Существование и функционирование гэб обеспечивается. Биологические барьеры или гистиоцитарные барьеры (гематоэнцефалический, гематогепатический, гематолабиринтный, гематолиенальный, гематоофтальмический, гематопульмональный, гематоренальный)

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Гистогематический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и органами.

Гистогематические барьеры участвуют в поддержании гомеостаза организма и отдельных органов. Благодаря наличию гистогематических барьеров каждый орган живет в своей особой среде, которая может значительно отличаться от по составу отдельных ингредиентов. Особенно мощные барьеры имеются между и мозгом, кровью и тканью половых желез, кровью и влагой камер глаза, кровью матери и плода.

Гистогематические барьеры различных органов имеют как различия, так и ряд общих черт строения. Непосредственный контакт с кровью во всех органах имеет слой барьера, образованный эндотелием кровеносных капилляров. Кроме того, структурами ГГБ являются базальная мембрана (средний слой) и адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы, в чем проявляется их защитная функция.

Важнейшие механизмы, обеспечивающие функционирование гистогематических барьеров, далее рассматриваются на примере гематоэнцефалического барьера, наличие и свойства которого врачу особенно часто приходится учитывать при применении лекарственных препаратов и различных воздействий на организм.

Гематоэнцефалический барьер

Гематоэнцефалический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и тканью мозга.

Морфологической основой гематоэнцефалического барьера являются эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, астроциты нейроглии, охватывающие своими ножками всю поверхность капилляров. В перемещении веществ через гематоэнцефалический барьер участвуют транспортные системы эндотелия капиллярных стенок, включающие везикулярный транспорт веществ (пино- и экзоцитоз), транспорт через каналы с участием или без участия белков-переносчиков, ферментные системы, модифицирующие или разрушающие поступающие вещества. Уже упоминалось, что в нервной ткани функционируют специализированные транспортные системы воды, использующие белки-аквапорины AQP1 и AQP4. Последние формируют водные каналы, регулирующие образование цереброспинальной жидкости и обмен воды между кровью и тканью мозга.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые «плотные контакты».

Гематоэнцефалический барьер выполняет для мозга защитную и регулирующую функции. Он защищает мозг от действия ряда веществ, образующихся в других тканях, чужеродных и токсичных веществ, участвует в транспорте веществ из крови в мозг и является важнейшим участником механизмов гомеостаза межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества, например катехоламины, практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками , где проницаемость гематоэнцефалического барьера для многих веществ высокая. В этих областях обнаружены пронизывающие эндотелий каналы и межэндотелиальные щели, по которым идет проникновение веществ из крови во внеклеточную жидкость мозговой ткани или в сами . Высокая проницаемость гематоэнцефалического барьера в этих областях позволяет биологически активным веществам (цитокинам, ) достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования гематоэнцефалического барьера является возможность изменения его проницаемости для ряда веществ в различных условиях. Тем самым гематоэнцефалический барьер способен, регулируя проницаемость, изменять взаимоотношения между кровью и мозгом. Регуляция осуществляется за счет изменения числа открытых капилляров, скорости кровотока, изменения проницаемости клеточных мембран, состояния межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза. Проницаемость ГЭБ может существенно нарушаться в условиях ишемии мозговой ткани, инфицирования, развития воспалительных процессов в нервной системе, ее травматическом повреждении.

Считается, что гематоэнцефалический барьер, создавая значительное препятствие для проникновения многих веществ из крови в мозг, вместе с тем хорошо пропускает такие же вещества, образовавшиеся в мозге, в обратном направлении — из мозга в кровь.

Проницаемость гематоэнцефалического барьерадля различных веществ сильно отличается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые . Легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.)

Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Углеводы узнаются и транспортируются специальными переносчиками GLUT1 и GLUT3. Эта транспортная система настолько специфична, что различает стереоизомеры D- и L-глюкозы: D-глюкоза транспортируется, а L-глюкоза — нет. Транспорт глюкозы в ткань мозга нечувствителен к инсулину, но подавляется цитохалазином В.

Переносчики участвуют в транспорте нейтральных аминокислот (например, фенилаланина). Для переноса ряда веществ используются механизмы активного транспорта. Например, за счет активного транспорта против градиентов концентрации переносятся ионы Na + , К+ , аминокислота глицин, выполняющая функцию тормозного медиатора.

Таким образом, перенос веществ с использованием различных механизмов осуществляется не только через плазматические мембраны, но и через структуры биологических барьеров. Изучение этих механизмов необходимо для понимания сути регуляторных процессов в организме.

