксигемоглобина и т. д. Окраска плазмы зависит от присутствия в ней красных и жёлтых пигментов - главным образом каротиноидов и билирубина, большое кол-во которого при патологии придаёт плазме жёлтый цвет. Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические о-ва плазма - растворёнными веществами, а белки и их комплексы - коллоидным компонентом. На поверхности клеток крови существует двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счёт двойного электрического слоя возникает электрокинетический потенциал, который играет важную роль стабилизации клеток, предотвращая их агрегацию. При увеличении ионной силы плазмы в связи с попаданием в неё многозарядных положительных ионов диффузный слой сжимается и барьер, препятствующий агрегации клеток, снижается. Одним из проявлений микрогетерогенности крови является феномен оседания эритроцитов. Он заключается в том, что в крови вне кровеносного русла (если предотвращено её свёртывание), клетки оседают (седементируют), оставляя сверху слой плазмы.

    Скорость оседания эритроцитов (СОЭ) возрастает при различных заболеваниях, в основном воспалительного характера, в связи с изменением белкового состава плазмы. Оседанию эритроцитов предшествует их агрегация с образованием определённых структур типа монетных столбиков. От того, как проходит их формирование, и зависит СОЭ. Концентрация водородных ионов плазмы выражается в величинах водородного показателя, т.е. отрицательного логарифма активности водородных ионов. Средний pH крови равняется 7,4. Поддержание постоянства этой величины большое физиол. значение, поскольку она определяет скорости очень многих хим. и физ.-хим. процессов в организме.

    В норме рН артериальной К. 7,35-7,47 венозной крови на 0,02 ниже, содержание эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Одно из важнейших свойств крови - текучесть - составляет предмет изучения биореологии. В кровеносном русле кровь в норме ведёт себя как не Ньютоновская жидкость, меняющая свою вязкость в зависимости от условий течения. В связи с этим вязкость крови в крупных сосудах и капиллярах существенно различается, а приводимые в литературе данные по вязкости носят условный характер. Закономерности течения крови (реология крови) изучены недостаточно. Неньютоновское поведение крови объясняется большой объёмной концентрацией клеток крови, их асимметрией, присутствием в плазме белков и другими факторами. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра) вязкость крови в 4-5 раз выше вязкости воды.

    При патологии и травмах текучесть крови существенно изменяется вследствие действия определённых факторов свёртывающей системы крови. В основном работа этой системы заключается в ферментативном синтезе линейного полимера - фабрина, образующего сетчатую структуру и придающего крови свойства студня. Этот «студень» имеет вязкость, в сотни и тысячи превышающую вязкость крови в жидком состоянии, проявляет прочностные свойства и высокую адгезивную способность, что позволяет сгустку удерживаться на ране и защищать её от механических повреждений. Образование сгустков на стенках кровеносных сосудов при нарушении равновесия в свёртывающей системе является одной из причин тромбозов. Образованию сгустка фибрина препятствует противосвёртывающая система крови; разрушение образовавшихся сгустков происходит под действием фибринолитической системы. Образовавшийся сгусток фибрина вначале имеет рыхлую структуру, затем становится более плотным, происходит ретракция сгустка.

    Компоненты крови

    Плазма . После отделения взвешенных в крови клеточных элементов остается водный раствор сложного состава, называемый плазмой. Как правило, плазма представляет собой прозрачную или слегка опалесцирующую жидкость, желтоватый цвет которой определяется присутствием в ней небольшого количества желчного пигмента и других окрашенных органических веществ. Однако после потребления жирной пищи в кровь попадает множество капелек жира (хиломикронов), в результате чего плазма становится мутной и маслянистой. Плазма участвует во многих процессах жизнедеятельности организма. Она переносит клетки крови, питательные вещества и продукты метаболизма и служит связующим звеном между всеми экстраваскулярными (т.е. находящимися вне кровеносных сосудов) жидкостями; последние включают, в частности, межклеточную жидкость, и через нее осуществляется связь с клетками и их содержимым.

    Таким образом плазма контактирует с почками, печенью и другими органами и тем самым поддерживает постоянство внутренней среды организма, т.е. гомеостаз. Основные компоненты плазмы и их концентрации приведены в таблице. Среди растворенных в плазме веществ - низкомолекулярные органические соединения (мочевина, мочевая кислота, аминокислоты и т.д.); большие и очень сложные по структуре молекулы белков; частично ионизированные неорганические соли. К числу наиболее важных катионов (положительно заряженных ионов) относятся катионы натрия (Na+), калия (K+), кальция (Ca2+) и магния (Mg2+); к числу важнейших анионов (отрицательно заряженных ионов) - хлорид-анионы (Cl-), бикарбонат (HCO3-) и фосфат (HPO42- или H2PO4-). Основные белковые компоненты плазмы - альбумин, глобулины и фибриноген.

