2 звуковые волны. Тихая жилая территория, парк, тихий разговор

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Звук (звуковая волна ) –это упругая волна, воспринимаемая органом слуха человека и животных . Иначе говоря, звук представляет собой распространение колебаний плотности (или давления) упругой среды, возникающих при взаимодействии частиц среды друг с другом.

Атмосфера (воздух) является одной из упругих сред. Распространение звука в воздухе подчиняется общим законам распространения акустических волн в идеальных газах, а также имеет особенности, обусловленные непостоянством плотности, давления, температуры и влажности воздуха. Скорость звука определяется свойствами среды и вычисляется по формулам для скорости упругой волны.

Существуют искусственные и естественные источники звука. К искусственным относятся излучатели на основе:

Колебаний твёрдых тел (струны и деки музыкальных инструментов, диффузоры громкоговорителей, мембраны телефонов, пьезоэлектрические пластины);

Колебаний воздуха в ограниченном объёме (органные трубы., свистки);

Удара (клавиши рояля, колокол);

Электрического тока (электроакустические преобразователи).

К естественным источникам относятся:

Взрыв, обвал;

Обтекание препятствий потоком воздуха (обдувание ветром угла здания, гребня морской волны).

Также существуют искусственные и естественные приёмники звука:

Электроакустические преобразователи (микрофон в воздухе, гидрофон в воде, геофон в земной коре) и другие приборы;

Слуховой аппарат человека и животных.

При распространении звуковых волн возможны явления, характерные для волн любой природы:

Отражение от препятствия,

Преломление на границе двух сред,

Интерференция (сложение),

Дифракция (огибание препятствий),

Дисперсия (зависимость скорости звука в веществе от частоты звука);

Поглощение (уменьшение энергии и интенсивности звука в среде вследствие необратимого превращения энергии звука в теплоту).

      Объективные характеристики звука

Частота звука

Частота звука, слышимого человеком, лежит в пределах от 16 Гц до16 - 20 кГц . Упругие волны с частотой ниже слышимого диапазона называют инфразвуком (в т. ч. сотрясение), сболее высокой частотойультразвуком , а самые высокочастотные упругие волны –гиперзвуком .

Весь частотный диапазон звука можно разделить на три части (табл. 1.).

Шум имеет сплошной спектр частот (или длин волн) в области низкочастотного звука (табл. 1, 2). Сплошной спектр означает, что частоты может иметь любое значение из данного интервала.

Музыкальные , или тональные , звуки обладают линейчатым спектром частот в области среднечастотного и частично высокочастотного звука. Оставшуюся часть высокочастотного звука занимает свист. Линейчатый спектр означает, что музыкальные частоты имеют лишь строго определённые (дискретные) значения из указанного интервала.

Кроме того, интервал музыкальных частот делят на октавы. Октава – это интервал частот, заключённый между двумя граничными значениями, верхняя из которых вдвое больше нижней (табл. 3)

Общепринятые октавные полосы частот

Октавные полосы частот

min , Гц

max , Гц

ср , Гц

Примеры интервалов частот звука, создаваемого человеческим голосовым аппаратом и воспринимаемого человеческим слуховым аппаратом, приведены в табл.4.

Контральто, альт

Меццо-сопрано

Колоратурное сопрано

Примеры частотных диапазонов некоторых музыкальных инструментов приведены в таблице 5. Они охватывают не только звуковой диапазон, но и ультразвуковой.

Музыкальный инструмент

Частота, Гц

Саксофон

Животные, птицы и насекомые создают и воспринимают звук других частотных диапазонов, нежели человек (табл. 6).

В музыке каждую синусоидальную звуковую волну называют простым тоном, или тоном. Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называют тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам, называются обертонами . Если обертоны кратны частоте основного тона, то обертоны называются гармоническими . Обертон с наименьшей частотой называется первой гармоникой, со следующей - второй и т.л.

Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр зависит от состава обертонов, их частот и амплитуд, характера их нарастания в начале звучания и спада в конце.

Скорость звука

Для звука в различных средах справедливы общие формулы (22) – (25). При этом следует учесть, что формула (22) применима в случае сухого атмосферного воздуха и с учётом числовых значений коэффициента Пуассона, молярной массы и универсальной газовой постоянной может быть записана в виде:

Однако, реальный атмосферный воздух всегда имеет влажность, которая влияет на скорость звука. Это обусловлено тем, что коэффициент Пуассона зависит от отношения парциального давления водяного пара (p пар ) к атмосферному давлению (p ). Во влажном воздухе скорость звука определяют по формуле:

.

Из последнего уравнения видно, что скорость звука о влажном воздухе скорость звука немного больше, чем в сухом.

Численные оценки скорости звука, учитывающие влияние температур и влажности атмосферного воздуха, можно осуществлять по приближённой формуле:

Эти оценки показывают, что при распространении звука вдоль горизонтального направления (0 x ) с увеличением температуры на1 0 C скорость звука возрастает на0,6 м/с . Под влиянием водяного пара с парциальным давлением не более10 Па скорость звука возрастает менее чем на0,5 м/с . А в целом, при максимально возможном парциальном давлении водяного пара у поверхности Земли, скорость звука увеличивается не более чем1 м/с .