Гематоэнцефалический барьер (ГЭБ) — это физиологический барьер, отделяющую кровь от цереброспинальной жидкости и внутренней среды центральной нервной системы, для того чтобы сохранить постоянство последнего. Концентрация многих веществ, таких как аминокислоты, гормоны, ионы металлов, в крови постоянно меняется особенно резко после приема пищи или физических нагрузок. Большинство органов могут терпеть такие изменения, однако на функционирование ЦНС они могли бы иметь пагубный характер приводя к хаотическому генерирования нервных импульсов отдельными нейронами, поскольку многие из веществ крови (например аминокислота глицин и гормон норадреналин) выполняют функцию нейромедиаторов, а некоторые ионы (например K +) могут изменять возбудимость нервных клеток.

Структура гематоэнцефалического барьера

В создании гематоэнцефалического барьера задействованы следующие структуры:

  • Эндотелий капилляров, клетки которого надежно и близко соединены между собой с помощью плотных контактов, в результате чего капилляры ЦНС менее проницаемые во всем теле. Эта составляющая является важнейшим в создании ГЭБ.
  • Сравнительно толстая базальная мембрана, окружающая снаружи каждый капилляр.
  • Цибулиноподибни «ножки» астроцитов, которые плотно облепляют капилляры. Хотя эти структуры делают вклад в создание ГЭБ, их роль заключается не столько в непосредственном обеспечении непроницаемости, сколько в том, что они стимулируют эндотелиоциты к образованию плотных контактов.

Проницаемость гематоэнцефалического барьера

Гематоэнцефалический барьер имеет избирательную проницаемость: из него путем облегченной диффузии могут транспортироваться вещества необходимы для питания нервной системы: глюкоза (при участии транспортера GLUT 1), незаменимые аминокислоты и некоторые электролиты. Липиды (жиры, жирные кислоты) и низкомолекулярные жирорастворимые вещества (кислород, углекислый газ, этанол, никотин, анестетики) могут пассивно диффундировать через мембраны ГЭБ. Такие вещества как белки, большинство токсинов и продуктов метаболизма не могут его преодолеть, а низкомолекулярные заменимые аминокислоты и ионы калия даже активно скачиваются с мозга в кровь. В частности для поддержания низкой концентрации K + используется уникальный Na + -K + -2Cl — котранспортер.

Прохождение веществ в обратном направлении — с мозга в кровь — контролируется значительно меньше, потому что цереброспинальная вещество оттекает в венозное русло через ворсинки паутинной оболочки.

Распределение гематоэнцефалического барьера

ГЭБ не одинаков в разных участках центральной нервной системы, например в соединениях сплетениях (лат. Plexus choroideus) желудочков мозга капилляры хорошо пропускающие, однако они окружены клетками эпендимой, которые уже соединены между собой плотными контактами. Иногда барьер в соединениях сплетениях отличают от гематоэнцефалического и называют гемато-спинномозковоридинним, хотя они имеют много общего.

Некоторым функциональным структурам мозга гематоэнцефалический барьер препятствует выполнять их работу, поэтому они его лишены, эти участки объединены под названием навколошлуночкови органы, поскольку расположены вблизи желудочков мозга. Например центр рвоты у продолговатом мозге у четвертого желудочка, должен следить за наличием в крови ядовитых веществ. А гипоталамус, что находится на дне третьего желудочка, должен постоянно чувствовать химический состав крови чтобы регулировать водно-солевой баланс, температуру тела и многие другие физиологических показателей. В частности он проявляет активность в ответ на действие таких белков крови как ангиотензин II, что стимулирует питья, и интерлейкин-1, который вызывает лихорадку.

Гематоэнцефалический барьер также недоразвитый у новорожденных и младенцев, из-за чего они особенно чувствительны к токсическим веществам.

Клиническое значение

Способность определенных препаратов проникать через ГЭБ является важной характеристикой их фармакокинетики. В частности, ее важно учитывать при лечении органов нервной системы. Например некоторые антибиотики фактически не способны проникать в ткани головного и спинного мозга, тогда как другие делают это достаточно легко. ГЭБ задерживает амины дофамин и серотонин, но пропускает их кислотные предшественники — L-ДОФА и 5-гидрокситриптофан.

Важным клиническим наблюдением является то, что гематоэнцефалический барьер нарушается в зонах опухолевого роста — вновь капилляры не имеют нормальных контактов с астроцитами. Это помогает в диагностике новообразований в ЦНС: если использовать альбумин меченый 131 I, он будет проникать в первую очередь в ткань опухоли, благодаря чему ее можно будет локализовать.

Гематоэнцефалический барьер – это своего рода преграда, которая препятствует прониканию из крови в ткань мозга токсических веществ, микроорганизмов, а также антибиотиков.
Мозговой барьер – это фильтр, сквозь который из артерии в мозг попадают полезные вещества, а в венозное русло выводятся различные отработанные продукты. Барьер на пути к мозгу является механизмом, защищающим ткани от посторонних элементов и регулирующим неизменность состава межклеточной жидкости.