    Белки плазмы . Из всех белков в наибольшей концентрации в плазме присутствует альбумин, синтезируемый в печени. Он необходим для поддержания осмотического равновесия, обеспечивающего нормальное распределение жидкости между кровеносными сосудами и экстраваскулярным пространством. При голодании или недостаточном поступлении белков с пищей содержание альбумина в плазме падает, что может привести к повышенному накоплению воды в тканях (отек). Это состояние, связанное с белковой недостаточностью, называется голодным отеком. В плазме присутствуют глобулины нескольких типов, или классов, важнейшие из которых обозначаются греческими буквами a (альфа), b (бета) и g (гамма), а соответствующие белки - a1, a2, b, g1 и g2. После разделения глобулинов (методом электрофореза) антитела обнаруживаются лишь во фракциях g1, g2 и b. Хотя антитела часто называют гамма-глобулинами, тот факт, что некоторые из них присутствуют и в b-фракции, обусловил введение термина «иммуноглобулин». В a- и b-фракциях содержится множество различных белков, обеспечивающих транспорт в крови железа, витамина В12, стероидов и других гормонов. В эту же группу белков входят и факторы коагуляции, которые наряду с фибриногеном участвуют в процессе свертывания крови. Основная функция фибриногена состоит в образовании кровяных сгустков (тромбов). В процессе свертывания крови, будь то in vivo (в живом организме) или in vitro (вне организма), фибриноген превращается в фибрин, который и составляет основу кровяного сгустка; не содержащая фибриногена плазма, обычно имеющая вид прозрачной жидкости бледно-желтого цвета, называется сывороткой крови.

    Эритроциты . Красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2-7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде около 34%. [В пересчете на сухой вес содержание гемоглобина в эритроцитах - 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин.] Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом.

    Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела. В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз - образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника).

    Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро - за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг.

    Срок созревания эритроцитов в костном мозге - от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания - составляет 4-5 дней. Срок жизни зрелого эритроцита в периферической крови - в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться. Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин - красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).

    Гемоглобин . Основная функция эритроцита - транспорт кислорода из легких к тканям организма. Ключевую роль в этом процессе играет гемоглобин - органический пигмент красного цвета, состоящий из гема (соединения порфирина с железом) и белка глобина. Гемоглобин отличается высоким сродством к кислороду, за счет чего кровь способна переносить гораздо больше кислорода, чем обычный водный раствор.

    Степень связывания кислорода с гемоглобином зависит прежде всего от концентрации кислорода, растворенного в плазме. В легких, где кислорода много, он диффундирует из легочных альвеол через стенки кровеносных сосудов и водную среду плазмы и попадает в эритроциты; там он связывается с гемоглобином - образуется оксигемоглобин. В тканях, где концентрация кислорода невелика, молекулы кислорода отделяются от гемоглобина и проникают в ткани за счет диффузии. Недостаточность эритроцитов или гемоглобина приводит к снижению транспорта кислорода и тем самым к нарушению биологических процессов в тканях. У человека различают гемоглобин плода (тип F, от fetus - плод) и гемоглобин взрослых (тип A, от adult - взрослый). Известно много генетических вариантов гемоглобина, образование которых приводит к аномалиям эритроцитов или их функции. Среди них наиболее известен гемоглобин S, обусловливающий серповидноклеточную анемию.

    Лейкоциты . Белые клетки периферической крови, или лейкоциты, делят на два класса в зависимости от наличия или отсутствия в их цитоплазме особых гранул. Клетки, не содержащие гранул (агранулоциты), - это лимфоциты и моноциты; их ядра имеют преимущественно правильную круглую форму. Клетки со специфическими гранулами (гранулоциты) характеризуются, как правило, наличием ядер неправильной формы со множеством долей и потому называются полиморфноядерными лейкоцитами. Их разделяют на три разновидности: нейтрофилы, базофилы и эозинофилы. Они отличаются друг от друга по картине окрашивания гранул различными красителями. У здорового человека в 1 мм3 крови содержится от 4000 до 10 000 лейкоцитов (в среднем около 6000), что составляет 0,5-1% объема крови. Соотношение отдельных видов клеток в составе лейкоцитов может значительно варьировать у разных людей и даже у одного и того же человека в разное время.

