Энергетика живой клетки. Что происходит в клетках тела

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Нельзя понять, как устроен и «работает» организм человека, не разобравшись в том, как протекает обмен веществ в клетке. Каждая живая клетка должна постоянно добывать энергию. Энергия нужна ей, чтобы вырабатывать тепло и синтезировать (создавать) некоторые жизненно необходимые ей химические вещества, например белки или наследственное вещество. Энергия нужна клетке, и чтобы двигаться. Клетки тела , способные совершать движения, называются мышечными. Они могут сокращаться. Это и приводит в движение наши руки, ноги, сердце, кишечник. Наконец, энергия нужна, чтобы вырабатывать электрический ток: благодаря ему одни части тела «общаются» с другими. А обеспечивают связь между ними в первую очередь нервные клетки.

Откуда же клетки черпают энергию? Ответ таков: их выручает АТФ . Поясним. Клетки сжигают питательные вещества, и при этом выделяется какое-то количество энергии. Они используют ее, чтобы синтезировать особое химическое вещество, которое накапливает столь нужную им энергию. Это вещество называется аденозинтрифосфатом (сокращенно — АТФ). При расщеплении молекулы АТФ, содержащейся в клетке, выделяется накопленная в ней энергия. Благодаря этой энергии клетка может вырабатывать тепло, электрический ток, синтезировать химические вещества или совершать движения. Короче говоря, АТФ приводит в действие весь «механизм» клетки.

Так выглядит под микроскопом тонкий подкрашенный кружок ткани, взятой из гипофиза — мозгового придатка величиной с горошину. Красные, желтые, голубые, фиолетовые пятна, а также пятна телесного цвета — это клетки с ядрами . Каждый тип клеток гипофиза выделяет один или несколько жизненно важных гормонов.

А теперь подробнее поговорим о том, как клетки получают АТФ. Ответ мы уже знаем. Клетки сжигают питательные вещества. Делать это они могут двумя способами. Во-первых, сжигать углеводы, главным образом глюкозу, в отсутствие кислорода. При этом образуется вещество, которое химики называют пировиног-адной кислотой, а сам процесс расщепления углеводов — гликолизом. В результате гликолиза получается слишком мало АТФ: распад одной молекулы глюкозы сопровождается образованием лишь двух молекул АТФ. Гликолиз неэффективен — это древнейшая форма извлечения энергии. Вспомните, что жизнь зародилась в воде, то есть в среде, где кислорода было очень мало.

Во-вторых, клетки организма сжигают пировиноградную кислоту, жиры и белки в присутствии кислорода. Все перечисленные вещества содержат углерод и водород. В этом случае сжигание происходит в два этапа. Сначала клетка извлекает водород, затем сразу же начинает разлагать оставшийся углеродный каркас и избавляется от углекислого газа — через клеточную мембрану выводит его наружу. На втором этапе сжигается (окисляется) водород, извлеченный из питательных веществ. Образуется вода, и выделяется большое количество энергии. Клеткам хватает ее, чтобы синтезировать множество молекул АТФ (при окислении, например, двух молекул молочной кислоты, продукта восстановления пировиноградной кислоты, образуется 36 молекул АТФ).

Описание это кажется сухим и отвлеченным. На самом деле каждому из нас доводилось видеть, как происходит процесс выработки энергии. Помните телевизионные репортажи с космодромов о запуске ракет? Они взмывают ввысь за счет невероятного количества энергии, выделяемой при... окислении водорода, то есть при сжигании его в кислороде.

Космические ракеты высотой с башню устремляются в небо за счет громадной энергии, что выделяется при сжигании водорода в чистом кислороде. Эта же энергия поддерживает жизнь и в клетках нашего тела. Только в них реакция окисления протекает поэтапно. Кроме того, сначала вместо тепловой и кинетической энергии наши клетки создают клеточное топливо» — АТФ .

Их топливные баки заполнены жидкими водородом и кислородом. При запуске двигателей водород начинает окисляться и огромная ракета стремительно уносится в небо. Может быть, это кажется невероятным, и все-таки: та же энергия, что уносит ввысь космическую ракету, поддерживает и жизнь в клетках нашего тела.

Разве что в клетках не происходит никакого взрыва и из них не вырывается сноп пламени. Окисление совершается поэтапно, и потому вместо тепловой и кинетической энергии образуются молекулы АТФ.