Общая информация о гематоэнцефалическом барьере

Естественный заслон способствует защите ткани мозга от всевозможных инородных тел и ядовитых шлаков, которые проникли в кровь или образовались непосредственно в организме. Преграда задерживает компоненты, которые могут навредить очень чувствительным клеткам головного, а также спинного мозга.
Функция ГЭБ – это установить некий щит, способствующий избирательной пропускаемости.

Естественный барьер на пути к тканям мозга пропускает одни вещества и является непроницаемым для иных. Правда, непроницаемость данной преграды относительна и зависит от здоровья человека, от длительности пребывания и концентрации различных веществ в его крови, от всякого рода внешних причин. Сам барьер состоит из различных анатомических компонентов. А они не только оберегают мозг, но и следят за его питанием, обеспечивают жизнедеятельность, выводят отработанные продукты.

ГЭБ является механизмом, который налаживает попадание имеющихся в крови полезных компонентов в спинномозговую жидкость и нервную ткань. Это не какая-то совокупность органов, а функциональная концепция. Большинство полезных веществ поступает в ткани мозга не через ликворные маршруты, а благодаря капиллярам.

Физиология — как работает ГЭБ

Мозговой барьер – это не отдельный орган тела, а совокупность различных анатомических составляющих. Эти составляющие исполняют роль преграды и обладают другими полезными свойствами. Мозговые капилляры – первые компоненты, входящие в структуру этого своеобразного преграждения.
Главная задача мозговых капилляров – это доставка крови непосредственно к мозгу человека. Через стенки клеток в мозг проникает всё необходимое питание, а продукты обмена, наоборот, выводятся. Процесс этот происходит непрерывно. Но только не все вещества, находящиеся в крови, могут проникнуть сквозь эти стенки.

Мозговые капилляры – это своего рода первоначальная оборонительная линия. Для некоторых веществ она проходима, а для остальных – полупроницаема или совершенно непроходима. Структура капилляров, точнее, их внутренней прослойки такова, что разнообразные компоненты перемещаются из крови в ликвор сквозь щёлочки между клетками, а также сквозь тончайшие зоны этих клеток.
Причём стенки капилляров не обладают такими порами, как клетки иных органов. Эти элементы попросту нагромождаются друг на дружку. Места стыковок между ними заслонены специальными пластинами. Щёлочки между клетками слишком узенькие. Передвижение жидкости из капилляров в нервную ткань происходит сквозь их стенки.

Структура клеток капилляров имеет некоторые особенности. Клетки состоят из набора митохондрий, а это является признаком о происходящих в них энергетических процессах. В капиллярных клетках слишком мало вакуолей, в особенности в прилегающей к просвету капилляра стороне. Но на рубеже с нервной материей их количество намного выше. А это свидетельствует о том, что пропускаемость капилляра по направлению из кровеносной системы к тканям мозга намного ниже, чем в противоположной направленности.

Важную роль в реализации преграждающей задачи капилляров играет находящаяся под покровом эндотелиальных элементов очень стойкая мембрана с прослойкой гликокаликса. А составляющие эту прослойку компоненты создают своего рода сеть, которая является ещё одним преграждением для молекул разных компонентов. Капилляры мозга имеют ферменты, которые снижают активность некоторых химических компонентов, перемещающихся из крови в ткань человеческого мозга.
Но одних капилляров мало для осуществления заградительной задачи. Вторая черта преграждений располагается между капиллярами и нейронами. В этом месте природой создано переплетение астроцитов с их отростками и образование ещё одного защитного слоя – нейроглии.

Покрывается почти весь поверхностный слой мозговых капилляров благодаря присосковым ножкам астроцитов. Они также могут расширять просвет капилляра, или, наоборот, его уменьшать. С их помощью происходит питание нейронов. Присосковые ножки вытягивают из крови нужные нейронам питательные компоненты, а обратно выводят отработанные продукты.
Но естественная преграда состоит не только лишь из нейроглии. Препятствующими свойствами характеризуются обволакивающие мозг мягкие оболочки, а также сосудистые переплетения его боковых желудочков. Пропускаемость сосудистых переплетений, вернее, их капилляров, намного выше, чем мозговых капилляров. А щели между их клетками гораздо шире, но они замкнуты очень прочными контактами. Именно здесь и находится третья ступень ГЭБ.

Мозговой заслон не только бережёт мозг от посторонних и ядовитых компонентов, имеющихся в крови, но и стабилизирует состав питательной среды, в которой находятся нервные клетки.