    Полиморфноядерные лейкоциты (нейтрофилы, эозинофилы и базофилы) образуются в костном мозге из клеток-предшественников, начало которым дают стволовые клетки, вероятно, те же самые, что дают и предшественников эритроцитов. По мере созревания ядра в клетках появляются гранулы, типичные для каждого вида клеток. В кровотоке эти клетки перемещаются вдоль стенок капилляров в первую очередь за счет амебоидных движений. Нейтрофилы способны покидать внутреннее пространство сосуда и скапливаться в месте инфекции. Время жизни гранулоцитов, по-видимому, около 10 дней, после чего они разрушаются в селезенке. Диаметр нейтрофилов - 12-14 мкм. Большинство красителей окрашивает их ядро в фиолетовый цвет; ядро нейтрофилов периферической крови может иметь от одной до пяти долей. Цитоплазма окрашивается в розоватый цвет; под микроскопом в ней можно различить множество интенсивно-розовых гранул. У женщин примерно 1% нейтрофилов несет половой хроматин (образованный одной из двух X-хромосом) - тельце в форме барабанной палочки, прикрепленное к одной из ядерных долей. Эти т.н. тельца Барра позволяют определять пол при исследовании образцов крови. Эозинофилы по своим размерам сходны с нейтрофилами. Их ядро редко имеет больше трех долей, а цитоплазма содержит множество крупных гранул, которые четко окрашиваются в ярко-красный цвет красителем эозином. В отличие от эозинофилов у базофилов цитоплазматические гранулы окрашиваются основными красителями в синий цвет.

    Моноциты . Диаметр этих незернистых лейкоцитов составляет 15-20 мкм. Ядро овальное или бобовидное, и лишь у небольшой части клеток оно поделено на крупные доли, которые перекрывают друг друга. Цитоплазма при окраске голубовато-серая, содержит незначительное число включений, окрашивающихся красителем азуром в сине-фиолетовый цвет. Моноциты образуются как в костном мозге, так и в селезенке и в лимфатических узлах. Их основная функция - фагоцитоз.

    Лимфоциты . Это небольшие одноядерные клетки. Большинство лимфоцитов периферической крови имеет диаметр меньше 10 мкм, но иногда встречаются лимфоциты и большего диаметра (16 мкм). Ядра клеток плотные и круглые, цитоплазма голубоватого цвета, с очень редкими гранулами. Несмотря на то что лимфоциты выглядят морфологически однородно, они отчетливо различаются по своим функциям и свойствам клеточной мембраны. Их делят на три большие категории: B-клетки, Т-клетки и 0-клетки (нуль-клетки, или ни В, ни Т). B-лимфоциты созревают у человека в костном мозге, после чего мигрируют в лимфоидные органы. Они служат предшественниками клеток, образующих антитела, т.н. плазматических. Для того чтобы B-клетки трансформировались в плазматические, необходимо присутствие Т-клеток. Созревание Т-клеток начинается в костном мозге, где образуются протимоциты, которые затем мигрируют в тимус (вилочковую железу) - орган, расположенный в грудной клетке за грудиной. Там они дифференцируются в Т-лимфоциты - весьма неоднородную популяцию клеток иммунной системы, выполняющих различные функции. Так, они синтезируют факторы активации макрофагов, факторы роста B-клеток и интерфероны. Есть среди Т-клеток индукторные (хелперные) клетки, которые стимулируют образование B-клетками антител. Есть и клетки-супрессоры, которые подавляют функции B-клеток и синтезируют фактор роста Т-клеток - интерлейкин-2 (один из лимфокинов). 0-клетки отличаются от B- и Т-клеток тем, что у них нет поверхностных антигенов. Некоторые из них служат «естественными киллерами», т.е. убивают раковые клетки и клетки, зараженные вирусом. Однако в целом роль 0-клеток неясна.

    Тромбоциты представляют собой бесцветные безъядерные тельца сферической, овальной или палочкообразной формы диаметром 2-4 мкм. В норме содержание тромбоцитов в периферической крови составляет 200 000-400 000 на 1 мм3. Продолжительность их жизни - 8-10 дней. Стандартными красителями (азур-эозин) они окрашиваются в однородный бледно-розовый цвет. С помощью электронной микроскопии показано, что по структуре цитоплазмы тромбоциты сходны с обычными клетками; однако по сути они являются не клетками, а фрагментами цитоплазмы очень крупных клеток (мегакариоцитов), присутствующих в костном мозге. Мегакариоциты происходят из потомков тех же стволовых клеток, которые дают начало эритроцитам и лейкоцитам. Как будет показано в следующем разделе, тромбоциты играют ключевую роль в свертывании крови. Повреждения костного мозга под действием лекарств, ионизирующего излучения или при раковых заболеваниях могут приводить к значительному снижению содержания тромбоцитов в крови, что служит причиной спонтанных гематом и кровотечений.