Звуковое давление

При отсутствии звука атмосфера (воздух) является невозмущённой средой и имеет статическое атмосферное давление (
).

При распространении звуковых волн к этому статическому давлению добавляется дополнительное переменное давление, обусловленное сгущениями и разрежениями воздуха. В случае плоских волн можно записать:

где p зв, max – амплитуда звукового давления, - циклическая частота звука,k– волновое число. Следовательно, атмосферное давление в фиксированной точке в данный момент времени становится равным сумме этих давлений:

Звуковое давление – это переменное давление, равное разности мгновенного фактического атмосферного давления в данной точке при прохождении звуковой волны и статического атмосферного давления при отсутствии звука :

Звуковое давление в течение периода колебаний меняет своё значение и знак.

Звуковое давление практически всегда намного меньше атмосферного

Оно становится велико и соизмеримо с атмосферным при возникновении ударных волн во время мощных взрывов или при прохождении реактивного самолета.

Единицами измерения звукового давления служат следующие:

- паскаль в СИ
,

- бар в СГС
,

- миллиметр ртутного столба ,

- атмосфера .

На практике приборы измеряют не мгновенное значение звукового давления, а так называемое эффективное (илидействующее )звуковое давление . Оно равноквадратному корню из среднего значения квадрата мгновенного звукового давления в данной точке пространства в данный момент времени

(44)

и поэтому называется также среднеквадратическим звуковым давлением . Подставляя выражение (39) в формулу (40), получим:

. (45)

Звуковое сопротивление

Звуковым (акустическим) сопротивлением называют отношение амплитуд звукового давления и колебательной скорости частиц среды:

. (46)

Физический смысл звукового сопротивления : оно численно равно звуковому давлению, вызывающему колебания частиц среды с единичной скоростью:

Единица измерения звукового сопротивления в СИ – паскаль-секунда на метр :

.

В случае плоской волны скорость колебаний частиц равна

.

Тогда формула (46) примет вид:

. (46*)

Существует также и другое определение звукового сопротивления, как произведение плотности среды и скорости звука в этой среде:

. (47)

Тогда его физический смысл состоит в том, что оно численно равно плотности среды, в которой распространяется упругая волна с единичной скоростью:

.

Кроме акустического сопротивления в акустике используется понятие механическое сопротивление (R м ). Механическое сопротивление представляет собой отношение амплитуд периодической силы и колебательной скорости частиц среды:

, (48)

где S – площадь поверхности излучателя звука. Механическое сопротивление измеряется вньютон-секундах на метр :

.

Энергия и сила звука

Звуковая волна характеризуется теми же энергетическими величинами, что и упругая волна.

Каждый объем воздуха, в котором распространяются звуковые волны, обладает энергией, складывающейся из кинетической энергии колеблющихся частиц и потенциальной энергии упругой деформации среды (см. формулу (29)).

Интенсивность звука принято называть силой звука . Она равна

. (49)

Поэтому физический смысл силы звука аналогичен смыслу плотности потока энергии: численно равна среднему значению энергии, которая переносится волной за единицу времени через поперечную поверхность единичной площади.

Единица измерения силы звука – ватт на квадратный метр:

.

Сила звука пропорциональна квадрату эффективного звукового давления и обратно пропорциональна звуковому (акустическому) давлению:

, (50)

или, учитывая выражения (45),

, (51)

где R ак акустическое сопротивление.

Звук можно также характеризовать звуковой мощностью. Звуковая мощность – это общее количество звуковой энергии, излучаемой источником в течение определённого времени через замкнутую поверхность, окружающую источник звука :

, (52)

или, учитывая формулу (49),

. (52*)

Звуковая мощность, как и любая другая, измеряется в ваттах :

.

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Звук - это упругие волны в среде (часто в воздухе), которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.


Звуковая волна распространяется через дерево

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения , как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Дело в том, что человеческое ухо воспринимает не все волны, а только те, которые создают тела, колеблющиеся с частотой от 16Гц до 20000Гц. Такие волны называются звуковыми . Колебания с частотой меньше 16Гц называется инфразвуком . Колебания с частотой больше 20000Гц называются ультразвуком .



Скорость звука

Звуковые волны распространяются не мгновенно, а с некоторой конечной скоростью (аналогично скорости равномерного движения).

Именно поэтому во время грозы мы сначала видим молнию, то есть свет (скорость света гораздо больше скорости звука), а затем доносится звук.


Скорость звука зависит от среды: в твердых телах и жидкостях скорость звука значительно больше,чем в воздухе. Это табличные измеренные постоянные . С увеличением температуры среды скорость звука возрастает, с уменьшением - убывает.

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

Частота звуковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разных источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окраску, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретного голоса.

Эхо . Эхо образуется в результате отражения звука от различных преград - гор, леса, стен, больших зданий и т.п. Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным. Препятствие должно находится на расстоянии 11м от человека, чтобы можно было услышать эхо.

Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.

Некоторые животные (например, летучая мышь, дельфин) издают ультразвуковые колебания, затем воспринимают отраженную волну от препятствий. Так они определяют местоположение и расстояние до окружающих предметов.

Эхолокация . Это способ определения местоположения тел по отраженным от них ультразвуковым сигналам. Широко применяется в мореплавании. На судах устанавливают гидролокаторы - приборы для распознавания подводных объектов и определения глубины и рельефа дна. На дне судна помещают излучатель и приемник звука. Излучатель дает короткие сигналы. Анализируя время задержки и направление возвращающихся сигналов, компьютер определяет положение и размер объекта отразившего звук.

Ультразвук используется для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и др.). Прибор, используемый для этой цели называется ультразвуковым дефектоскопом . На исследуемую деталь направляется поток коротких ультразвуковых сигналов, которые отражаются от находящихся внутри нее неоднородностей и, возвращаясь, попадают в приемник. В тех местах, где дефектов нет, сигналы проходят сквозь деталь без существенного отражения и не регистрируются приемником.

Ультразвук широко используется в медицине для постановки диагноза и лечения некоторых заболеваний. В отличие от рентгеновских лучей его волны не оказывают вредного влияния на ткани. Диагностические ультразвуковые исследования (УЗИ) позволяют без хирургического вмешательства распознать патологические изменения органов и тканей. Специальное устройство направляет ультразвуковые волны с частотой от 0,5 до 15МГц на определенную часть тела, они отражаются от исследуемого органа и компьютер выводит на экран его изображение.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и земной коре могут распространятся на очень далекие расстояния. Это явление находит практическое применение при определении мест сильных взрывов или положения стреляющего оружия. Распространение инфразвука на большие расстояния в море дает возможность предсказания стихийного бедствия - цунами. Медузы, ракообразные и др. способны воспринимать инфразвуки и задолго до наступления шторма чувствуют его приближение.

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16-20 000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с v < 16 Гц (ннфразвуковые) и v > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются.

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига.

Интенсивностыо звука (или силой звука) называется величина, определяемая сред ней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица интенсивности звука в СИ - ватт на метр в квадрате (Вт/м 2).

Чувствительность человеческого уха различна для разных частот. Для того чтобы, вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая (порот слышимости) и наибольшая (порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие. На рис. 223 представлены зависимости порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости.

Если интенсивность звука является величиной, объективно характеризующей вол новой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Согласно физиологическому закону Вебера - Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:

где I 0 - интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10 -12 Вт/м 2 . Величина Lназывается уровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими, - децибелами (дБ).

Физиологической характеристикой звука является уровень громкости, который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует «90 фон, а шепот на расстоянии 1 м - » 20 фон.


Реальный звук является наложением гармонических колебаний с большим набором частот, т. е. звук обладает акустическим спектром, который может быть сплошным (в некотором интервале присутствуют колебания всех частот) и линейчатым (присутствуют колебания отделенных друг от друга определенных частот).

Звук характеризуется помимо громкости еще высотой и тембром. Высота звука - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т. е. звук становится «выше». Характер акустического спектра и распределения энергии между определенными частотами определяет своеобразие звукового ощущения, называемое тембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустический спектр, т. е. их голоса имеют различный тембр.

Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).

Совершая колебания, тело вызывает колебания прилегающих к нему частиц среды с такой же частотой. Состояние колебательного движения последовательно передается к все более удаленным от тела частицам среды, т. е. в среде распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей от плотности и упругих свойств среды. Скорость распространения звуковых волн в газах вычисляется по формуле

(158.1)

где R- молярная газовая постоянная, М- молярная масса, g = C p /C v - отношение молярных теплоемкостсй газа при постоянных давлении и объеме, Т- термодинамическая температура. Из формулы (158.1) вытекает, что скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при T = 273 К скорость звука в воздухе (M = 29×10 -3 кг/моль) v = 331 м/с, в водороде (M = 2×10 -3 кг/моль) v = 1260 м/с. Выражение (158.1) соответствует опытным данным.

При распространении звука в атмосфере необходимо учитывать целый ряд факторов: скорость и направление ветра, влажность воздуха, молекулярную структуру газовой среды, явления преломления и отражения звука на границе двух сред. Кроме того, любая реальная среда обладает вязкостью, поэтому наблюдается затухание звука, т. е. уменьшение его амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание звука обусловлено в значительной мере его поглощением в среде, связанным с необратимым переходом звуковой энергии в другие формы энергии (в основном в тепловую).

Для акустики помещений большое значение имеет реверберации звука - процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Если помещения пустые, то происходит медленное затухание звука и создается «гулкость» помещения. Если звуки затухают быстро (при применении звукопоглощающих материалов), то они воспринимаются приглушенными. Время реверберации - это время, в течение которого интенсивность звука в помещении ослабляется в миллионами, а его уровень - на 60 дБ. Помещение обладает хорошей акустикой, если время реверберации составляет 0,5-1,5 с.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»