Нужные для жизнедеятельности компоненты мозг получает благодаря присосковым ножкам клеток, а также через ликвор. В мозге имеются внеклеточные участки. А на дне микробороздок мозга есть мельчайшие проходы, которые открываются в межклеточные участки. Благодаря ним питательная жидкость прмщатся в мозг и служит питанием для нейронов.

Есть 2 способа питания мозга:
благодаря спинномозговой жидкости;
сквозь капиллярные стенки.

У здорового человека основным путём попадания компонентов в нервные ткани является гематогенный, а ликворный маршрут – дополнительный. Каким компонентам перемещаться в мозг, а каким нет, решает ГЭБ.

Проницаемость барьера

Мозговая преграда не только останавливает и не допускает к мозгу некоторые вещества, имеющиеся в крови, но и доставляет нужные для метаболизма нервной ткани компоненты. Гидрофобные компоненты, а также пептиды перемещаются в ткани мозга сквозь каналы мембраны клеток, с помощью различных транспортных систем или диффузии.

Существуют такие способы перемещения через ГЭБ:

  1. Межклеточный. Суть системы: питательные продукты передвигаются в мозг сквозь стенки клеток.
  2. Благодаря каналам. В мембране клеток имеются щели – аквапоры. Через них происходит попадание воды. Для глицерина на поверхности мембран клеток также имеются специальные проходы – акваглицеропорины.
  3. Диффузия. Передвижение компонентов может происходить сквозь клеточные мембраны и сквозь межклеточные контакты. Чем липофильнее и меньше проходящее вещество, тем проще оно диффундирует сквозь мембрану клеток.
  4. Диффузия (облегчённая). Многие полезные для мозга компоненты (различные аминокислоты) слишком большие, чтобы пройти сквозь клеточную мембрану. Для них на поверхности клеток существуют специальные транспортёры, а также белковые молекулы.
  5. Активные транспортёры. Перенос различных веществ требует расходов клеточной энергии и осуществляется благодаря активным транспортёрам.
  6. Везикулярный. Происходит связывание полезных для мозга компонентов, перемещение их во внеклеточные участки и высвобождение связанных элементов.

ГЭБ есть во многих участках мозга. Но в шести анатомических образованиях его нет. Отсутствует барьер на дне 4 желудочка, в шишковидном теле, в нейрогипофизе, в прикреплённой пластинке мозга, в субфорникальном и субкомиссуральном органах.
Проницаемость естественного барьера обуславливается состоянием здоровья человека, а также содержанием в крови гормонов. Болезненное состояние приводит к повышению проницаемости.

Повреждения барьерного щита бывают при таких болезнях:

  • бактериальная инфекция ЦНС;
  • вирусы;
  • опухоли мозга;
  • сахарный диабет.

Таким образом, у здорового человека мозговой щит работает отлично и служит преградой для прохождения разнообразных компонентов в мозг. Происходит это благодаря капиллярам мозга. Их клетки не имеют пор. Кроме того, роль дополнительной липидной преграды играют и астроглии. Сквозь естественную преграду плохо проходят полярные образования. Но липофильные молекулы проходят к мозгу очень просто. Заслон преодолевается в основном благодаря диффузии или активному передвижению. В организме есть участки мозга, в которых барьер не действует (задняя стенка гипофиза, эпифиз). Если человек болеет, то проходимость становится выше.

Использование ГЭБ в фармакологии

Мозговой барьер избирательно проходим для различных лекарственных средств. Для того чтобы излечить заболевания мозга лекарства должны проникнуть в его ткани. А это не всегда возможно. Но во время воспалительных заболеваний мозга проницаемость барьера несколько повышается, в результате чего сквозь него проходят лекарства, которые при нормальном состоянии не преодолели бы это препятствие.
При воспалительных процессах важно преодолеть преграждающий заслон. Ведь нужно добиться проникновения лекарств в мозг. Но при искусственном преодолении естественного препятствия в мозг порой перемещаются не только лекарства, но и вредные шлаки.

В медицинской практике самым эффективным методом лечения мозга является ввод лекарства в желудочки мозга, другими словами, в обход барьера.

Лекарства, которые плохо проникают сквозь мозговой барьер, могут вводиться под оболочки мозга. Таким образом лечится менингит, а также воспаление мозга.
Медикаменты разрабатываются с учётом проходимости мозгового барьера.

Синтетические анальгетики, имеющие в своём составе морфин, наоборот, обязаны лишь избавлять человека от боли, но не проходить ГЭБ. Существуют антибиотики, лечащие воспалительные процессы, которые отлично проходят мозговой барьер. К ним относятся: «Нифурател», «Макмирор», «Бимарал», «Метоклопрамид». Хорошо проходят барьер медикаменты: «Мотилиум», «Мотилак». Наилучшая степень прохождения мозгового барьера у «Ампицилина» и «Цефазолина». Способность проникать сквозь ГЭБ у жирорастворимых соединений намного выше, чем у водорастворимых веществ.

