Факторы влияющие на формирование и минерализацию. Факторы минерализации

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Питание является основой жизни, главным фактором, определяющим здоровье, долголетие и работоспособность человека. При любых нарушениях питания резко снижается способность противостоять неблагоприятным воздействиям окружающей среды, стрессам, повышенным умственным и физическим нагрузкам. При этом формируется состояние, которое директор «НИИ питания» РАМН академик В.А. Тутельян определяет как «маладаптация» (недостаточная адаптация). Сегодня, по мнению многих исследователей, этому состоянию подвержено более 50% населения нашей страны.

Важно понимать, что именно питание обеспечивает процессы роста и развития человека, его физическую и умственную активность, настроение и, в конечном счете, качество жизни. Этого невозможно достичь, игнорируя основные законы здорового, правильного, рационального и безопасного питания. По энергетической ценности, набору используемых в суточном рационе продуктов и поступающих из этого набора в организм пищевых и биологически активных веществ, питание должно соответствовать возрасту, полу, профессиональной деятельности, общему состоянию здоровья человека и даже климатогеографической зоне, в которой он проживает.

На систему питания влияют три основных, совершенно равнозначных между собой по важности фактора:

1. экономические возможности человека, семьи, его способность приобретать конкретные пищевые продукты в необходимом наборе и количестве;

2. наличие на потребительском рынке широкого ассортимента свежих, высококачественных, безопасных для здоровья человека пищевых продуктов;

3. уровень знаний человека о свойствах и составе основных пищевых групп продуктов (мясо и мясопродукты, рыба и рыбопродукты, молоко и молочные продукты, овощи, фрукты и др.), рациональных способах их обработки, приготовления, хранения, употребления и т.д.

Достаточный уровень знаний и общая грамотность в вопросах рационального питания позволяет если не исключить, то значительно ослабить потенциальное отрицательное влияние на состояние здоровья людей первого фактора: правильный подбор продуктов, составление сбалансированного рациона позволяет каждому человеку, даже при условии его ограниченных финансовых возможностях, обеспечить здоровое, рациональное питание, придерживаться исполнения основных его правил. Нарушать их природа не позволяет никому: ни бедным, ни богатым, ни детям, ни взрослому населению.

Сегодня медики и диетологи с полным правом утверждают, что не обязательно быть богатым, чтобы быть здоровым. Именно поэтому каждому человеку так важно быть ориентированным в вопросах гигиены питания, к которым относятся знание состава пищевых продуктов , основных правил их обработки, хранения, приготовления, совмещения друг с другом, правилах распределения приема пищи по ее калорийности в течение суток, режиме питания и др.

В нашем организме все подчинено строгой регуляции, именно поэтому существующие нормы физиологической потребности организма в энергии, пищевых и биологически активных веществах должны соблюдаться. Нарушение одного из звеньев этой регуляции может приводить к серьезнейшим заболеваниям и даже смерти – в случае хронических дефицитов в суточном рационе человека белка , определенных видов жиров или углеводов , витаминов и других пищевых компонентов.

К сожалению, мы вынуждены констатировать, что на сегодняшний день уровень таких знаний у россиян – один из самых низких в мировом рейтинге. В экономически развитых странах Европы и в США ситуация иная: сегодня богатое, образованное население этих стран питается гораздо скромнее и проще, по сравнению с малообразованной частью населения, и чем выше образовательный уровень человека, тем более рационально, научно обоснованно он питается. Основу его рациона при этом составляют полезные, в наибольшей степени натуральные продукты. Поэтому у этой группы населения существенно реже встречается избыточный вес или другие нарушения здоровья, связанные с неправильным питанием. Образованные люди в этих странах непрерывно пополняют свои знания в вопросах здорового питания, постоянно прислушиваются к советам врачей и диетологов. В результате усилий правительств, в этих странах действуют специальные образовательные программы, через массовую реализацию которых обеспечиваются условия для формирования у каждого члена общества культа здорового образа жизни. У нас же, высокий образовательный уровень и большой заработок, напротив, породил множество «пузатых» молодых, и не очень молодых людей. Отсутствие знаний о правильном питании в сочетании с практически полным отсутствием физических нагрузок приводят к избыточному весу, диабету, гипертонической болезни, атеросклерозу, инсультам – все это болезни современной цивилизации.

Лекция №3

РАЗВИТИЕ ВРЕМЕННЫХ И ПОСТОЯННЫХ ЗУБОВ. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ФОРМИРОВАНИЕ И МИНЕРАЛИЗАЦИИ ТВЕРДЫХ ТКАНЕЙ ЗУБОВ

1. Анатомо - физиологические особенности детского организма. Периоды детского возраста.

2. Развитие зубов.

3. Первичная минерализация твердых тканей зубов.

4. Механизм прорезывания зубов. Сроки прорезывания временных и

Постоянных зубов.

5. Рост, развитие и формирование корня зуба и тканей пародонта.

6. Вторичная минерализация твердых тканей зубов.

Анатомо-физиологические особенности детского организма

Развитие тканей и совершенствование функций отдельных органов и всего оранизм в целом являются процессами, которые принципиально отличают детский организм от взрослого.

Соответственно характеру и интенсивности изменений, происходящих в организме, принято различать следующие периоды развития ребенка:

1) внутриутробный (антенатальный) развитие-280 дней (10 лунных

месяцев);

2) новорожденности - около 3-3,5 недель;

3) грудной - до 1 года;

4) ясельный - от 1 до 3 лет;

5) дошкольный - от 3 до 6 лет;

6) школьный - от 6 до 17 лет, в этом периоде выделяют:

Младший школьный - от 6 до 12 лет;

Старший школьный - от 12 до 17 лет.

Внутриутробный период развития. Развитие челюстно-лицевой

Период внутриоутробного развития является важнейшим, ответственным и наиболее уязвимой фазе развития плода.

Все аномалии, в целом характеризуются отклонениями от нормального развития лица, челюстей и зубов в процессе эмбриогенеза, начинаются в основном на ранних стадиях и имеют первоначальный характер. Нарушение структуры, формы и размеров, которые возникают при дальнейшем росте и развитии зубочелюстной системы имеют производный, вторичный характер.

Развитие зубов

Развитие зубов длится два основных периода - внутричелюстной (до прорезывания зуба) и винутриротовой (после прорезывания). Выделяют основные этапы развития зубов человека, которые плавно переходят друг в друга и не могут буги четко отграниченными:

1) закладка зубной пластины с последующим образованием зубных зачатков, происходит в период внутриутробного развития. Формирование зубных зачатков может происходить как в антенатальный, так и в постнатальный периоды развития человека. всегда внутричелюстного.