Любое свойство живого, и любое проявление жизни связано с определёнными химическими реакциями в клетке. Эти реакции идут либо с затратой, либо с освобождением энергии. Вся совокупность процессов превращения веществ в клетке, а также в организме, называется метаболизмом.

Анаболизм

Клетка в процессе жизни поддерживает постоянство своей внутренней среды, называемое гомеостазом. Для этого она синтезирует вещества в соответствии со своей генетической информацией.

Рис. 1. Схема метаболизма.

Эта часть метаболизма, при которой создаются характерные для данной клетки высокомолекулярные соединения, называется пластическим обменом (ассимиляцией, анаболизмом).

К реакциям анаболизма относится:

  • синтез белков из аминокислот;
  • образование крахмала из глюкозы;
  • фотосинтез;
  • синтез жиров из глицерина и жирных кислот.

Эти реакции возможны только при затратах энергии. Если для фотосинтеза затрачивается внешняя (световая) энергия, то для остальных - ресурсы клетки.

ТОП-4 статьи которые читают вместе с этой

Количество затрачиваемой на ассимиляцию энергии больше, чем запасается в химических связях, т. к. часть её используется на регуляцию процесса.

Катаболизм

Другая сторона обмена веществ и превращения энергии в клетке - энергетический обмен (диссимиляция, катаболизм).

Реакции катаболизма сопровождаются выделением энергии.
К этому процессу относятся:

  • дыхание;
  • распад полисахаридов на моносахариды;
  • разложение жиров на жирные кислоты и глицерин, и другие реакции.

Рис. 2. Процессы катаболизма в клетке.

Взаимосвязь процессов обмена

Все процессы в клетке тесно связаны между собой, а также с процессами в других клетках и органах. Превращения органических веществ зависят от наличия неорганических кислот, макро- и микроэлементов.

Процессы катаболизма и анаболизма идут в клетке одновременно и являются двумя противоположными составляющими метаболизма.

Обменные процессы связаны с определёнными структурами клетки:

  • дыхание - с митохондриями;
  • синтез белков - с рибосомами;
  • фотосинтез - с хлоропластами.

Для клетки характерны не отдельные химические процессы, а закономерный порядок, в котором они осуществляются. Регуляторами обмена являются белки-ферменты, которые направляют реакции и изменяют их интенсивность.

АТФ

Особую роль в метаболизме играет аденозинтрифосфорная кислота (АТФ). Она является компактным химическим аккумулятором энергии, используемым для реакций синтеза.

Рис. 3. Схема строения АТФ и превращения её в АДФ.

За счёт своей неустойчивости АТФ образует молекулы АДФ и АМФ (ди- и монофосфат) с выделением большого количества энергии для процессов ассимиляции.

Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли. Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, личиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т. д.). Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы. Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоуно-рядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей. В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты. Совокупность химических реакций, происходящих в организме, называется обменом веществ нли метаболизмом. В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

Катаболизм (диссимиляция) -совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза полимеров до мономеров и расщепление последних до углекислого газа, воды, аммиака, т. е. реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ. Анаболизм (ассимиляция) - совокупность реакций синтеза сложных органических веществ из более простых. Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ. Синтез веществ в клетках живых организмов часто обозначают понятием пластический обмеи, а расщепление веществ и их окисление, сопровождающееся синтезом АТФ, -энергетическим обменом. Оба вида обмена составляют основу жизнедеятельности любой клетки, а следовательно, и любого организма и тесно связаны между собой. Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия или временного превалирования одного из них. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а катаболических - к частичному разрушению тканевых структур, выделению энергии. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста. В детском возрасте преобладают процессы анаболизма, а в старческом - катаболизма. У взрослых людей эти процессы находятся в равновесии. Их соотношение зависит также от состояния здоровья, выполняемой человеком физической или психоэмоциональной деятельности.


82. Энтропия открытых термодинамических систем, уравнение Пригожина .

Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления к системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние. Открытая система, термодинамич. система, способная обмениваться с окружающей средой веществом и энергией. В открытой системе возможны потоки тепла как из системы, так и внутрь неё.