По определению Штерн, (ГЭБ, blood-brain barrier (BBB))- это совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ). Это определение из книги Покровского и Коротько "Физиология человека" .

Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.
В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее:
1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;
2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;
3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.
Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.
Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Гистологическая структура


Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
Ведущим компонентом гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга:
- через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь)
- через стенку капилляра.
У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Морфологическим субстратом ГЭБ являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции ГЭБ придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

Функционирование ГЭБ

В основе функционирования ГЭБ лежат процессы диализа, ультрафильтрации, осмоса, а также изменение электрических свойств, растворимости в липидах, тканевого сродства или метаболической активности клеточных элементов. Важное значение в функционирование придается ферментному барьеру, например, в стенках микрососудов мозга и окружающей их соединительнотканной стромы (гематоэнцефалический барьер) - обнаружена высокая активность ферментов - холинэстеразы, карбоангидразы, ДОФА-декарбоксилазы и др. Эти ферменты, расщепляя некоторые биологически активные вещества, препятствуют их проникновению в мозг.
Водорастворимые молекулы не могут свободно диффундировать между кровью и ЦСЖ из-за непроницаемых жестко связанных соединений между эпителиальными клетками сосудистых сплетений, вместо этого эпителиальные клетки переносят определенные молекулы с одной стороны барьера на другую. Как только молекулы попадают в ЦСЖ, они диффундируют через «протекающий» эпителиальный слой и достигают интерстициальной жидкости, окружающей нейроны и глиальные клетки.
1.Эндотелиальная клетка
2.Плотное соединение
3.Церебральный капилляр
4.Нейрон
5.Глюкоза
6.Интерстициальная жидкость
7.Глиальная клетка
8.Эпендимный слой

1.Хориоидальное сплетение, эпителиальная клетка
2.Капилляр
3.Плотное соединение
4.Эпендимный слой

Эпителиальные клетки переносят определенные молекулы из капилляров внутрь желудочков головного мозга. Поток ионов, пересекающий ГЭБ (кровь-ЦСЖ) регулируется несколькими механизмами в сосудистом сплетении:
1.Кровеносный сосуд (плазма)
2.Базолатеральная (нижнебоковая) поверхность
3.Эпителиальная клетка сосудистого сплетения
4.Жесткая связь
5.Желудочки
6.Апикальная (верхняя) поверхность
7.СМЖ в желудочке
8.Ионный обмен

Молекулы воды в эпителиальных клетках диссоциируют на ионы водорода и гидроксильные ионы. Гидроксильные ионы комбинируются с двуокисью углерода, которая является продуктом клеточного метаболизма. На поверхности базолатеральных клеток ионы водорода обмениваются на внеклеточные ионы натрия из плазмы. В желудочках мозга ионы натрия активно переносятся через апикальную поверхность клетки (верхушку). Это сопровождается компенсаторным движением ионов хлорида и бикарбоната в ЦСЖ. Для поддержания осмотического равновесия вода движется в желудочки.

Проницаемость и регуляция ГЭБ

ГЭБ рассматривают в качестве саморегулирующейся системы, состояние
которой зависит от потребностей нервных клеток и уровня метаболических
процессов не только в самом мозге, но и в других органах и тканях
организма. Проницаемость ГЭБ неодинакова в разных отделах мозга,
селективна для разных веществ и регулируется нервными и гуморальными
механизмами. Важная роль в нейрогуморальной регуляции функций ГЭБ
принадлежит изменению интенсивности метаболических процессов в ткани
мозга, что доказывается угнетающим влиянием ингибиторов метаболических
процессов на скорость транспорта аминокислот в мозг и стимуляцией их
поглощения субстратами окисления.
Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови. Проникновение в мозг в области гипоталамуса, где ГЭБ «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы. Имеются многочисленные доказательства снижения защитной функции ГЭБ под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д. В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р уменьшать проникновение в мозг определенных веществ.

ГЭБ- это система защиты мозга от внешних повреждающих факторов. Как говорилось выше, при травмах, патологических процессах она может нарушаться. Кроме того, у некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер.
Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит. Менингит новорожденных, например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульные полисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру.

ГЭБ работает как селективный фильтр, пропускающий в цереброспинальную жидкость одни вещества и не пропускающий другие, которые могут циркулировать в крови, но чужды мозговой ткани. Так, не проходят через ГЭБ адреналин, норадреналин, ацетилхолин, дофамин, серотонин, гамма-аминомасляная кислота (ГАМК), пенициллин, стрептомицин.