    Свертывание крови Свертыванием крови, или коагуляцией, называется процесс превращения жидкой крови в эластичный сгусток (тромб). Свертывание крови в месте ранения - жизненно важная реакция, обеспечивающая остановку кровотечения. Однако этот же процесс лежит и в основе тромбоза сосудов - крайне неблагоприятного явления, при котором происходит полная или частичная закупорка их просвета, препятствующая кровотоку.

    Гемостаз (остановка кровотечения) . Когда повреждается тонкий или даже средний кровеносный сосуд, например при надрезе или сдавливании тканей, возникает внутреннее или наружное кровотечение (геморрагия). Как правило, остановка кровотечения наступает за счет образования в месте повреждения сгустка крови. Через несколько секунд после повреждения просвет сосуда сокращается в ответ на действие высвобождаемых химических веществ и нервных импульсов. При повреждении эндотелиальной выстилки кровеносных сосудов обнажается расположенный под эндотелием коллаген, на который быстро налипают циркулирующие в крови тромбоциты. Они высвобождают химические вещества, вызывающие сужение сосуда (вазоконстрикторы). Тромбоциты секретируют и другие вещества, которые участвуют в сложной цепи реакций, ведущей к превращению фибриногена (растворимого белка крови) в нерастворимый фибрин. Фибрин образует кровяной сгусток, нити которого захватывают клетки крови. Одно из важнейших свойств фибрина - его способность полимеризоваться с образованием длинных волокон, которые сжимаются и выталкивают из сгустка сыворотку крови.

    Тромбоз - аномальное свертывание крови в артериях или венах. В результате артериальных тромбозов ухудшается поступление крови в ткани, что вызывает их повреждение. Это происходит при инфаркте миокарда, вызванном тромбозом коронарной артерии, или при инсульте, обусловленном тромбозом сосудов головного мозга. Тромбоз вен препятствует нормальному оттоку крови от тканей. Когда происходит закупорка тромбом крупной вены, вблизи места закупорки возникает отек, который иногда распространяется, например, на всю конечность. Случается, что часть венозного тромба отрывается и попадает в кровоток в виде движущегося сгустка (эмбола), который со временем может оказаться в сердце или легких и привести к опасному для жизни нарушению кровообращения.

    Выявлено несколько факторов, предрасполагающих к внутрисосудистому тромбообразованию; к ним относятся:

    1. замедление венозного кровотока вследствие малой физической активности;
    2. изменения сосудов, вызванные повышением кровяного давления;
    3. локальное уплотнение внутренней поверхности кровеносных сосудов вследствие воспалительных процессов или - в случае артерий - вследствие т.н. атероматоза (отложения липидов на стенках артерий);
    4. повышение вязкости крови вследствие полицитемии (повышенного содержания в крови эритроцитов);
    5. увеличение количества тромбоцитов в крови.

    Как показали исследования, последний из перечисленных факторов играет особую роль в развитии тромбоза. Дело в том, что целый ряд содержащихся в тромбоцитах веществ стимулирует образование кровяного сгустка, а потому любые воздействия, вызывающие повреждение тромбоцитов, могут ускорять этот процесс. При повреждении поверхность тромбоцитов становится более липкой, что приводит к их соединению между собой (агрегации) и высвобождению их содержимого. Эндотелиальная выстилка кровеносных сосудов содержит т.н. простациклин, который подавляет высвобождение из тромбоцитов тромбогенного вещества - тромбоксана А2. Большую роль играют также другие компоненты плазмы, препятствующие тромбообразованию в сосудах за счет подавления ряда ферментов системы свертывания крови. Попытки предотвратить тромбозы до сих пор дают лишь частичные результаты. В число профилактических мер входят регулярные физические упражнения, снижение повышенного кровяного давления и лечение антикоагулянтами; после операций рекомендуется как можно раньше начинать ходить. Следует отметить, что ежедневный прием аспирина даже в небольшой дозе (300 мг) уменьшает слипание тромбоцитов и значительно понижает вероятность тромбозов.