Постулат И.Р. Пригожина состоит в том, что общее изменение энтропии dS открытой системы может происходить независимо либо за счет процессов обмена с внешней средой (deS), либо вследствие внутренних необратимых процессов (diS): dS = deS + diS. Теорема Пригожина. В стационарных состояниях при фиксированных внешних параметрах скорость продукции энтропии в открытой системе обусловлена протеканием необратимых процессов постоянна во времени и минимальна по величине. diS / dt  min.

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают...
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ - ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ . Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат) , которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков - молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена . Он тесно связан с пластическим обменом , в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ) . Метаболизм - совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Первый этап, получивший название гликолиз , проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н1 2 0 6 → 2С 3 Н 4 0 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется, до углекислого газа и воды, получил название клеточное дыхание . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта - углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ - как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

C 6 H 12 O 6 + 6Н 2 0 → 6CO 2 + 6H 2 O + 38АТФ

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ . Фотосинтез - это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза - хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы - световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды - фотолиз ; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА . Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции - это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза - это цепь реакций, пластического обмена, а световая - энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

ХЕМОСИНТЕЗ . К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями - АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?

АТФ - универсальная энергетическая «валюта» клетки. Одно из наиболее удивительных «изобретений» природы - это молекулы так называемых «макроэргических» веществ, в химической структуре которых имеется одна или несколько связей, которые выполняют функцию накопителей энергии. В живой природе найдено несколько подобных молекул, но в организме человека встречается только одна из них - аденозинтрифосфорная кислота (АТФ). Это довольно сложная органическая молекула, к которой присоединены 3 отрицательно заряженных остатка неорганической фосфорной кислоты PO . Именно эти фосфорные остатки связаны с органической частью молекулы «макроэргическими» связями, легко разрушающимися при разнообразных внутриклеточных реакциях. Однако энергия этих связей не рассеивается в пространстве в виде тепла, а используется на движение или химическое взаимодействие других молекул. Именно благодаря этому свойству АТФ выполняет в клетке функцию универсального накопителя (аккумулятора) энергии, а также универсальной «валюты». Ведь почти каждое химическое превращение, происходящее в клетке, либо поглощает, либо высвобождает энергию. Согласно закону сохранения энергии, общее количество энергии, образованное в результате окислительных реакций и запасенное в виде АТФ, равно количеству энергии, которое может использовать клетка на свои синтетические процессы и выполнение любых функций. В качестве «оплаты» за возможность произвести то или иное действие клетка вынуждена расходовать свой запас АТФ. При этом следует особо подчеркнуть: молекула АТФ столь крупна, что она не способна проходить через клеточную мембрану. Поэтому АТФ, образованная в одной клетке, не может быть использована Другой клеткой. Каждая клетка тела вынуждена синтезировать АТФ Для своих нужд самостоятельно в тех количествах, в которых она необходима для выполнения ее функций.

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы - наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов - вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, - происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.


Гликолиз - весьма быстрый, но сравнительно малоэффективный процесс. Образовавшаяся в клетке после завершения реакций гликолиза пировиноградная кислота почти тут же превращается в молочную кислоту и порой (например, во время тяжелой мышечной работы) в весьма больших количествах выходит в кровь, так как это небольшая молекула, способная свободно проходить через клеточную мембрану. Такой массированный выход кислых продуктов обмена в кровь нарушает гомеостаз, и организму приходится включать специальные гомеостатические механизмы, чтобы справиться с последствиями мышечной работы или другого активного действия.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы - митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы - обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой - туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник - самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик - например, мышцы могут с максимальным усилием работать за счет КрФ не более 6-7 с. Этого обычно достаточно, чтобы запустить второй по мощности - гликолитический - источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5-2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика - в 2-3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

Особенности организации энергопродукции в различных тканях организма. Разные ткани обладают различной насыщенностью митохондриями. Меньше всего их в костях и белом жире, больше всего - в буром жире, печени и почках. Довольно много митохондрий в нервных клетках. Мышцы не обладают высокой концентрацией митохондрий, но ввиду того, что скелетные мышцы - самая массивная ткань организма (около 40 % от массы тела взрослого человека), именно потребности мышечных клеток во многом определяют интенсивность и направленность всех процессов энергетического обмена. И.А.Аршавский называл это «энергетическим правилом скелетных мышц».

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»