Билирубин всегда находится в крови, но никогда, даже при желтухе, он не проходит в мозг, оставляя неокрашенной лишь нервную ткань. Поэтому трудно получить эффективную концентрацию какого-либо лекарственного препарата, чтобы оно достигло паренхимы мозга. Проходят через ГЭБ морфий, атропин, бром, стрихнин, кофеин, эфир, уретан, алкоголь и гамма-оксимасляная кислота (ГОМК). При лечении, например, туберкулезного менингита стрептомицин вводят непосредственно в цереброспинальную жидкость, минуя барьер с помощью люмбальной пункции.

Необходимо учесть необычность действия многих веществ, введенных непосредственно в цереброспинальную жидкость. Трипановый синий при введении в цереброспинальную жидкость вызывает судороги и смерть, аналогичное действие оказывает желчь. Ацетилхолин, введенный непосредственно в мозг, действует как адреномиметик (аналогично адреналину), а адреналин, наоборот, - как холиномиметик (аналогично ацетилхолину) : артериальное давление понижается, возникает брадикардия, температура тела вначале снижается, а потом повышается.
Он вызывает наркотический сон, заторможенность и аналгезию. Ионы К+ выступают в качестве симпатомиметика, а Са2+ - парасимпатомиметика . Лобелин - рефлекторный стимулятор дыхания, проникая через ГЭБ, вызывает ряд побочных реакций (головокружение, рвоту, судороги). Инсулин при внутримышечных инъекциях снижает содержание сахара крови, а при непосредственном введении в цереброспинальную жидкость - повышает.

Все лекарства, выпускающиеся в мире, делятся на проникаюшие и не проникающие через ГЭБ. Это является большой проблемой- некоторые лекарства не должны проникать (но проникают), а некоторые наоборот- должны проникать для достижения терапевтического эффекта, но не могут в силу своих свойств. Факмакологи занимаются разрешением этой проблемы с помощью компьютерного моделирования и экспериментальных исследований.

ГЭБ и старение

Как говорилось выше, одна из важнейших частей ГЭБ- астроциты. Формирование ГЭБ и является их основной функцией в мозге.
Проблема трансформации клеток (РГ) в звездчатые астроциты в
постнатальный период развития лежит в основе астроцитной теории
старения млекопитающих.
Имеет место исчезновение эмбриональных радиальных путей миграции клеток
от места их пролиферации к местам их конечной локализации в мозгу
взрослой особи, что является причиной постмитотичности мозга
млекопитающих. Исчезновение РГ индуцирует целый каскад системных
процессов, которые названы как механизм возрастзависимого
самоуничтожения млекопитающих (МВСМ). Исчезновение клеток РГ делает
невозможной замену исчерпавших свой жизненный ресурс нейронов
(Бойко,2007).
Возрастные изменения ГЭБ еще не изучены полностью.В повреждении ГЭБ несомненную роль играют атеросклероз, алкоголизм и др. заболевания. При недостаточном функционировании ГЭБ начинается проникновение холестерина и аполипопротеина в ткань мозга, что ведет к большему повреждению ГЭБ.
Возможно, изучив возрастные изменения ГЭБ, ученые смогут приблизится к разгадке проблемы старения.

ГЭБ и болезнь Альцгеймера


Старение мозга и нейродегенеративные заболевания связаны с оксидативным стрессом, нарушением содержания металлов и воспалением, и далеко не последнюю роль в этом играет ГЭБ. Например, рецепторы гликозилированных белков (РГБ) и протеин-1, связанный с рецепторами липопротеина низкой плотности (П1-РЛП), встроенные в структуру ГЭБ, играют основную роль в регуляции обмена бета-амилоида в ЦНС, и изменение активности этих двух рецепторов может способствовать накоплению бета-амилоида в ЦНС с последующим развитием воспаления, нарушением баланса между мозговым кровообращением и метаболизмом, изменением синаптической передачи, повреждением нейронов и отложением амилоида в паренхиме и сосудах головного мозга. А в результате- болезнь Альцгеймера. Накопление аполипопротеина в периваскулярном (околососудистом) пространстве- ключевой момент в развитии этого страшного заболевания, которое распространяется все с большей скоростью и уже поражает лиц моложе 40 лет. О роли аполипопротеина и повреждении астроцитов ГЭБ пишут немецкие авторы под руководством Dr. Dietmar R. Thal из Department of Neuropathology , University of Bonn .
Кроме того, некоторые исследователи считают, что болезнь Альцгеймера может носить и аутоиммунную природу- проникновение церебрального протеина в кровоток через дефицитарный ГЭБ. В сосудистой системе образуются антитела, атакующие мозг при повторном переходе через барьер.