2) дифференциация тканей;

3) гистогенез;

4) первичная (внутричелюстная) минерализация.

5) прорезывания зуба;

6) рост, развитие и формирование корней и тканей пародонта, с которыми одновременно активизируются процессы вторичной минерализации твердых тканей зубов. 7) стабилизация (функционирования). Продолжительность этого периода для каждой группы как временных, так и постоянных зубов является индивидуальной.

8) резорбция (рассасывание) корней.

Закладка и образование зубного зачатка

Наб-7-й неделе внутриутробного развития вдоль верхнего и нижнего краев первичной ротовой полости (в области будущих зубных дуг верхней и нижней челюстей) происходит утолщение многослойного плоского эпителия, который врастает в пидлежащую мезенхиму, создавая зубную пластинку.

Зубная пластина прорастает в глубину, принимает вертикальное положение и разделяется на вестибулярную и язычную. Эпителий присинковой части зубной пластины сначала активно разрастается, утолщается, позднее-часть его клеток дегенерирует, формируя щель - преддверие ротовой полости, который отделяет губы и щеки от десневой дуги. Эпителий языковой части зубной пластины, погружаясь в мезенхиму, дает начало всем временным и постоянным зубам (рис. 2).

Рис.2 Ранняя стадия развития зуба: 1 - эпителий слизистой оболочки полости рта, 2 - шейка эмалевого органа; 3 - внешний эмалевый эпителий; 4-пульпа эмалевого органа; 5 - внутренний эмалевый эпителий; 6 - зубной сосочек; 7 - зубной мешочек; 8 - трабекулы новообразованной кости; 9 - мезенхима.

Сначала эпителий пролиферирует в виде почек, которые трансформируются в колбообразные разрастания, которые позднее приобретают вид колпачков, формируя эмалевый орган. В эмалевом органе зубного зачатка, образованного двумя утолщенными слоями многослойного эпителия, между клетками в центральной части эмалевого органа продуцируется белковая жидкость, постепенно разграничивает эти слои на внешний и внутренний, между которыми формируется пульпа эмалевого органа.

В результате дифференциации клетки эмалевого органа, которые сначала были одинаковые по морфологии, приобретают разную форму, функцию и назначение. Эпителий, прилегающей к мезенхимы зубного сосочка, это высокие клетки цилиндрической или призматической формы, в цитоплазме которых накапливается повышенное содержание гликогена. В дальнейшем из этих клеток образуются енамелобласты (амелобласты, адамантобласты)-клетки, продуцирующие органический матрикс эмали зуба.

Так эмалевый орган дает начало эмали зуба и кутикуле, которая принимает непосредственное участие в формировании зубо-десневого прикрепления. Функцией эмалевого органа является также то, что он придает коронковой части зуба определенной формы и индуцирует процессы дентиногенеза.

Одновременно под вогнутой частью эмалевого органа, под внутренним слоем его эпителия, интенсивно агрегируются мезенхимальные клетки, составляющие зубной сосочек. Он дает начало формированию дентина и пульпы зуба. Мезенхима, окружающая каждый эмалевый орган и зубной сосочек, уплотняется и формирует зубной мешочек, из которого формируются цемент и псриодонт.

Таким образом, в результате трансформации эпителиальной и мезенхимальной ткани, которая наиболее интенсивно происходит в периоды закладки, дифференциации, гистогенеза формируется зубной зачаток (рис. 3).

Рис.3. Ранняя стадия развития зуба (зубной зачаток): 1 - эпителий слизистой оболочки ротовой полости; 2-енамелобласты; 3-эмаль; 4-дентин, 5 - предентин; 6 - дентинобласты; 7 - зубная пластинка и закладка постоянного зуба; 8 - пульпа зуба, 9 - остаток эмалевого органа, 10 - костные трабекулы; 11 - мезенхима.

Формирование зачатков всех временных зубов происходит в антенатальном периоде развития, начиная с 6-7 недель эмбриогенеза. Формирование зачатков постоянних зубов происходит в следующей последовательности: зубные зачатки первых постоянных моляров и центральных резцов начинают формироваться на 5 и соответственно 8 месяца внутриутробного периода развития. В первые полгода жизни ребенка происходит развитие зубных зачатков постоянных латеральных резцов. Во второй половине 1 года жизни и в первой половине 2 года жизни ребенка происходит развитие зубных зачатков первые премоляры. В конце 2 года жизни ребенка формируются зубные зачатки вторые премоляры, на 3 году-вторых постоянных моляров и клыков. Формирование зубных зачатков третьего постоянных моляров (зубов "Мудрости") происходит в возрасте до 5 лет. К этому периоду развития ребенка в костной ткани челюстей еще сохраняются остатки эмбриональных тканей - эпителиальной и мезенхимальной, которые способны к дифференциации и инициируют гистогенез.

Первичная минерализация твердых тканей зубов

Синтез органического матрикса твердых тканей зуба инициирует их первичную минерализацию. Сроки начала первичной минерализации временных зубов отражены в табл. 1.

Первичная минерализация твердых тканей зуба происходит в внутричелюстном периоде его развития очень интенсивно. Она всегда начинается с режущего края резцов и клыков, а также из бугорков жевательных зубов и продолжается на всю длину коронки зуба. Расположенный под эмалью дентин сначала структурируется органическими веществами, позднее приобретает признаки минерализации. Период первичной минерализации твердых тканей зубов длится разное время. Активнее первичная минерализация происходит во временных зубах, а именно, в центральных и латеральных резцах обеих челюстей (6-8 мес).

Рис. 4. Строение енамелобласта (А Хэм, Д. Кормак, 1983): 1 - матрикс эмали, 2 - отросток Томса 3 - секреторные гранулы; 4-апикальные запирающие пластинка; 5-комплекс Гольджи; 6 - гранулярная эндоплазматическая сеть, 7 - ядро, 8 -митохондрии; 9-базальная запирающие пластинка

Рис. 5. Строение дентинобласта (А Хэм, Д. Кормак, 1983): 1-дентин; 2-зонаминерализации; 3-отросток Томса, 4 - предентин; 5-замикашигшастинка; 6-гранулярная эндоплазматическая сеть, 7 - комплекс Гольджи; 8-ядро.

Молодая эмаль зуба, который еще не прорезался, по химическому составу аналогична зрелой эмали. На 65% она состоит из воды, содержание органических веществ составляет 20%, минеральных веществ - менее 15% (так называемая мягкая эмаль). Качество процессов первичной и вторичной минерализации твердых тканей зуба формирует в будущем его кариесрезистетиисть. После внутричелюстной минерализации коронковой части зачатка зуба он прорезывается.