    Переливание крови С конца 1930-х годов переливание крови или ее отдельных фракций получило широкое распространение в медицине, особенно в военной. Основная цель переливания крови (гемотрансфузии) - замена эритроцитов больного и восстановление объема крови после массивной кровопотери. Последняя может произойти либо спонтанно (например, при язве двенадцатиперстной кишки), либо в результате травмы, в ходе хирургической операции или при родах. Переливание крови применяют также для восстановления уровня эритроцитов при некоторых анемиях, когда организм теряет способность вырабатывать новые кровяные клетки с той скоростью, какая требуется для нормальной жизнедеятельности. Общее мнение авторитетных медиков таково, что переливание крови следует производить только в случае строгой необходимости, поскольку оно связано с риском осложнений и передачи больному инфекционного заболевания - гепатита, малярии или СПИДа.

    Типирование крови . Перед переливанием определяют совместимость крови донора и реципиента, для чего проводится типирование крови. В настоящее время типированием занимаются квалифицированные специалисты. Небольшое количество эритроцитов добавляют к антисыворотке, содержащей большое количество антител к определенным эритроцитарным антигенам. Антисыворотку получают из крови доноров, специально иммунизированных соответствующими антигенами крови. Агглютинацию эритроцитов наблюдают невооруженным глазом или под микроскопом. В таблице показано, как можно использовать антитела анти-А и анти-В для определения групп крови системы АВ0. В качестве дополнительной проверки in vitro можно смешать эритроциты донора с сывороткой реципиента и, наоборот, сыворотку донора с эритроцитами реципиента - и посмотреть, не будет ли при этом агглютинации. Данный тест называют перекрестным типированием. Если при смешивании эритроцитов донора и сыворотки реципиента агглютинирует хотя бы небольшое количество клеток, кровь считается несовместимой.

    Переливание крови и ее хранение . Первоначальные методы прямого переливания крови от донора реципиенту отошли в прошлое. Сегодня донорскую кровь берут из вены в стерильных условиях в специально подготовленные емкости, куда предварительно внесены антикоагулянт и глюкоза (последняя - в качестве питательной среды для эритроцитов при хранении). Из антикоагулянтов чаще всего используют цитрат натрия, который связывает находящиеся в крови ионы кальция, необходимые для свертывания крови. Жидкую кровь хранят при 4°С до трех недель; за это время остается 70% первоначального количества жизнеспособных эритроцитов. Поскольку этот уровень живых эритроцитов считается минимально допустимым, кровь, хранившуюся больше трех недель, для переливания не используют. В связи с растущей потребностью в переливании крови появились методы, позволяющие сохранить жизнеспособность эритроцитов в течение более длительного времени. В присутствии глицерина и других веществ эритроциты могут храниться сколь угодно долго при температуре от -20 до -197° С. Для хранения при -197° С используют металлические контейнеры с жидким азотом, в которые погружают контейнеры с кровью. Кровь, бывшую в заморозке, успешно применяют для переливания. Заморозка позволяет не только создавать запасы обычной крови, но и собирать и хранить в специальных банках (хранилищах) крови редкие ее группы.

    Раньше кровь хранили в стеклянных контейнерах, но сейчас для этой цели используются в основном пластиковые емкости. Одно из главных преимуществ пластикового мешка состоит в том, что к одной емкости с антикоагулянтом можно прикрепить несколько мешочков, а затем с помощью дифференциального центрифугирования в «закрытой» системе выделить из крови все три типа клеток и плазму. Это очень важное новшество в корне изменило подход к переливанию крови.

    Сегодня уже говорят о компонентной терапии, когда под переливанием имеется в виду замена лишь тех элементов крови, в которых нуждается реципиент. Большинству людей, страдающих анемией, нужны только цельные эритроциты; больным лейкозом требуются в основном тромбоциты; больные гемофилией нуждаются лишь в определенных компонентах плазмы. Все эти фракции могут быть выделены из одной и той же донорской крови, после чего останутся только альбумин и гамма-глобулин (и тот, и другой имеют свои сферы применения). Цельная кровь применяется лишь для компенсации очень большой кровопотери, и сейчас ее используют для переливания менее чем в 25% случаев.

    Банки крови . Во всех развитых странах создана сеть станций переливания крови, которые обеспечивают гражданскую медицину необходимым количеством крови для переливания. На станциях, как правило, только собирают донорскую кровь, а хранят ее в банках (хранилищах) крови. Последние предоставляют по требованию больниц и клиник кровь нужной группы. Кроме того, они обычно располагают специальной службой, которая занимается получением из просроченной цельной крови как плазмы, так и отдельных фракций (например, гамма-глобулина). При многих банках имеются также квалифицированные специалисты, проводящие полное типирование крови и изучающие возможные реакции несовместимости.



    ← Вернуться

    ×
    Вступай в сообщество «shango.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «shango.ru»