Многие ученые связывают развитие нейродегенеративных заболеваний и поддержание нервных стволовых клеток с активностью ABC transporters- АТФ-связывающих транспортеров. ABCB-семейство этих транспортеров обнаружено в ГЭБ. В недавней статье исследовательской группы под руководством профессора Jens Pahnke из Neurodegeneration Research Laboratory (NRL) , Department of Neurology, University of Rostock обсуждаются накопленные данные. Ученые полагают, что благодаря изучению роли и функционирования ABC transporters можно будет глубже понять патогенез болезни Альцгеймера, создать новые подходы в терапии и математические методы для расчета риска.
В апреле 2008 года в BBC News появилось сообщение Джонатана Гейгера из University of North Dakota о том, что ежедневное употребление одной чашки кофе в день укрепляет гематоэнцефалический барьер, защищая мозг от вредного воздействия холестерина. Исследователи под руководством Джонатана Гейгера кормили кроликов пищей с высоким содержанием холестерина. Кроме того, некоторые животные ежедневно получали воду, содержащую 3 мг кофеина (что эквивалентно одной чашке кофе). Спустя 12 недель, у кроликов, получавших кофеин, гематоэнцефалический барьер оказался значительно прочнее, чем у их собратьев, употреблявших обычную воду, сообщил Гейгер. Гистологическое исследование мозга кроликов показало повышение активности астроцитов – клеток микроглии мозга, а также снижение проницаемости ГЭБ. Новые данные могу помочь в борьбе с болезнью Альцгеймера, при которой происходит повышение уровня холестерина в крови пациентов и, как следствие разрушение ГЭБ, полагают ученые.

Другим средством от болезни Альцгеймера могут стать ионофоры- аналоги 8- гидрокси- хинолина (PBT2), которые действуют на метал-индуцированную агрегацию амилоида. Об этом В 2006 году ученые из Department of Chemical and Biological Engineering , University of Wisconsin-Madison под руководством Eric V. Shusta продемонстрировали способность нервных стволовых клеток эмбрионального мозга крыс стимулировать приобретение клетками кровеносных сосудов свойств гематоэнцефалического барьера .
В работе использовались стволовые клетки мозга, выращиваемые в виде нейросфер. Такие клетки синтезируют факторы, воздействие которых на эндотелиальные клетки, выстилающие внутреннюю поверхность сосудов мозга, заставляет их формировать плотный барьер, не пропускающий малые молекулы, обычно свободно проникающие через сосудистую стенку.
Авторы отмечают, что формирование такого зачаточного гематоэнцефалического барьера происходит даже при полном отсутствии астроцитов – клеток, обеспечивающих поддержание структуры и функционирования структур мозга, в том числе гематоэнцефалического барьера, но появляющихся в больших количествах только после рождения.
Тот факт, что развивающиеся клетки мозга стимулируют превращение эндотелиальных клеток в клетки гематоэнцефалического барьера, не только проливает свет на механизмы, обеспечивающие безопасность мозга. Авторы планируют создать аналогичную модель гематоэнцефалического барьера с использованием человеческих эндотелиальных и нервных стволовых клеток. Если их попытки увенчаются успехом, то в распоряжении исследователей-фармакологов в скором будущем появится функционирующая модель человеческого гематоэнцефалического барьера, помогающая в преодолении препятствий, стоящих на пути нейробиологов, врачей и разработчиков лекарственных средств, пытающихся найти способы доставки в мозг тех или иных препаратов.

В заключение

В заключение хотелось бы сказать, что гематоэнцефалический барьер- удивительная структура, которая защищает наш мозг. Сейчас ведется множество исследований ГЭБ, в основном их ведут фармакологические компании и эти исследования имеют своей целью определение проницаемости ГЭБ для различных веществ, в основном кандидатов на роль лекарств от тех или иных заболеваний. Но этого недостаточно. С проницаемостью ГЭБ связано страшное возраст-ассоциированное заболевание- болезнь Альцгеймера. С проницаемостью ГЭБ связано старение мозга. Старение ГЭБ ведет за собой старение других структур мозга, а метаболические изменения в стареющем мозге ведут за собой изменения функционирования ГЭБ.
Можно выделить несколько задач для исследователей:
1) Определение проницаемости ГЭБ для различных веществ и анализ накопленных экспериментальных данных -необходимо для создания новых лекарств.

2) Исследование возрастных изменений ГЭБ.

3) Изучение возможностей регуляции функционирования ГЭБ.

4) Изучение роли изменений ГЭБ в возникновении нейродегенеративных заболеваний

Сейчас необходимы исследования этих вопросов, потому что болезнь Альцгеймера "молодеет". Может быть, научившись правильно регулировать функциональное состояние ГЭБ, научившись укреплять его, научившись понимать глубинные метаболические процессы в мозге ученые наконец-то найдут средства от возраст-ассоциированных заболеваний мозга и
старения...