^ Механизмы прорезывания зубов. Сроки прорезывания

Прорезывания зуба - это сложный физиологический процесс, механизм которого изучен недостаточно. Доказано влияние на процессы прорезывания зубов эндокринной и нервной систем, заболеваний, нарушений обменного характера, заболеваний опорно-двигательной системы, гиповитаминозов, гиповитаминоза витамина Б, диспепсий, инфекционных заболеваний, интоксикаций, наследственного фактора

Правильность прорезывания зубов служит критерием общего состояния. Признаками физиологического прорезывания зубов это их прорезывания в определенные сроки, в определенной последовательности, парами, симетрично. Прорезыванием зуба заканчивается внутришньощелеповий (фолликулярный) период его развития.

Во время прорезывания зубов происходит определенные изменения в тканях, окружающих зуб. Десневой валик становится отечным и мягким, на нем появляются небольшие возвышения - зубные бугорки, покрытые слизистой оболочкой. Соединительная ткань десны, что лежит на пути перемещения зуба, который прорезывается, постепенно сжимается и атрофируется. Редуцирован эмалевый эпителий, покрывающий коронку зуба, контактирует с эпителием десен, прорывая его над верхушкой коронки, и она прорезывается в ротовую полость.

Во время прорезывания в области шейки зуба по краю десен эпителий ротовой и полости срастается с кутикулой эмали, образуя эпителиальное прикрепления в виде щелевидной углубление-физиологической зубодесневой бороздки. От плотности зубодесневого соединения зависит нормальное состояние и десен, и периодонта (А. И. Дельцов
а и пел., 2002), см.. Рис.. 6.

Рис. 6. Соединение редуцированного эмалевого эпителия с эпителием ротовой полости. Образования эпителиального прикрепления

1 - эпителий ротовой полости; 2-редуцированный эпителий эмалевого органа; С - эмаль зуба, 4 - дентин зуба, 5 - место соединения эмалевого и десневого эпителия.

После прорезывания коронка зуба покрыта кутикулой. Редуцирован эмалевый эпителий покрывает участки коронки, которые еще не прорезались. Кутикула - это остаток внешнего слоя эпителия эмалевого органа, тонкая бесструктурная пленка, которая соединена с мембраной эмалевых призм. Кутикула зуба быстро стирается, сохраняясь определенное время только на контактных поверхностях коронок зубов.

Клинически процесс прорезывания зубов сопровождается неприятными ощущениями у ребенка, вследствие чего она становится беспокойным, все тянет в рот, обладает повышенной саливацию. Местно проявляются все признаки воспалительной реакции. Возможно повышение температуры тела ребенка, диспептиични расстройства. Во время прорезывания зуба практически не контактирует с соединительной тканью собственной пластинки слизистой оболочки, не разрушает ее структуры, в частности, кровеносных сосудов. Именно поэтому процесс прорезывания зуба не сопровождается кровоточивостью.

На современном этапе ученые считают, что при прорезывании зубов происходит сочетание действия нескольких механизмов под воздействием нейрогуморальной системы-рост корня, формирование лунки, построение микроциркуляторного русла пульпы, формирования связочного аппарата периодонта, влияние соматотропного гормона.

^ Рост, развитие и формирование корня (а) зуба и тканей пародонта

До начала прорезывания зуба завершается внутричелюстие развитие коронки зуба и начинается формирование его корня. Этот физиологический процесс активно происходит и во время прорезывания зуба, а наиболее активно - после его прорезывания.

В процессе образования корня зуба развивается цемент. Образование цемента начинается в постэмбриональном периоде непосредственно перед прорезыванием зуба и происходит по типу периостального остеогенеза. Цемент по своей структуре подобен грубоволокнистой кости. Цеменгобласты же по строению практически не отличаются от остеобластов. Они образуют коллагеновые волокна и основное вещество, минерализируется с образованием кристаллов гидроксиапатита. После развития клетками вещества цеменгобласты превращаются в цементоциты, тела которых локализуются в лакунах, а отростки - в канальцах.

^ Пульпа зуба развивается из мезенхимы зубного сосочка. Этот процесс начинается с его верхушки, где сначала появляются денгинобласты. Одновременно начинается дифференциация мезенхимальных клеток в центральной части зубного сосочка. Они увеличиваются в размерах, отодвигаются друг от друга. Постепенно мезенхима центральных отделов превращается в рыхлую соединительную ткань, богатую фибробласты, макрофаги (гистиогтиты) и другие пульпоциты. С развитием зубного зачатка процесс дифференциации мезенхимы зубного сосочка и превращение ее в рыхлую соединительную ткань и расширяеться от его верхушки к основанию. Вместе эта соединительная ткань прорастает кровеносными сосудами и нервами.

^ Образования периодонта происходит из мезенхимы зубного мешочка одновременно с образованием корня зуба После образования цемента из мезенхимальных клеток внутреннего слоя зубного мешочка, остальные клеток, содержащихся в наружном слое дают начало плотной соединительной ткани периодонта Пучки коллагеновых волокон периодонта (перицемента) одним концом заделываются в основное вещество цемента, другим переходят к основному веществу альвеолярной кости. Благодаря этому корни плотно прикрепляется к стенке костной лунки.

Рост, развитие, формирование корня зуба и тканей пародонта после прорезывания в среднем составляет для временных зубов 1,5-2 года для и посгийних - 3-5 лет.

Рост, развитие и формирование корней имеет три стадии:

1) незавершенного роста корня - "раструба";

2) несформированной верхушки корня;

3) незакрытой верхушки корня (рис. 7).

Рис. 7. Схематическое изображение формирования корня зуба: 1 - стадия незавершенного роста корня - "раструба", 2 - несформированной верхушки корня, 3 - незакрытой верхушки корня.

На первой стадии незавершенного роста корня - "раструба" длина корня соответствует длине коронки, что примерно составляет 1 / 2 его будущей длины. Стенки корня тонкие и расширены с внутрииигнього стороны (со стороны пульпы), в направлении от анатомической шейки зуба к верхушке корня.ростков зона массивная и четко ограничена кортикальной пластинкой лунки.

Для второй стадии-несформированной верхушки корня характерно, что стенки корня тонкие, размещенны параллельно друг другу, корневой канал широкий, расширяется к верхушке и переходит в ростковую зону, которая рентгенологически представлена ​​разрежением костной ткани с четким ограничением по периферии кортикальной пластинкой альвеолы.

В третьей стадии - незакрытой верхушки корня стенки канала сформированы, у апикального отверстия канал сужается, апикальное отверстие широкое ростковая зона возле верхушки отсутствует, на месте ростковом зоны периодонтальная щель несколько расширена.