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер.

Термин «гематоэнцефалический барьер» был предложен Л.С.Штерн и Р.Готье в 1921 г. Гематоэнцефалический барьер (ГЭБ) принадлежит к числу внутренних или гистогематических барьеров которые отгораживают непосредственно питательную среду отдельных органов от универсальной внутренней среды – крови. ГЭБ – это комплексный физиологический механизм, находящийся в центральной нервной системе на границе между кровью и нервной тканью, и регулирующий поступление из крови в цереброспинальную жидкость и нервную ткань циркулирующих в крови веществ. ГЭБ участву­ет в регулировании состава цереброспинальной жидкости (ЦСЖ) (Агаджанян Н. А., Торшин, В. И., 2001).

В основных положениях о ГЭБ подчеркивается следующее:

Гематоэнцефалический барьер является в большей степени не анатомическим образованием , а функциональным понятием, ха­рактеризующим определенный физиологический механизм;

Проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;

Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;

Среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

2. Особенности морфологического строения

Капилляры мозга отличаются тем, что эндотелиальные клетки не обладают ни порами, ни фенестрами. Соседние клетки черепицеобразно накладываются одна на другую. В области стыков клеток находятся замыкательные пластинки. Базальная мембрана имеет трехслойное строение и содержит мало перицитов. Главное отличие этой структуры – наличие глиальных элементов, расположенных между кровеносным сосудом и нейроном. Отростки астроцитов формируют своеобразный футляр вокруг капилляра, это исключает проникновение веществ в мозговую ткань, минуя глиальные элементы. Имеются перинейрональные глиоциты, находящиеся в тесном контакте с нейронами. В состав ГЭБ входит внеклеточное пространство, заполненное основным аморфным веществом углеводно-белковой природы (мукополисахариды и мукопротеины).

3. Функции гематоэнцефалического барьера

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Росин Я. А. 2000). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови (Покровского В.М., Коротько Г.Ф., 2003).

4. Транспорт веществ через гематоэнцефалический барьер

Гематоэнцефалический барьер не только задерживает и не пропускает целый ряд веществ из крови в вещество мозга, но и выполняет противоположную функцию - транспортирует необходимые для метаболизма ткани мозга вещества. Гидрофобные вещества и пептиды проникают в мозг либо с помощью специальных транспортных систем, либо через каналы клеточной мембраны. Для большинства других веществ возможна пассивная диффузия.

Существует несколько видов транспорта веществ через ГЭБ

4.1 Межклеточный транспорт

В капиллярах периферических органов и тканей, транспорт веществ осуществляется в основном через фенестра́ции сосудистой стенки и межклеточные промежутки. В норме между клетками эндотелия сосудов мозга такие промежутки отсутствуют. В связи с этим питательные вещества проникает в мозг лишь через клеточную стенку. Вода, глицерин и мочевина могут свободно диффундировать через плотные контакты между эндотелиальными клетками ГЭБ.

4.2 Канальцевая проницаемость

Небольшие полярные вещества, например молекулы воды, с трудом могут диффундировать через гидрофобные отделы клеточной мембраны эндотелиоцита. Несмотря на это доказана высокая проницаемость ГЭБ для воды.

В клеточной мембране эндотелиоцита располагаются специальные гидрофильные каналы - аквапоры. В эндотелии периферических сосудов они образованы белком аквапорином-1 (AQP1), экспрессия которого ингибируется астроцитами в клетках сосудов мозга. На поверхности мембран клеток капиллярной сети мозга представлены в основном аквапорин-4 (AQP4) и аквапорин-9 (AQP9).

Через аквапоры происходит регуляция содержания воды в веществе мозга. Они делают возможным быструю диффузию воды как в направлении мозга так и в направлении сосудистого русла в зависимости от осмотического градиента концентраций электролитов. Для глицерина, мочевины и ряда других веществ на поверхности клеточных мембран формируются собственные каналы - акваглицеропорины. В ГЭБ они представлены в основном белком аквапорином-9, который также образует аквапоры.

Процесс транспорта молекул через специализированные каналы осуществляется быстрее активного переноса с помощью специальных белков транспортёров. В то же время различные биологически активные вещества могут активировать или инактивировать транспортные каналы расположенные на клеточных мембранах.

4.3 Свободная диффузия

Самой простой формой транспорта через ГЭБ является свободная (или пассивная) диффузия. Она может осуществляться как через клеточные мембраны эндотелиоцитов, так и через плотные межклеточные контакты. Для диффузии веществ, движущей силой является разница концентраций. Диффузия веществ пропорциональна градиенту концентраций в кровеносном русле и ткани мозга. Для неё не требуется затрат клеточной энергии.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»