^ Вторичная минерализация твердых тканей зубов

После прорезывания зуба одновременно с внутричелюстним развитием насгупает этап его внутриротового созревания - вторичная минерализация. Источником поступления к тканям зубов и челюстей всех необходимых органических и минеральных компонентов кроме кровеносного русла, становится и ротовая жидкость (слюна),

^ Период функционирования зубов

Рис.8. Стадия сформированных корней. Период стабилизации. функционирования

Период стабилизации - это период развития функционально полноценного временного или постоянного прикуса. В этот период особенно при развитии временного прикуса, есть необходимость достаточного жевательной нагрузки, так как это стимулирует развитие и рост челюстей (а в них зачатков постоянных зубов), развитие и формирование жевательной и мимической мускулатуры, развитие тканей пародонта

Во временном прикусе период стабилизации условно делится на:

Период становления (с 2 до 4 лет);

II-период подготовки к физиологической смены зубов (с 4 до 6 лет). В период подготовки к физиологической смены зубов характерны возникновения диастем и трем между временными зубами, физиологическая стертость жевательных бугорков режущих краев, образование в ретромолярных пространствах площадок Целинского.

В норме в зависимости от группы зубов временного прикуса и сроков физиологической замены зубов, период стабилизации может составлять от 2-4 лет - для резцов, до 6-8 лет - для клыков и вторых молочных моляров.

^ Резорбция корней временных зубов . Основные типы резорбции

Для временных (молочных) зубов характерно еще один, следующий этап развития - резорбция (рассасывание) корней. Этот период развития играет важную роль в физиологической смене прикуса. На этом этапе онтогенеза в костных структурах альвеолярного отростка возникает большое количество клеток осгеокластив, которые трансформироваться из остеобластов и оcтеоцитив.

Рис. 9. Основные типы резорбции корней временных зубов

При отсутствии зубочелюстной аномалий, согласно данным Т.Ф. Виноградовой (1967), различают три основных типа физиологической резорбции корней временных моляров верхней и нижней челюстей (рис. 9).

I-равномерная резорбция всех корней. Она начинается в области верхушек корней, распространяется по вертикали, уменьшая длину корней. При этом явления резорбции в области бифуркации минимальны.

II-асимметричная резорбция корней. При данном типе резорбции "одновременно происходит частичная резорбция в области бифуркации и верхушки одного или двух (в трикореневому зубе) корней, которые расположены ближе к зачатка постоянного зуба

III-резорбция в области бифуркации (трифуркации) корней. При этом типе резорбции после полного рассасывания костной ткани функцию остеокластов берут на себя клетки пульпы временного зуба, в том числе и одонтобласты.

Е. П. Хрущева

Одним из важных экологических факторов, влияющих на процесс микоризообразования, является интенсивность освещения.

В опытах Бьеркмана (Bjorkman, 1942) и в более поздних работах (Шемаханова, 1962; и др.) была доказана прямая зависимость интенсивности развития микоризы у хвойных растений от степени освещенности. Исследования И. А. Селиванова, В. Г. Логиновой (1968) показывают благоприятное влияние непрерывного освещения на процесс микоризообразования, рост и развитие сеянцев сосны.

Такая же закономерность отмечена и при изучении влияния света на развитие эндотрофной микоризы (Штеренберг, 1952; Куклина-Хрущева, 1952; Шрадер, 1958; Boullard, 1960; Koch, 1961; Hayman, 1974; и др.). Наши полевые опыты (1952) показывают прямую связь между интенсивностью освещения ц степенью развития микоризы у яровой пшеницы. Из табл. 1 видно, что при пониженном освещении уменьшилось количество растений, микориза которых оценена в три балла. Ухудшились условия для формирования урожая. Снижение показателей урожая происходило тем сильнее, чем больше развита микориза. Вес зерна в колосе при притенении составлял от контроля при оценке микоризы в один балл 78%, при оценке в два балла - 75,4%, а в три балла - 55%.

При обычных условиях освещения (контроль) микориза развивалась активнее и, чем больше содержалось гриба в корнях, тем выше были показатели урожая.

Таким образом, при пониженном освещении создаются условия, неблагоприятные для роста и развития растений и для процесса микоризообразования. Причиной плохого состояния растений являются критические условия их роста и развития, создавшиеся в связи с понижением интенсивности фотосинтеза. В этих условиях увеличение гриба в корнях приводит к снижению показателей урожая.

В связи с этим приобретают важное значение такие вопросы, как густота стеблестоя, способы посева, направление рядков в посевах.

Способы посева оказывают влияние на процесс микоризообразования и рост растений пшеницы. Широкорядный посев оказался более эффективным, чем перекрестный. При первом способе посева у овса сорт Победа половина анализированных растений оказались микоризными со слабым развитием гриба в корнях. При перекрестном посеве сорта Победа микориза у растений отсутствовала, у сорта Орел микоризу имели лишь 20% растений. У обоих сортов овса рост происходил медленнее, чем при широкорядном посеве. Отмеченная разница в росте растений и в степени развития микоризы вызвана не только сортовыми особенностями овса, но и теми условиями, которые создались при разных способах посева. Слабое развитие растений, низкая интенсивность развития микоризы и даже отсутствие ее при перекрестном посеве объясняются, по-видимому, более высокой густотой стояния растений, вызвавшей изменения в питательном и водном режиме, а также в интенсивности освещения.

При обычном рядовом посеве развитие микоризы у овса сорта Победа происходило так же активно, как и при широкорядном. Микоризные растения составляли 87,5% от общего количества анализированных растений при оценке микоризы 1,6 балла, высота стебля достигала 70 см (фаза выметывания метелки).

На развитие микоризы в естественных фитоценозах существенное влияние оказывает водно-воздушный режим (Крюгер, 1961, Селиванов, Утемова, 1970; Катенин, 1972; Корбонская, 1973; и др.). У сельскохозяйственных растений водновоздушный режим также является весьма важным экологическим фактором, влияющим на процесс микоризообразования, особенно в начальный период формирования микоризы. Влажность почвы, ее воздушно-тепловой режим необходимы для прорастания внешних везикул, роста мицелия и проникновения его в корни растений. От водно-воздушного и теплового режима зависят темпы микоризообразования и роста растений. По нашим наблюдениям, водно-воздушный режим влияет на распределение микориз по профилю почвы.

На светло-серых лесных почвах этот важный экологический фактор, как и ряд других почвенных условий, в значительной мере определяется способами обработки почвы. Способы обработки почвы, изменяя ее свойства и в первую очередь наиболее важное из них - плодородие, оказывают влияние на рост и развитие сельскохозяйственных культур, на способность их вступать во взаимоотношения с грибами-микоризообразователями. В более ранних работах (Хрущева, 1960) показано (опыт научных сотрудников Горьковской сельскохозяйственной опытной станции И. Н. Пантелеева и Д. М. Попова), что развитию микоризы пшеницы наиболее благоприятствовало многократное лущение пласта на 6-8 см. Все растения (100%) оказались микоризными, из них 88% были сильномикоризными, остальные - среднемикоризными. Активно происходило микоризообразование и в варианте «лущение + глубокая безотвальная вспашка на 40 см». Растения с сильно развитой микоризой составляли 80%, со средним содержанием гриба в корнях-12%, с малым содержанием - 8,%.

При вспашке плугом с предплужником сильно развитую микоризу (балл 3) имели 56% растений, микоризы с оценкой в 2 балла - 40% и с оценкой в 1 балл - 4%. Разница в интенсивности развития микоризы между первыми двумя способами обработки невелика, а разница в урожае по лущению значительна - 2,79 ц с гектара. Обратная зависимость между степенью развития микоризы и величиной урожая обусловлена, по-видимому, тем, что многократное поверхностное рыхление пласта, улучшив аэрацию, активизировало деятельность микроорганизмов, в том числе и грибов-микоризообразователей, что способствовало сильному развитию микоризы. Поверхностная обработка почвы, наоборот, не благоприятствовала развитию корневой системы. Корневая система, развиваясь, главным образом, в поверхностном разрыхленном слое почвы, не обеспечивала в должной мере растения водой и элементами минерального питания. В этом случае плохое состояние растений вызвано критическими условиями их роста и развития, а следствием - сильное развитие микоризы, а не наоборот, как это объясняет Winter (1950).

Аналогичную картину наблюдаем и на легких дерново-подзолистых почвах Горьковской области. На супесчаных дерново-подзолистых почвах лущение на 10-12 см снизило урожай озимой ржи (Шапошников, 1971), в этом же опыте у ржи лущение стимулировало развитие микоризы (Талатина, 1971).

В комплексе условий, влияющих на процесс микоризообразования, важное место занимают минеральные удобрения.

Лабораторные опыты (Daft, Nicolson, 1966) и опыты в полевых условиях (Хрущева, 1958) показали, что при низких уровнях фосфорного питания стимулируется микоризообразование, а также рост и развитие кукурузы. Высокие дозы фосфора в лабораторных условиях снижают степень инфекции и незначительно стимулируют рост микоризных растений по сравнению с безмикоризными. В полевых условиях высокие дозы фосфора (Р40), внесенные в лунки совместно с перегноем, снижают не только количество микориз у кукурузы, но и урожай. И. М. Коданев (1974) указывает на повышение урожая ячменя от рядкового внесения гранулированного суперфосфата в дозе 7,5 кг действующего вещества на гектар. Увеличение дозы суперфосфата вдвое не дало эффекта.

По имеющимся данным (Хрущева, 1955; Булаева, 1965; Александрова, 1966; Согина, 1968; Кириллова, 1968; Сюзева, 1970; Миленина, 1971; и др.), минеральные удобрения (особенно высокие дозы NPK), стимулируя рост растений, снижают микоризообразование. В исследованиях Е. И. Александровой (1966) на светло-серых лесных почвах показана обратная зависимость между степенью микотрофности и урожаем ячменя под влиянием азотного (N 60), фосфорного (Р 60), азотно-фосфорного (N 60 Р 60) и полного минерального удобрения (N 60 P 60 K 60). По данным Н. Г. Сюзевой (1970), такая же закономерность наблюдается у пшеницы на легких дерново-подзолистых почвах.

Изучение интенсивности микоризообразования и наблюдения за ростом и развитием сельскохозяйственных растений показали, что при избыточном снабжении их легкодоступными элементами питания или, наоборот, при большом недостатке элементов питания в почве количество гриба в корнях снижается. В первом случае наблюдаем обратную зависимость между ростом растений и развитием гриба в корнях, во втором - создаются условия, неблагоприятные для развития обоих компонентов.

В опытах Н. М. Шемахановой (1962) при одновременном внесении слишком больших или чрезмерно малых доз азота и фосфора микориза у сосны не развивалась.

На светло-серых лесных почвах микориза бывает более обильной без внесения минеральных удобрений, а у ячменя - и при использовании калийных удобрений (Александрова, 1966). Ослабление процесса микоризообразования под влиянием минеральных удобрений (исключая калийные) вызывается усилением физиолого-биохимических процессов в растении. При снабжении растений элементами минерального питания, особенно азотом и фосфором, увеличивается синтез белков и других сложных органических соединений. Это приводит к обеднению тканей корней сахарами, а недостаток сахаров в корнях лимитирует развитие микоризы.

Гранулированные минеральные удобрения, внесенные в рядки, снизили количество растений с оценкой микоризы в 3 балла, но положительно влияли на рост яровой пшеницы по сравнению с контролем (пласт без удобрений). Наиболее эффективными для роста пшеницы оказались гранулированный суперфосфат (вариант 2) и суперфосфат с аммиачной селитрой при совместном внесении (вариант 3). В этих двух вариантах, а особенно в варианте с внесением одного суперфосфата, при увеличении гриба в корнях повышается накопление воздушно-сухого веса надземной части растений. Так, гранулированный суперфосфат в дозе 12 кг/га при оценке микоризы в 1 балл повысил вес надземной части на 15% по сравнению с контролем, а при оценке микоризы в 3 балла - на 35,7,%. При совместном внесении фосфора и азота (P9N9) у растений с оценкой микоризы в 1 балл вес надземной части увеличился на 12%, а в 3 балла - на 24,5% по сравнению с контролем. С повышением интенсивности развития микоризы увеличивались показатели структуры урожая (озерненность колоса, вес зерна с одного колоса, абсолютный вес зерна). Наиболее высокие показатели урожая отмечены при внесении в рядки гранулированного суперфосфата. Прибавка урожая зерна от гранулированного суперфосфата выразилась в 4,2 ц с гектара (Куклина - Хрущева, 1952).

При внесении гранулированных удобрений в рядки выявилась прямая зависимость между количеством микоризных корней или микориз у растений и накоплением растениями сухой надземной массы. Чем больше микориз у растения, тем выше показатели роста. Таким образом, процесс микоризообразования и взаимоотношения компонентов зависит от состояния высшего растения, экологических факторов и приемов агротехники.

Состояние высшего растения и гриба в корнях определяется интенсивностью освещения, количеством сахаров в корнях, обеспеченностью растений элементами минерального питания (Согина, 1966).

В последние годы внимание многих исследователей направлено на выяснение влияния везикулярно-арбускулярной микоризы на рост и развитие сельскохозяйственных растений и взаимоотношения компонентов микоризы (Куклина - Хрущева, 1952; Клечетов, 1957; Михайленко, 1958; Гельцер, Коваль, 1965; Проценко, Шемаханова, Метлицкий, 1971; Миленина, 1974; и др.).

По данным ряда авторов (Daft, Nicolson, 1966; Gerde — mann, 1965; Gray, Gerdemann, 1967; Hayman, Mosse, 1970; Mosse, Hayman, 1972; Meloh, 1963; и др.), растения, имеющие везикулярно-арбускулярную микоризу, лучше поглощают фосфор и лучше растут на бедных почвах, чем безмикоризные. Способность микоризных растений поглощать фосфор не только из минеральных удобрений, а также из труднодоступных его форм приобретает большое значение в отношении мобилизации питательных веществ из мертвого запаса почвы.

Таким образом, интенсивность развития микоризы и взаимоотношения между грибом и высшим растением зависят от целого ряда факторов. Знание экологических условий, приемов агротехники, благоприятствующих взаимоотношениям компонентов микоризы, поможет повысить продуктивность сельскохозяйственных культур. Для яровой пшеницы на светло-серых лесных почвах к таким агроприемам можно отнести глубокую безотвальную вспашку, внесение малыми дозами гранулированного суперфосфата и суперфосфата с аммиачной селитрой. Для овса более эффективными являются широкорядный и рядовой способы посева, чем перекрестный.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Все факторы формирования состава подземных вод можно разделить на физико-географические, геологические, физико-химические, физические, биологические и искусственные.

Физико-географические факторы включают рельеф, гидрологию, климат и выветривание.

Рельеф оказывает влияние на водообмен, от которого зависят минерализация и состав подземных вод. При прочих равных условиях, чем сильнее расчленён рельеф, тем благоприятнее возможности для появления пресных подземных вод. На приподнятых участках бассейнов, где породы хорошо промываются, подземные воды имеют относительно низкую минерализацию и в основном гидрокарбонатный состав: в пониженных частях, куда направлен сток солей с возвышенностей, минерализация повышается, в водах увеличивается концентрация сульфатов и хлоридов. Отмечается довольно устойчивая зависимость концентрации железа в неглубокозалегающих подземных водах Беларуси от рельефа. Этот вопрос изучался в связи с тем, что в Беларуси подземные воды четвертичных отложений очень часто содержат железа, много больше, чем его предельно допустимая концентрация, и стояла задача, наметить расположение скважин для водоснабжения, из которых можно было бы получить воду с минимальным содержанием железа. Оказалось, что на возвышенных участках железа в водах меньше, чем в понижениях рельефа.

Гидрологический фактор (гидрология) воздействует на подземные воды прежде всего через гидрографическую сеть, которая влияет на водообмен. Густая гидрографическая сеть с глубоким эрозионным врезом способствует водообмену в водоносных горизонтах, выносу солей и формированию пресных подземных вод. При редкой гидрографической сети и неглубоком её врезе подземный сток затруднён, что вызывает повышение минерализации подземных вод. Это — косвенное влияние гидрографической сети на состав подземных вод. В тех же случаях, когда питание водоносных горизонтов осуществляется за счёт вод рек и озёр, влияние гидрологического фактора прямое и определяющее. В средней полосе это особенно ярко проявляется во время паводков, а в пустынях реки (например, Амударья, Сырдарья) могут питать подземные воды в течение всего года. Океаны и моря выступают в качестве ведущего фактора при трансгрессиях. При этом, в накапливающихся осадочных отложениях захороняются минерализованные воды, т.е. моря в “готовом” виде передают подземным водам соли.

Климат может считаться одним из главнейших прямых факторов формирования состава подземных вод. Среди множества климатических элементов к первостепенным относятся атмосферные осадки, температура и испарений. Атмосферные осадки формируют ресурсы подземных вод, передают им соли (хотя и весьма небольшое количество, но в “готовом виде”). Общее количество метеорной влаги, ежегодно поступающей на поверхность суши, более 110 км 3 . Эта вода способна покрыть земной шар слоем толщиной 834 мм. Конечно, не все атмосферные осадки участвуют в питании подземных вод, а только их десятая часть. В недра земли проникают, главным образом, осадки, выпадающие в умеренных широтах весной, летом или осенью. В условиях сухого климата атмосферные осадки могут быстро испаряться и не достигать поверхности грунтовых вод. Проникновение атмосферной воды в недра затруднено также в условиях сезонной или вечной мерзлоты.

Испарение, которое зависит от температуры воздуха, наиболее действенно в зоне недостаточного увлажнения. Здесь оно обусловливает концентрированно солей в водах. Испарение имеет место не только на поверхности земли. На изменение состава грунтовых вод сильносказывается так называемое внутрипородное испарение, в процессе которого происходит отрыв молекул водяного пара от зеркала грунтовых вод.

К ведущим физико-географическим факторам формирования состава подземных вод относится выветривание— явление, протекающее на/и вблизи поверхности и напрямую связанное с климатом (по англ. weathering от weather — погода). Совокупность процессов физического, химического и биохимического разрушения минералов и горных пород, называемая выветриванием, приводит к обогащению подземных вод различными соединениями. Выветривание выступает, главным образом, как процесс перевода вещества в раствор. В результате выветривания из пород выносятся и попадают в подземную воду в первую очередь наиболее растворимые соединения. Интересно, что если мы возьмём большое число анализов химического состава пресных подземных вод песчано-глинистой четвертичной толщи Беларуси и рассчитаем среднюю минерализацию этих вод для северной и южной частей республики, то большее значение получим для северных районов. Это связано с тем, что на севере четвертичные отложения более молодые, чем на юге. На севере они сформированы в результате деятельности последнего (валдайского) оледенения, которое не распространялось в южную часть Беларуси. В более молодых, менее выветрелых, породах больше сохранилось неустойчивых компонентом (полевые шпаты, темноцветные минералы), которые в настоящее время разрушаются и, тем самым, обогащают воду различными соединениями. В более древних породах основная масса неустойчивых компонентов уже разрушена и удалена в ходе многократного водообмена. Таким образом, роль выветривания в формировании состава подземных вод обнаруживается даже для совсем молодых и слаборастворимых алюмосиликатных отложений.

Геологические факторы. К этим факторам относятся геологическая структура, тектонические движения, вещественный состав пород, магматизм и газовый фактор.

Геологическая структура определяет динамичность, а вместе с ней минерализацию и состав подземных вод. Значение геолого-структурных форм в распределении подземных вод по минерализации и составу наглядно проявляется при сравнении структурных элементов по раскрытости, проточности, промытости или интенсивности водообмена. Подземные воды закрытых структурных элементов бывают наиболее минерализованными, а по составу преимущественно хлоридными натриевыми или кальциевыми. В раскрытых структурных элементах подземные воды наименее минерализованы и имеют обычно гидрокарбонатный кальциевый состав.

Тектонические движения принято делить на колебательные, складчатые (или пликативные) и разрывные (или дизъюнктивные). Колебательные движения положительного знака могут вызывать опреснение подземных вод на приподнятых участках суши, так как эти участки могут выводиться в сферу действия атмогенных вод. В результате отрицательных движений зона пресных подземных вод погружается и в ней становится возможным засоление благодаря тому, что отрицательные движения сопровождаются морскими трансгрессиями и вовлечением морских вод в недра.

Складчатые и разрывные тектонические движения резко нарушают установившиеся гидрогеохимические условия. Горные страны, претерпевшие активные складчатые и разрывные движения, оказываются глубоко промытыми пресными водами. Разрывные нарушения, т.е. тектонические разломы служат путями разгрузки подземных вод, каналами для гидравлической связи между водоносными горизонтами, способствующими смешению подземных вод различного состава, зонами, где в результате резкого перепада давления возможно отложение минералом из подземных вод и, как следствие, изменение состава последних.

Вещественный состав пород. Если геологическая структура и тектонические движения относятся к косвенным факторам формирования состава подземных вод, то горные породы и минералы непосредственно формируют вещество подземной гидросферы. Вещественный состав пород — прямой фактор первостепенного значения, на что указывали ещё Аристотель и Плиний Старший, которые говорили, что вода такова, каковы породы, по которым она протекает. Надо, конечно, отметить, что эта связь между составом вод и пород не такая простая, как представлялось древним. Влияние состава пород на состав подземных вод особенно ярко заметно, когда пресная вода взаимодействует с легкорастворимыми минералами и породами: галитом, гипсом, доломитом, известняком. Галит даёт хлоридные натриевые воды, гипс — сульфатные кальциевые, доломит — гидрокарбонатные магниево-кальциевые, известняк — гидрокарбонатные кальциевые. Однако, такие же гидрокарбонатные воды, как в известняках, могут залегать и очень часто залегают в кварцево-полевошпатовых песках. В этом случае ионы Са 2+ и НСО 3 - появляются в водах за счёт углекислого выветривания полевых шпатов, в то время как в известняках — за счёт растворения кальцита (СаСО 3).

Вещественный состав всегда влияет на состав подземных вод. Надо только уметь увидеть это влияние. В так называемых межсолевых отложениях девона Припятского прогиба по всей его территории залегают однотипные хлоридные кальциевые и натриевые рассолы. Однако в рассолах южной части прогиба существенно меньше калия, чем в рассолах северной части. Это связано с тем, что межсолевая толща южной части имеет терригенный (песчано-глинистый) состав, а северной — карбонатный. В терригенных породах на глубинах, начиная с 2-3 км, активно протекает процесс новообразования глинистого минерала — гидрослюды, для постройки кристаллической решётки которой необходимый калий извлекается из подземных рассолов.

Существуют и другие формы проявления влияния состава пород на состав и минерализацию подземных вод. Так, наиболее минерализованные рассолы (320-600 г/л) встречаются только в тех толщах, выше которых залегают формации каменной и калийной солей. Когда же на месте этих хлоридных солей присутствуют гипсы и ангидриты, минерализация рассолов под ними обычно не превышает 260 г/л. Это связано с тем, что в осадочных комплексах, залегающих под соляными породами, гипсами и ангидритами (в целом эти породы называются эвапоритами), содержатся подземные рассолы, которые представляют собой преобразованные материнские рассолы (рапу) вышележащих солеродных (или эвапоритовых) бассейнов. Эти материнские рассолы проникают в подстилающие отложения путём гравитационного стекания или отжима из эвапоритовых отложений. Но поскольку эвапоритовые минералы в ходе сгущения морской воды в солеродном бассейне осаждаются при определённой минерализации рассола (например, гипс (CaSO 4 · 2Н 2 О), начиная со 140 г/л, галит (NaCl ) — с 260-280 г/л, сильвин (KCl ) — с 350-360г/л), то в зависимости от того, какими минералами (породами) представлена эвапоритовая толща, будет и минерализация подземных рассолов под этой толщей. Здесь мы мимоходом коснулись одного грандиозного процесса, имеющего место на Земле, — эвапоритового процесса или галогенеза. Он обычно не выделяется в качестве фактора формирования состава подземный вод, потому что может быть представлен более простыми физико-географическими факторами: гидрологией, климатом, рельефом. Однако надо иметь в виду, что площадь распространения только солевых (без учёта гипсо-ангидритовых) отложений достигает 34 % территории континентального блока Земли. Эвапориты есть во всех геологических системах от докембрия до антропогена. Поэтому галогенез играет огромную роль в формировании состава подземных вод: как посредством растворения водой эвапоритовых пород, так и посредством вовлечения в недра огромных количеств рассолов, образующихся на поверхности Земли при испарительном концентрировании.

Говоря о вещественном составе пород как о факторе формирования подземных вод, важно подчеркнуть, что понимается под этим термином “вещественный состав пород”. До сих пор, говоря о вещественном составе пород, мы делали упор на минералогический состав пород, т.е. на набор основных минералов, из которых состоит порода. Однако при взаимодействии породы с водой, например, при растворении, в жидкую фазу будут поступать не только химические элементы из породообразующих и второстепенных (акцессорных) минералов, но также адсорбированные ионы, находящиеся в поглощённом комплексе пород, а также так называемые поровые растворы, содержащиеся в породе. Всё это вместе — твёрдые минералы, адсорбированные ионы и поровые растворы — называют ионно-солевым комплексом пород. С комплексом понятий, связанных с явлением сорбции, мы познакомимся дальше — при рассмотрении процессов формирования подземных вод, а понятие “поровые растворы” разберём, когда будем обсуждать вопрос о палеогидрогеохимических реконструкциях,

Вернёмся к факторам формирования подземных вод. Из геологических факторов нам осталось рассмотреть магматизм и газовый фактор.

Магматизм. Роль этого фактора в формировании состава подземных вод до сих пор является проблематичной. Одни исследователи считают этот фактор в ряде случаев ведущим, другими — он полностью отвергается. Это объясняется слабой изученностью летучих веществ, выделяющихся при дифференциации магмы. Сложность вопроса заключается и в том, что элементы, характерные для магматических эксгаляций, могут попасть в подземные воды и другими путями.

Газовый фактор оказывает большое влияние на иконно-солевой состав подземных вод. Достаточно сказать, что увеличение содержания газов, растворённых в воде, влияет на растворяющую способность воды. Так, повышение концентрации растворённого СО 2 в воде приводит к увеличению растворимости кальцита и кварца, что, естественно, может приводить к изменению состава воды.

Физико-химические факторы. К этим факторам относятся химические свойства элементов, растворимость химических соединений, кислотно-щелочные и окислительно-восстановительные условия.

Химические свойства элементов. Они определяют способность образовывать природные соединения. К числу важнейших физико-химических свойств относятся ионный радиус и валентность иона. Ионный радиус в значительной степени характеризует подвижность химического элемента. В принципе, чем он меньше, тем подвижнее гидратированные ионы.

Миграционную способность определяет также валентность иона. Для металлов с ростом валентности наблюдается образование менее растворимых соединений. Одновалентные металлы дают обычно легкорастворимые соединения (NaCl , Na 2 SO 4 , K 2 CO 3). Слабее растворимы соединения двухвалентных металлов (СаSO 4 , СаСО 3 , МдСО 3) и ещё менее — трёхвалентных (F е 3+ и Аl 3+). Существуют, конечно, исключения из этих закономерностей.

Растворимость химических соединений относится к прямым факторам формирования состава подземных вод. Нет необходимости долго обосновывать этот тезис. Для пресных вод характерно преобладание гидрокарбоната, поскольку именно этот анион образует с кальцием слаборастворимую соль. По мере повышения минерализации появляется сульфатный ион, характерный для солёных вод. Однако из-за сравнительно невысокой растворимости сульфат кальция быстро уступает первенство сульфату натрия или магния, а чаще хлоридам, которые со всеми основными катионами образуют легкорастворимые соли. Самые высококонцентрированные рассолы по составу преобладающих солей относятся к хлоридным магниевым или кальциевым, так как СаСl 2 и Мg Сl 2 чрезвычайно легко растворимы.

Кислотно-щелочные и окислительно-восстановительные условия, которые мы уже рассматривали ранее, регулируют миграцию химических элементов в подземных водах, так как от рН и Eh зависит растворимость минералов и формы нахождения элементов в растворе (в виде ионов, тех или иных комплексных соединений).

Физические факторы. В круг физических факторов формирования состава подземных вод входят температура, давление и время.

Температура — ведущий фактор, от которого зависит равновесие в системе вода - порода - газ. Температура сильно влияет на растворяющую способность подземных вод и скорость химических реакций. Растворимость большинства солей по мере роста температуры увеличивается, реже (например, CaCO 3) снижается.

В пределах изученных глубин земной коры температура подземных вод изменяется от -16 °С (концентрированные рассолы вечномерзлых пород) до +400 °С (парогидротермы очагов современного вулканизма). Температура определяет фазовые переходы воды в твёрдое и парообразное состояние. При температуре более 75 °С замирает деятельность микроорганизмов. Изменение температуры сказывается на вязкости воды. Все эти изменения, происходящие в воде и с водой, влияют на формирование её химического состава.

Давление — фактор формирования состава вод первостепенной важности. Этот фактор имеет ряд проявлений. Гидростатическое давление определяет темп водообмена, скорость движения воды, а значит и состав. Геостатическое давление обусловливает сложный комплекс процессов, связанных с отжимом растворов из пор глинистых пород в коллекторы, и, таким образом, также через динамику растворов влияет на состав. Наконец, давление влияет на растворимость пород и минералов. Этот вопрос изучен недостаточно, однако для ряда минералов (гипс, ангидрит, минералы кремнезёма) давление увеличивает растворимость.

Неотъемлемый фактор формирования состава подземных вод — время. Время — это скорость химических реакций, это продолжительность взаимодействия в системе вода - порода - газ, это возраст отложений, вмещающих подземные воды, это возраст самих подземных вод, наконец, это геологическая история.

Биологические факторы. С точки зрения влияния этих факторов на состав подземных вод важна вся совокупность живых организмов, которую В.И. Вернадский назвал живым веществом. То пространство, где проявляется деятельность живого вещества — это своеобразная оболочка Земли — биосфера. Биосфера охватывает наземную гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы. В земной коре нижняя граница биосферы отвечает температуре 75-100 °С — критической для развития бактерий. Бактерии распространены до глубины 4 км и переносят давления до 3-4 тыс. атм.

Животные и растения воздействуют на состав подземных вод, главным образом, через микроорганизмы. По мере отмирания животные и особенно растения отдают почве минеральные вещества, которые затем поступают в подземные воды. Влияние деятельности растений на состав подземных вод проявляется и в том, что растения аккумулируют огромное количество влаги, избирательно поглощают химические компоненты из подземных вод.

Искусственные факторы. Существо искусственных факторов формирования состава подземных вод заключается в производственной деятельности человека. Приведём далеко не полный перечень искусственных факторов. Это нарушение естественного режима подземных вод, вызванное разработкой полезных ископаемых, гидротехническим строительством, мелиорацией, эксплуатацией водоносных горизонтов для целей водоснабжения, а также сброс в недра загрязнённых стоков, попадание в водоносные горизонты продуктов атомных взрывов и распыляемых ядохимикатов. В качестве примеров рассмотрим действие некоторых искусственных факторов несколько подробнее.

Из недр Земли ежегодно извлекается масса химических соединений (NaCl, СаSO 4 , CaCO 3 , металлы, нефть и т.д.). Помимо нарушения естественного баланса в системе порода - вода это ведёт к проникновению в недра большого количества воздушного кислорода, т.е. к процессам окисления, что вызывает неизбежный переход дополнительных веществ в подземные воды. Глубина окисляющего воздействия порой достигает нескольких километров (например, на нефтегазовых промыслах, где для поддержания давления при добыче углеводородов в глубокие горизонты закачиваются целые реки воды).

Гидротехническое строительство вызывает перераспределения подземного стока и изменение геохимического режима подземных вод. При создании водохранилища Братской ГЭС в прибрежным карбонатных массивах произошло опреснение подземных вод, что резко усилило процессы карстообразования.

На территории Беларуси при проведении мелиоративных работ на ряде участков отмечено нежелательное засоление подземных вод. Существенной экологической проблемой для территории нашей республики является загрязнение неглубокозалегающих подземных вод нитратами, что связано с невысокой культурой использования удобрений и содержания скота. Значительное загрязнение подземных вод происходит под действием солеотвалов Солигорского калийного комбината, отвалов фосфогипса Гомельского химического завода. В последнем случае воды загрязняются серой, фосфором, фтором.

Об искусственных факторах формирования состава подземных вод можно говорить очень много. Но и сказанного, по-видимому, достаточно, чтобы стало ясно, насколько остро стоит в наше время проблема чистой воды.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»